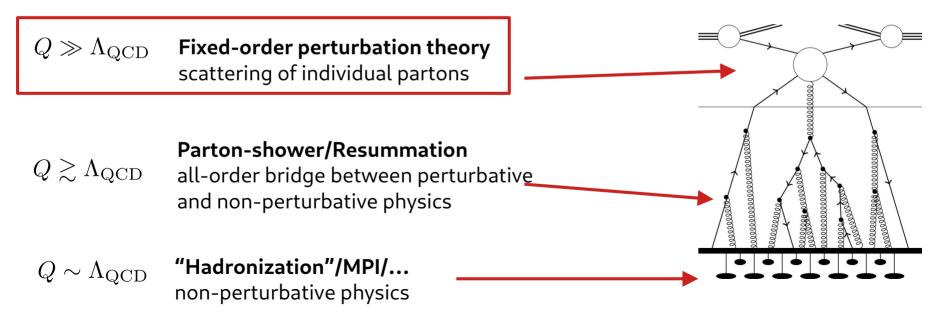

Fixed-order parton-level 'events'

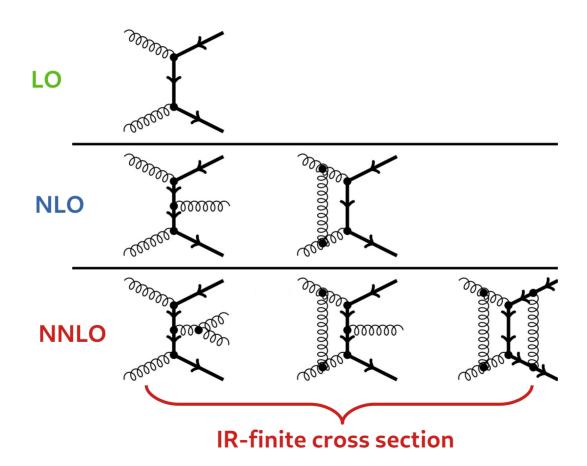
Some

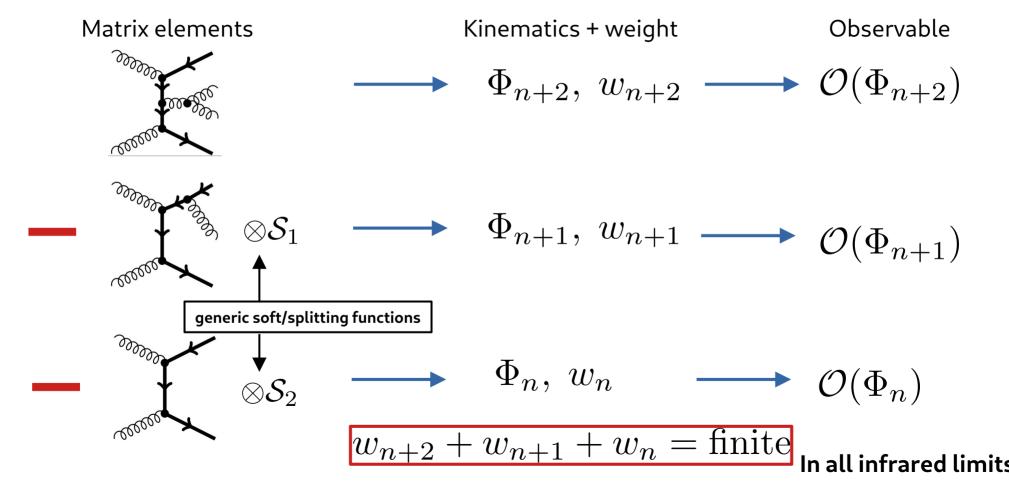
- Ideas
- Perspectives
- Challenges

Rene Poncelet

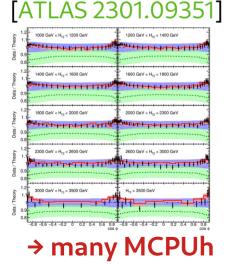


Super brief introduction STRIPPER


STRIPPER (SecToR Improved Phase sPacE for real Radiation) [Czakon'10, + et al '14'19]


- → NNLO QCD fixed-order cross section Monte Carlo integrator
- → general and automated implementation: any process at NNLO (only needs loop amplitudes)

NNLO contributions


Anatomy of a fixed-order real emission event

Fixed-order cross sections

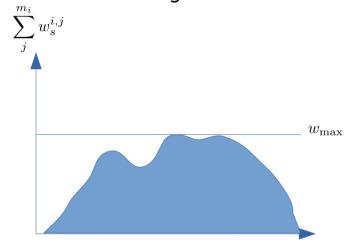
- Normally evaluated as weighted MC integrals (optimisations for efficient integration like VEGAS implied)
 - → histogram cross sections (if you change bin edges you start from scratch)
- Can be computationally very challenging
- Negative subtraction source of large variance/MC error

Process class	Core-hours
$pp \to V$	~hours
$pp \to VV$	O(1k)
$pp \to V + j$	O(>10k)
$pp \to jj$	O(>100k)
$pp \to jjj$	O(>1M)

How to make this more efficient/environment-friendly/ accessible/faster/reusable?

https://www.precision.hep.phy.cam.ac.uk/hightea

Basic ideas


- 1. Database of precomputed "Theory Events"
 - Equivalent to a full fledged computation
 - Currently this means partonic fixed order events
 - → **Problem**: just writing 10¹⁰ 10¹⁴ MC points to disk isn't really useful
- 2. Analysis of the data through an user interface
 - → Easy-to-use
 - → Fast

- Observables from basic 4-momenta
- Free specification of bins
- → Flexible:
- Renormalization/Factorization Scale variation
- PDF (member) variation
- Specify phase space cuts

Not so new idea: LHE [Alwall et al '06], Ntuple [BlackHat '08'13],

(Partially) Unweighting

Hit-And-Miss Algorithm:

Accept each event i with probability based on the summed event weight

$$\left(\sum_{j}^{m_i} w_s^{i,j}\right) / w_{\max}$$

→ partial unweighting for each kinematic store each sub-event with weight:

$$w_s^{i,j} / \left(\sum_j^{m_i} w_s^{i,j}\right)$$

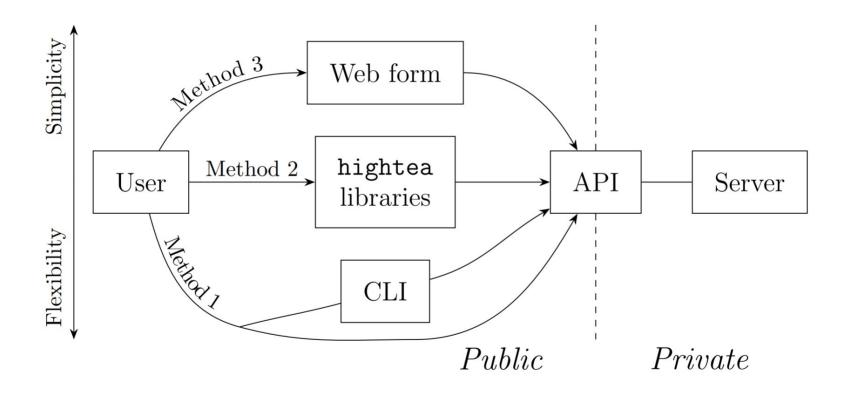
Reduces event samples depending on your initial integration optimisation → ttbar (with basic VEGAS): factor of 1000 to 10000

Factorizations

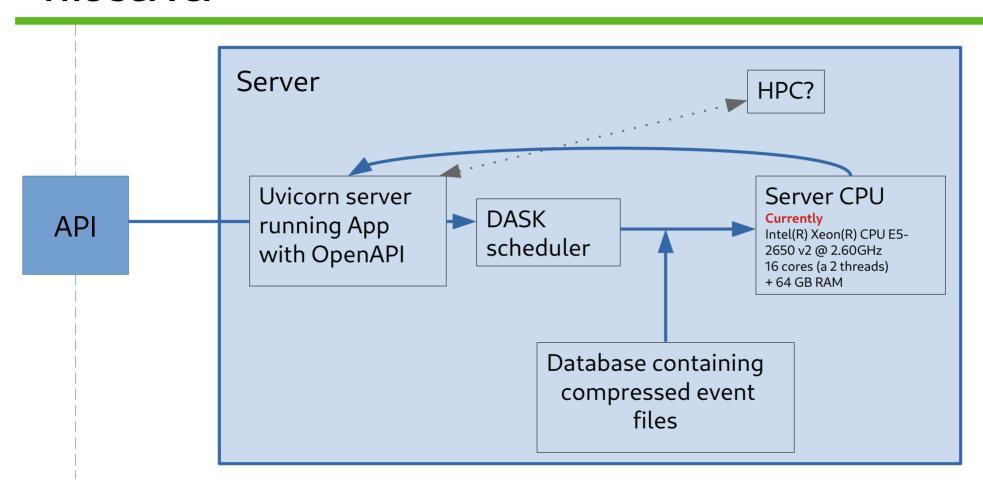
Factorizing renormalization and factorization scale dependence:

$$w_s^{i,j} = w_{\text{PDF}}(\mu_F, x_1, x_2) w_{\alpha_s}(\mu_R) \left(\sum_{i,j} c_{i,j} \ln(\mu_R^2)^i \ln(\mu_F^2)^j \right)$$

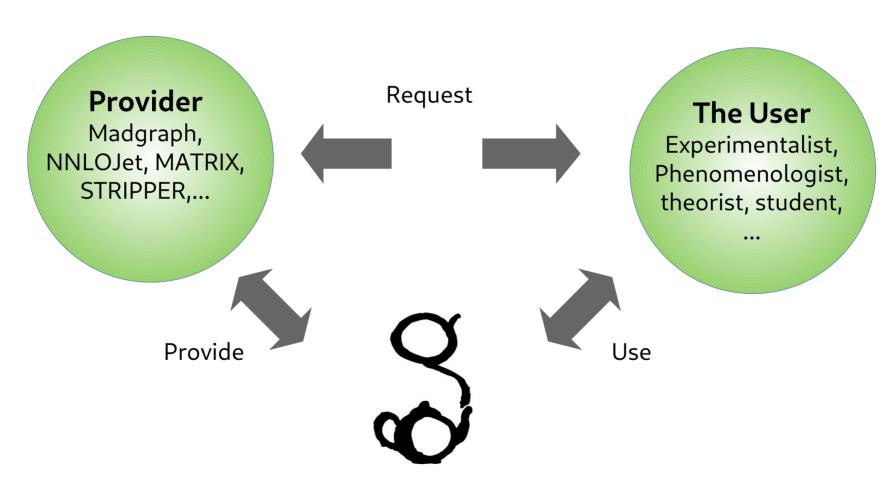
PDF dependence:


$$w_{\text{PDF}}(\mu, x_1, x_2) = \sum_{ab \in \text{channel}} f_a(x_1, \mu) f_b(x_2, \mu)$$

 α_s dependence:


$$w_{\alpha_s}(\mu) = (\alpha_s(\mu))^m$$

Allows full control over scales and PDF


HighTEA user interface

The server

Data sharing

Challenges

- The partial unweighting step is expensive > direct integration and does not lead to "weight 1 events" because of kinematics and positive/negative regions of phase space
 - → backup: normalising flows and positive/negative splitting
- Might need large storage
 - → ttbar,WW,... ~100 GB (easy, but not enough for precision studies)
 - → jet processes will need 100x more due to large cancellations of pos/neg
 - → some parametric dependence does not factorise → more samples

Both aspects call for a community effort

→ shared databases

Summary

- Higher-order parton-level computations are computationally expensive
 - → Correlated kinematics
 - → Non-local cancellations between positive and negative regions of phase space
- Partially unweighting reduces the 'event sample' size (to a manageable level) but in principle has the same bottlenecks
- STRIPPER + HighTEA demonstrate a potential workflow / framework how fixed-order computations can be made reusable and shared in a differential manner (i.e. not via histograms...)

Backup - Normalizing Flows

The problem

• Numerical integration of highly dimensional integrands → Monte Carlo Sampling

Integral

MC estimate

MC error estimate

$$I = \int_{\mathbf{x} \in \Omega} d\mathbf{x} f(\mathbf{x})$$

$$\hat{I} = \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}_i) , \quad \delta \hat{I} = \sqrt{\frac{1}{N-1} \left(\frac{1}{N} \sum_{i=1}^{N} f^2(\mathbf{x}_i) - \hat{I}^2 \right)}$$

• Variance reduction techniques improve performance, mapping $\mathbf{H}:\Omega\to\Omega,\mathbf{x}\mapsto\mathbf{H}(\mathbf{x})$

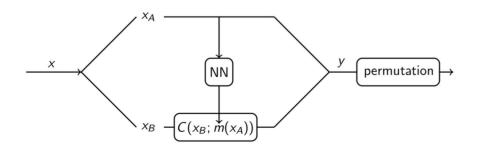
$$I = \int_{\mathbf{H}(\mathbf{x}) \in \Omega} d\mathbf{H} \frac{f(\mathbf{x})}{h(\mathbf{x})}$$

$$h(\mathbf{x}) = \left| \det \left(\frac{\partial \mathbf{H}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

Find with $h(\mathbf{x})$ adaptive MC techniques: VEGAS [Lepage'78], Parni [Hameren'14], ML techniques: Normalising Flows Iflow [Bothmann'20] Madnis [Heimel'22], ...

How to build h(x)?

- by hand...
- 'Standard': VEGAS/Parni
 → essentially histograms, assuming integrand factorises wrt to integration variables
- Deep Learning approach: Normalising Flows
 - Coupling Layer (CL) Flows
 - Continuous (ODE) Flows


Coupling Layer Normalizing Flow

Based on the i-flow paper: 2001.05486

$$\vec{x}_K = c_K(c_{K-1}(\cdots c_2(c_1(\vec{x}))))$$

$$g_K(\vec{x}_K) = g_0(\vec{x}_0) \prod_{k=1}^K \left| \frac{\partial c_k(\vec{x}_{k-1})}{\partial \vec{x}_{k-1}} \right|^{-1}, \text{ where } \begin{cases} \vec{x}_0 = \vec{x} \\ \vec{x}_k = c_k(\vec{x}_{k-1}) \end{cases}$$

Structure of a single coupling layer:

$$x'_A = x_A,$$
 $A \in [1, d],$ $x'_B = C(x_B; m(\vec{x}_A)),$ $B \in [d+1, D].$

The inverse map

$$x_A = x'_A$$
,
 $x_B = C^{-1}(x'_B; m(\vec{x}'_A)) = C^{-1}(x'_B; m(\vec{x}_A))$

Inverse Jacobian:
$$\left| \frac{\partial c(\vec{x})}{\partial \vec{x}} \right|^{-1} = \left| \begin{pmatrix} \vec{1} & 0 \\ \frac{\partial C}{\partial m} \frac{\partial m}{\partial \vec{x}_A} & \frac{\partial C}{\partial \vec{x}_B} \end{pmatrix} \right|^{-1} = \left| \frac{\partial C(\vec{x}_B; m(\vec{x}_A))}{\partial \vec{x}_B} \right|^{-1}$$

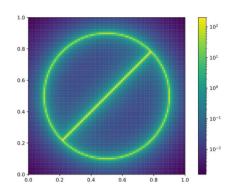
Derivative of the NN

→ Performance

Big advantage: $\frac{\partial m}{\partial x_A}$ not needed!

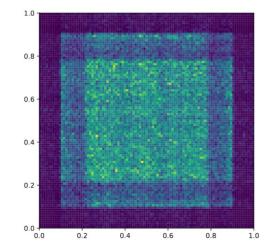
How many coupling layers you need?

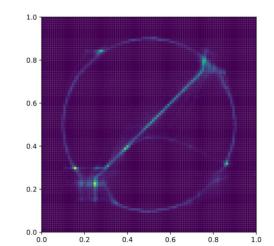
$$2\log_2 D$$
 for $D > 5$
 D for $D \le 5$


Example: Masking to capture all correlations for D=12

	Dimension	0	1	2	3	4	5	6	7	8	9	10	11	
	Transformation 1	0	1	0	1	0	1	0	1	0	1	0	1	
	Transformation 2	0	0	1	1	0	0	1	1	0	0	1	1	
2x	Transformation 3	0	0	0	0	1	1	1	1	0	0	0	0	
	Transformation 4	0	0	0	0	0	0	0	0	1	1	1	1	

A toy example


Multi-modular function ("stop-sign"):


$$f(x,y) = \frac{1}{2\pi^2} \cdot \frac{\Delta r}{\left(\sqrt{(x-x_0)^2 + (y-y_0)^2} - r_0\right)^2 + (\Delta r)^2} \cdot \frac{1}{\sqrt{(x-x_0)^2 + (y-y_0)^2}} + \frac{1}{2\pi r_0} \cdot \frac{\Delta r}{\left((y-y_0) - (x-x_0)\right)^2 + (\Delta r)^2} \cdot \Theta\left(r_0 - \sqrt{(x-x_0)^2 + (y-y_0)^2}\right).$$

Sampling densities:

Coupling-Layer Flow

Continuous Flows

"time"-dependent probability density function:

$$\log q_t(\mathbf{y}_t) = \log q_0(\mathbf{y}_0) - \log \left| \det \frac{\partial \phi_t}{\partial \mathbf{y}_0} \right|$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\phi_t(\mathbf{y}) = v_t(\phi_t(\mathbf{y})), \quad \text{with} \quad \phi_0$$

constructed from $\frac{\mathrm{d}}{\mathrm{d}t}\phi_t(\mathbf{y}) = v_t(\phi_t(\mathbf{y}))$, with $\phi_0(\mathbf{y}) = \mathbf{y}$ +continuity equation (preserve prob.)

vector-field is given by a trainable NN

 $\mathbf{y}_1 = \phi_1(\mathbf{y}_0) = \int_0^1 v_t(\phi_t(\mathbf{y}_0)) dt$ The mapped point is the solution of a simple ODE:

Jacobian by inverse ODE:

$$\frac{\mathrm{d}}{\mathrm{d}s} \begin{bmatrix} \phi_{1-s}(\mathbf{y}) \\ f(1-s) \end{bmatrix} = \begin{bmatrix} -v_{1-s}(\phi_{1-s}(\mathbf{y})) \\ -\operatorname{div}(v_{1-s}(\phi_{1-s}(\mathbf{y}))) \end{bmatrix} \qquad \begin{bmatrix} \phi_1(\mathbf{y}) \\ f(1) \end{bmatrix} = \begin{bmatrix} \mathbf{y}_1 \\ 0 \end{bmatrix}$$

Training and model parameters

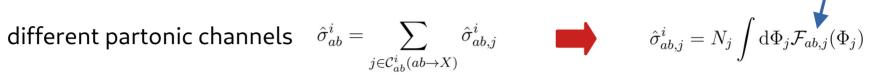
Training target based on Kullback–Leibler (KL) divergence:

$$D_{\mathrm{KL}}(p \parallel q_{\theta}) = \sum_{i=1}^{N} p(\mathbf{y}_{i}) \log \left(\frac{p(\mathbf{y}_{i})}{q_{\theta}(\mathbf{y}_{i})} \right)$$

- 1) Generate sample & evaluate target function (1M points)
- 2) Do NN optimization step with gradient descend (ADAM)
- 3) Repeat 1) *(10 times)*

Size of neural networks depends on the dimension of the problem.

- → we investigated 4 to 13 dimensional problems + discrete parameters (conditional NNs):
 - ~ 100k 10M parameters for CL flows
 - ~ 1M parameter for ODE flows


The integrands II

Structure of partonic contributions:

$$=$$
 \sum $\hat{\sigma}^i_{ab,j}$

Matrix elements + measurement functions

Subtraction for real-emission contributions based on sector-decomposition + residue subtraction:

$$\hat{\sigma}^{(1)} \ni \int d\Phi_j \sum \mathcal{S}_{kl} |\mathcal{M}_j(\Phi_j)|^2 F(\Phi_j).$$

$$\hat{\sigma}^{(1)} \ni \int d\Phi_j \sum_{kl} \mathcal{S}_{kl} |\mathcal{M}_j(\Phi_j)|^2 F(\Phi_j) \,. \qquad \qquad \hat{\sigma}^{(i)} \ni \int_{[0,1]^m} d^m \chi \int_{[0,1]^n} d^n \mathbf{x} \frac{f_{\{k\}}^{j}(\chi, \mathbf{x}) - \sum f_{\{k\}}^{j}(\chi|_{\to 0}, \mathbf{x})}{\prod_{i}^m \chi_i}$$

But for the integration problem (in case of tot cross sections) it is enough to consider:

$$\hat{\sigma}^{(i)} \ni \int_{[0,1]^n} \mathrm{d}\mathbf{y} g^j_{\{k\}}(\mathbf{y})$$

$$\sum_{\{k\},h}.$$

$$\sum_{\{k\},h}\int_{[0,1]^n}\mathrm{d}\mathbf{y}g^j_{\{k\},h}(\mathbf{y})=\sum_l\int_{[0,1]^n}\mathrm{d}\mathbf{y}g^j_l(\mathbf{y})$$
 Sum of

Sectors, helicities, channels

Benchmarks

- To make life simple: Optimization goal is total integral (i.e. total cross section)
 → focusing on gluonic top-pair production (small number of channels)
- Three integrators: VEGAS (reference for the current default), CL, ODE each with standard absolute training and positive/negative stratified training
- Benchmark quantities
 - Weight variance
 - Unweighting efficiency

Results LO and NLO

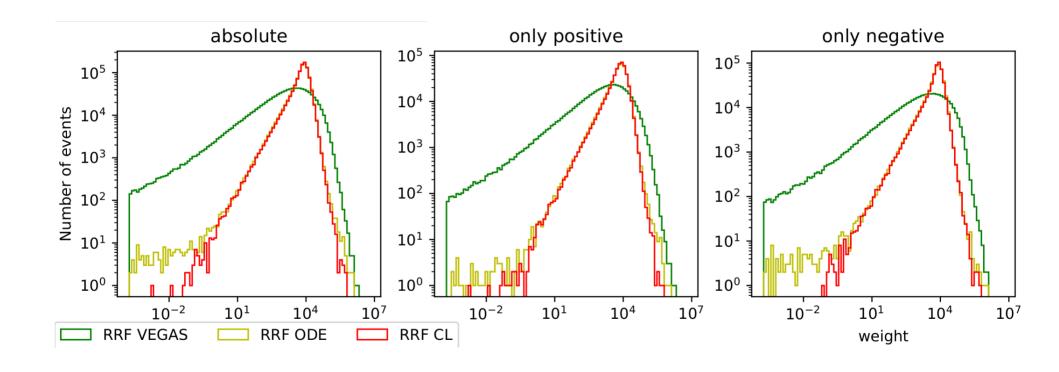
Frozen integrators 1M points

Estimate + Error

Observation #1:


Saturation of lower bounds with flows, for VEGAS only in the simpler ones

Contribution			$\sigma_{ m RU} \cdot 10^{-2}$	$\sigma_{ m VF} \cdot 10^{-1}$	
$\delta^{ m opt}$	0.0001	0.008	0.01	0.006	
CPU cost [a.u.]	1	6	1.5	1.3	
		VEGAS			
$\hat{\sigma} \pm \delta \hat{\sigma}$	5.3278 ± 0.002	6.967 ± 0.01	-5.378 ± 0.02	-4.487 ± 0.006	
$\hat{\sigma}^+ + \hat{s}\hat{\sigma}^+$	5.3284 ± 0.002	8.955 ± 0.01	4.432 ± 0.006	1.403 ± 0.0008	
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	$-0.0006446 \pm 5e - 07$	-1.981 ± 0.004	-9.8098 ± 0.008	-5.8939 ± 0.003	
Σ^\pm	5.3278 ± 0.002	6.973 ± 0.01	-5.378 ± 0.01	-4.4909 ± 0.003	
ϵ_{Φ}^{+}	0.99	0.728	0.639	0.808	
ϵ_{Φ}^{-}	0.834	0.384	0.852	0.95	
$\epsilon^+(\epsilon_{0.1\%}^{\hat{+}})$	0.13(0.43)	0.048 (0.098)	0.02(0.048)	0.082(0.21)	
$\epsilon^{-}(\epsilon_{0}^{-})$	0.016 (0.066)	0.013(0.021)	0.049(0.17)	0.12(0.27)	
		ODE Flow			
$\hat{\sigma} \pm \delta \hat{\sigma}$	5.3279 ± 0.0005	6.98 ± 0.009	-5.394 ± 0.01	-4.483 ± 0.006	
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	5.32872 ± 0.0004	8.9494 ± 0.002	4.4185 ± 0.002	1.4018 ± 0.0001	
$\hat{\mathbf{x}}^- \pm \delta \hat{\sigma}^-$	$-0.00064495 \pm 1e - 07$	-1.9844 ± 0.0006	-9.802 ± 0.003	-5.89315 ± 0.0005	
Σ^\pm	5.32808 ± 0.0004	6.965 ± 0.003	-5.3835 ± 0.004	-4.4914 ± 0.0006	
ϵ_{o}^{+}	1.0	0.991	0.992	1.0	
ϵ_{Φ}^{-}	0.997	0.99	0.987	0.999	
$\epsilon^+(\epsilon_{0.1\%}^{\hat{+}})$	0.33(0.7)	0.025(0.3) $0.0059(0.099)$		0.11(0.56)	
$\epsilon^-(\epsilon_{0.1\%}^{-1\%})$	0.055(0.36)	0.028(0.17)	0.02(0.16)	0.12(0.73)	
	Co	oupling Layer Flow			
$\hat{\sigma} \pm \delta \hat{\sigma}$	5.32795 ± 0.0003	6.972 ± 0.009	-5.39 ± 0.01	-4.492 ± 0.006	
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	5.32807 ± 0.0003	8.949 ± 0.002	4.4101 ± 0.002	$1.40155 \pm 9e - 05$	
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	$-0.000644883 \pm 3e - 08$	-1.9821 ± 0.0007	-9.8 ± 0.002	-5.89183 ± 0.0003	
Σ^\pm	5.32742 ± 0.0003	6.9669 ± 0.003	-5.3899 ± 0.004	-4.49028 ± 0.0004	
ϵ_Φ^+	1.0	0.989	0.988	1.0	
ϵ_{Φ}^-	1.0	0.99	0.994	1.0	
$\epsilon_{\Phi}^{+} \atop \epsilon_{\Phi}^{-} \\ \epsilon^{+} (\epsilon_{0.1\%}^{+})$	0.53 (0.81)	0.028(0.24)	0.0082(0.046)	0.17(0.63)	
$\epsilon^-(\epsilon_{0.1\%}^{-1})$	0.11 (0.79)	0.0074(0.06)	0.009(0.19)	0.4(0.79)	


Results NNLO

Contribution	$\sigma_{ m RRF} \cdot 10^{-2}$	$\sigma_{ m RRSU} \cdot 10^{-3}$	$\sigma_{ m RRDU} \cdot 10^{-3}$	$\sigma_{ m RVF} \cdot 10^{-2}$	$\sigma_{ m RVFR} \cdot 10^{-2}$	$\sigma_{ m RVDU} \cdot 10^{-3}$	$\sigma_{ m VVF} \cdot 10^{-0}$		
$\delta^{ m opt}$	0.0079	0.0036	0.013	0.0081	0.0018	0.0045	0.011		
CPU cost [a.u.]	53	26	8	1542	2.7	2.7	13		
	VEGAS								
$\hat{\sigma} \pm \delta \hat{\sigma}$	-0.3 ± 0.02	2.835 ± 0.0069	-2.461 ± 0.017	-6.808 ± 0.022	0.2864 ± 0.0023	0.267 ± 0.0049	14.768 ± 0.014		
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	3.823 ± 0.013	3.718 ± 0.0056	5.639 ± 0.0065	1.669 ± 0.0026	1.051 ± 0.0014	2.381 ± 0.0011	16.711 ± 0.0067		
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	-4.135 ± 0.013	-0.8813 ± 0.0022	-8.078 ± 0.0085	-8.4539 ± 0.0068	-0.7635 ± 0.0012	-2.1114 ± 0.0012	-1.955 ± 0.0011		
Σ^\pm	-0.312 ± 0.025	2.836 ± 0.0079	-2.439 ± 0.015	-6.785 ± 0.0094	0.2871 ± 0.0025	0.2696 ± 0.0023	14.756 ± 0.0078		
ϵ_{Φ}^{+}	0.54	0.732	0.803	0.55	0.593	0.946	0.956		
ϵ_{Φ}^{+} ϵ_{Φ}^{-}	0.513	0.402	0.8	0.871	0.501	0.916	0.816		
$\epsilon^+(\epsilon_{0.1\%}^{\hat{+}})$	0.004(0.0052)	0.0073(0.017)	0.0018(0.022)	0.013(0.024)	0.025(0.06)	0.029(0.22)	0.015(0.1)		
$\epsilon^{-}(\epsilon_{0.1\%}^{0.1\%})$	0.0041(0.0053)	0.0035(0.01)	0.0037(0.019)	0.014(0.038)	0.021(0.05)	0.011(0.11)	0.024(0.17)		
0.170			(DDE Flow					
$\hat{\sigma} \pm \delta \hat{\sigma}$	-0.333 ± 0.011	2.823 ± 0.0048	-2.421 ± 0.015	-6.784 ± 0.0081	0.2893 ± 0.0019	0.271 ± 0.0046	14.758 ± 0.012		
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	3.812 ± 0.0063	3.7056 ± 0.0028	5.6439 ± 0.0036	1.6764 ± 0.00085	1.0495 ± 0.00038	2.3806 ± 0.00043	16.72 ± 0.0026		
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	-4.142 ± 0.0057	-0.8848 ± 0.0045	-8.071 ± 0.0068	-8.4578 ± 0.0019	-0.76271 ± 0.00026	-2.1109 ± 0.0005	-1.9554 ± 0.00023		
Σ^\pm	-0.33 ± 0.012	2.821 ± 0.0073	-2.427 ± 0.01	-6.7814 ± 0.0027	0.2868 ± 0.00064	0.2697 ± 0.00093	14.765 ± 0.0028		
$rac{\epsilon_{\Phi}^{+}}{\epsilon_{\Phi}^{-}}$	0.855	0.945	0.977	0.988	0.981	0.998	0.999		
$\epsilon_{\Phi}^{\hat{-}}$	0.853	0.834	0.982	0.991	0.983	0.998	0.998		
$\epsilon^+(\epsilon_{0.1\%}^{\hat{+}})$	0.0013(0.0027)	0.0028(0.022)	0.003(0.023)	0.0029(0.067)	0.0081(0.099)	0.03(0.27)	0.0086(0.49)		
$\epsilon^-(\epsilon_{0.1\%}^{-170})$	0.0019(0.0053)	0.00025(0.00025)	0.0018(0.0096)	0.051(0.25)	0.017(0.095)	0.017(0.18)	0.17(0.49)		
		,	Coupl	ing Layer Flow					
$\hat{\sigma} \pm \delta \hat{\sigma}$	-0.317 ± 0.01	2.829 ± 0.0044	-2.414 ± 0.014	-6.778 ± 0.0079	0.285 ± 0.0019	0.276 ± 0.0045	14.771 ± 0.012		
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	3.814 ± 0.0054	3.7038 ± 0.0025	5.6425 ± 0.0039	1.676 ± 0.0024	1.05 ± 0.00059	2.3799 ± 0.00043	16.718 ± 0.0021		
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	-4.134 ± 0.0063	-0.8849 ± 0.0015	-8.0756 ± 0.0047	-8.456 ± 0.0026	-0.76256 ± 0.00055	-2.1091 ± 0.00036	-1.95479 ± 0.00011		
Σ^{\pm}	-0.32 ± 0.012	2.819 ± 0.0041	-2.433 ± 0.0086	-6.7803 ± 0.005	0.2874 ± 0.0011	0.2708 ± 0.00079	14.763 ± 0.0022		
$\epsilon_{\Phi}^{+} \over \epsilon_{\Phi}^{-}$	0.838	0.956	0.985	0.987	0.988	0.998	1.0		
ϵ_{Φ}^{-}	0.852	0.836	0.988	0.991	0.985	0.999	1.0		
$\epsilon^+(\epsilon_{0.1\%}^{\uparrow})$	0.0022(0.0056)	0.0096(0.022)	0.0029(0.011)	0.00076(0.00076)	0.0024(0.035)	0.01(0.22)	0.02(0.31)		
$\epsilon^{-}(\epsilon_{0.1\%}^{0.1\%})$	0.0034(0.006)	0.0012(0.0028)	0.0044(0.011)	0.0054(0.13)	0.0017(0.018)	0.022(0.22)	0.1 (0.68)		
0.170							1		

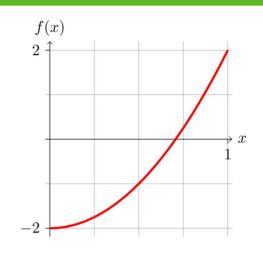
Non-factorizing phase space features

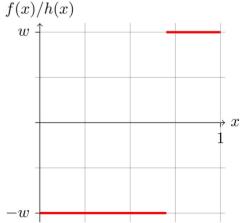
Weight distribution for double real

Non-positive definite integrands

- Non-definite integrands introduce new challenges
 - → cancellation between +/- parts increase the variance
- Consider extreme case: |f(x)|/h(x) = w = const.

MC estimate:


$$\hat{I} = w \frac{N_+ - N_-}{N} \equiv w(2\alpha - 1) \qquad \alpha = N_+/N$$


Lower bound on variance:

$$Var(\hat{I}) = w^2 - w^2(2\alpha - 1)^2 = w^2(4\alpha(1 - \alpha))$$

 \Rightarrow relative uncertainty: $\frac{\delta \hat{I}}{\hat{I}} = \frac{1}{\sqrt{N-1}} \frac{\sqrt{\alpha(1-\alpha)}}{\alpha-\frac{1}{2}}$

Rephrased: at some point it doesn't matter any more how good your adaptive MC is...

Stratification of signed integrands

There are ways around:

- 1) Add a large constant
- 2) Stratification: $f(\mathbf{x}) = f_{+}(\mathbf{x}) + f_{-}(\mathbf{x})$, with $f_{\pm}(\mathbf{x}) = \Theta(\pm f(\mathbf{x})) f(\mathbf{x})$

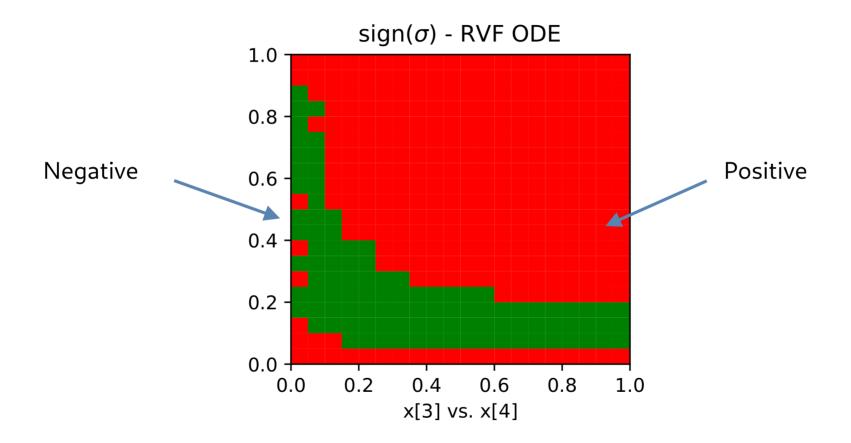
$$I = \int_{\mathbf{H}_{+}(\mathbf{x}) \in \Omega} d\mathbf{H}_{+} \frac{f_{+}(\mathbf{x})}{h_{+}(\mathbf{x})} + \int_{\mathbf{H}_{-}(\mathbf{x}) \in \Omega} d\mathbf{H}_{-} \frac{f_{-}(\mathbf{x})}{h_{-}(\mathbf{x})}$$
 "two independent integrals"

$$\hat{I}_{\text{strat}} = \hat{I}_{+} + \hat{I}_{-} = \frac{1}{N_{+}} \sum_{i=1}^{N_{+}} \frac{f_{+}(\mathbf{x}_{i})}{h_{+}(\mathbf{x}_{i})} + \frac{1}{N_{-}} \sum_{i=1}^{N_{-}} \frac{f_{-}(\mathbf{x}_{i})}{h_{-}(\mathbf{x}_{i})} \qquad \delta \hat{I}_{\text{strat}} = \sqrt{\frac{1}{N-1} \left[\frac{N}{N_{+}} \operatorname{Var}(\hat{I}_{+}) + \frac{N}{N_{-}} \operatorname{Var}(\hat{I}_{-}) \right]}$$

$$\operatorname{Var}(\hat{I}_{\pm}) = \frac{1}{N_{\pm}} \sum_{i=1}^{N_{\pm}} \left(\frac{f_{\pm}(\mathbf{x}_{i})}{h_{\pm}(\mathbf{x}_{i})} \right)^{2} - \hat{I}_{\pm}^{2}$$

- + The total variance is now bounded by the individual variances
- The mappings are more complicated (need high phase space efficiency)

Results LO and NLO


Splitting can give a significant performance gains for flow based integrators → requires high

phase space eff.

Contribution	$\sigma_{ m B} \cdot 10^{-2}$	$\sigma_{ m RF} \cdot 10^{-2}$	$\sigma_{\mathrm{RU}} \cdot 10^{-2}$	$\sigma_{\mathrm{VF}} \cdot 10^{-1}$								
$\delta^{ m opt}$	0.0001	0.008	0.01	0.006								
CPU cost [a.u.]	1	6	1.5	1.3								
	VEGAS											
$\hat{\sigma} \pm \delta \hat{\sigma}$	5.3278 ± 0.002	6.967 ± 0.01	-5.378 ± 0.02	-4.487 ± 0.006								
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	5.3284 ± 0.002	8.955 ± 0.01	4.432 ± 0.006	1.403 ± 0.0008								
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	$-0.0006446 \pm 5e - 07$	-1.981 ± 0.004	-9.8098 ± 0.008	-5.8939 ± 0.003								
Σ^\pm	5.3278 ± 0.002	6.973 ± 0.01	-5.378 ± 0.01	-4.4909 ± 0.003								
$\epsilon_{\Phi}^{+} \atop \epsilon_{\Phi}^{-} \\ \epsilon^{+}(\epsilon_{0.1\%}^{+})$	0.99	0.728	0.639	0.808								
$\epsilon_{\Phi}^{\frac{1}{-}}$	0.824	0.384	0.852	0.95								
$\epsilon^+(\epsilon_{0.1\%}^{\uparrow})$	0.13(0.43)	0.048(0.098)	0.02(0.048)	0.082(0.21)								
$\epsilon^-(\epsilon_{0.1\%}^{0.1\%})$	0.016(0.066)	0.013(0.021)	0.049(0.17)	0.12(0.27)								
0.170		ODE Flow										
$\sigma \pm \delta \hat{\sigma}$	5.3279 ± 0.0005	6.98 ± 0.009	-5.394 ± 0.01	-4.483 ± 0.006								
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	5.32872 ± 0.0004	8.9494 ± 0.002	4.4185 ± 0.002	1.4018 ± 0.0001								
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	$-0.00064495 \pm 1e - 07$	-1.9844 ± 0.0006	-9.802 ± 0.003	-5.89315 ± 0.0005								
Σ^\pm	5.32808 ± 0.0004	6.965 ± 0.003	-5.3835 ± 0.004	-4.4914 ± 0.0006								
ϵ_{Φ}^{+} ϵ_{Φ}^{-}	1.0	0.991	0.992	1.0								
ϵ_{Φ}^{-}	0.997	0.99	0.987	0.999								
$\epsilon^+(\epsilon_{0.1\%}^{\hat{+}})$	0.33(0.7)	0.025(0.3)	0.0059(0.099)	0.11 (0.56)								
$\epsilon^-(\epsilon_{0.1\%}^-)$	0.055(0.36)	0.028(0.17)	0.02(0.16)	0.12(0.73)								
	Co	oupling Layer Flow										
$\hat{\sigma} \pm \delta \hat{\sigma}$	5.32795 ± 0.0003	6.972 ± 0.009	-5.39 ± 0.01	-4.492 ± 0.006								
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	5.32807 ± 0.0003	8.949 ± 0.002	4.4101 ± 0.002	$1.40155 \pm 9e - 05$								
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	$-0.000644883 \pm 3e$ 08	-1.9821 ± 0.0007	-9.8 ± 0.002	-5.89183 ± 0.0003								
Σ^\pm	5.32742 ± 0.0003	6.9669 ± 0.003	-5.3899 ± 0.004	-4.49028 ± 0.0004								
$\epsilon_{\Phi}^{+} \atop \epsilon_{\Phi}^{-} \atop \epsilon^{+}(\epsilon_{0.1\%}^{+})$	1.0	0.989	0.988	1.0								
ϵ_{Φ}^{-}	1.0	0.99	0.994	1.0								
$\epsilon^+(\epsilon_{0.1\%}^{\uparrow})$	0.53(0.81)	0.028(0.24)	0.0082(0.046)	0.17(0.63)								
$\epsilon^-(\epsilon_{0.1\%}^{0.1\%})$	0.11(0.79)	0.0074(0.06)	0.009(0.19)	0.4 (0.79)								

02.10.2025 CERN MC-WG Rene Poncelet – IFJ PAN 30

Non-trivial positive/negative structure

02.10.2025 CERN MC-WG Rene Poncelet – IFJ PAN 31

Results NNLO

Contribution	$\sigma_{ m RRF} \cdot 10^{-2}$	$\sigma_{ m RRSU} \cdot 10^{-3}$	$\sigma_{ m RRDU} \cdot 10^{-3}$	$\sigma_{ m RVF} \cdot 10^{-2}$	$\sigma_{ m RVFR} \cdot 10^{-2}$	$\sigma_{ m RVDU} \cdot 10^{-3}$	$\sigma_{ m VVF} \cdot 10^{-0}$	
$\delta^{ m opt}$	0.0079	0.0036	0.013	0.0081	0.0018	0.0045	0.011	
CPU cost [a.u.]	53	26	8	1542	2.7	2.7	13	
VEGAS								
$\hat{\sigma} \pm \delta \hat{\sigma}$	-0.3 ± 0.02	2.835 ± 0.0069	-2.461 ± 0.017	-6.808 ± 0.022	0.2864 ± 0.0023	0.267 ± 0.0049	14.768 ± 0.014	
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	3.823 ± 0.013	3.718 ± 0.0056	5.639 ± 0.0065	1.669 ± 0.0026	1.051 ± 0.0014	2.381 ± 0.0011	16.711 ± 0.0067	
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	-4.135 ± 0.013	-0.8813 ± 0.0022	-8.078 ± 0.0085	-8.4539 ± 0.0068	-0.7635 ± 0.0012	-2.1114 ± 0.0012	-1.955 ± 0.0011	
Σ^\pm	-0.312 ± 0.025	2.836 ± 0.0079	-2.439 ± 0.015	-6.785 ± 0.0094	0.2871 ± 0.0025	0.2696 ± 0.0023	14.756 ± 0.0078	
ϵ_{Φ}^{+}	0.54	0.732	0.803	0.55	0.593	0.946	0.956	
ϵ_{Φ}^{+} ϵ_{Φ}^{-}	0.513	0.402	0.8	0.871	0.501	0.916	0.816	
$\epsilon^+(\epsilon_{0.1\%}^{\hat{+}})$	0.004(0.0052)	0.0073(0.017)	0.0018(0.022)	0.013(0.024)	0.025(0.06)	0.029(0.22)	0.015(0.1)	
$\epsilon^{-}(\epsilon_{0.1\%}^{0.1\%})$	0.0041(0.0053)	0.0035(0.01)	0.0037(0.019)	0.014(0.038)	0.021(0.05)	0.011(0.11)	0.024(0.17)	
0.170			(DDE Flow				
$\hat{\sigma} \pm \delta \hat{\sigma}$	-0.333 ± 0.011	2.823 ± 0.0048	-2.421 ± 0.015	-6.784 ± 0.0081	0.2893 ± 0.0019	0.271 ± 0.0046	14.758 ± 0.012	
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	3.812 ± 0.0063	3.7056 ± 0.0028	5.6439 ± 0.0036	1.6764 ± 0.00085	1.0495 ± 0.00038	2.3806 ± 0.00043	16.72 ± 0.0026	
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	-4.142 ± 0.0057	-0.8848 ± 0.0045	-8.071 ± 0.0068	-8.4578 ± 0.0019	-0.76271 ± 0.00026	-2.1109 ± 0.0005	-1.9554 ± 0.00023	
Σ^\pm	-0.33 ± 0.012	2.821 ± 0.0073	-2.427 ± 0.01	-6.7814 ± 0.0027	0.2868 ± 0.00064	0.2697 ± 0.00093	14.765 ± 0.0028	
$rac{\epsilon_{\Phi}^{+}}{\epsilon_{\Phi}^{-}}$	0.855	0.945	0.977	0.988	0.981	0.998	0.999	
ϵ_{Φ}^{-}	0.853	0.834	0.982	0.991	0.983	0.998	0.998	
$\epsilon^+(\epsilon_{0.1\%}^{\hat{+}})$	0.0013(0.0027)	0.0028(0.022)	0.003(0.023)	0.0029(0.067)	0.0081(0.099)	0.03(0.27)	0.0086(0.49)	
$\epsilon^-(\epsilon_{0.1\%}^{-17\%})$	0.0019(0.0053)	0.00025(0.00025)	0.0018(0.0096)	0.051(0.25)	0.017(0.095)	0.017(0.18)	0.17(0.49)	
0.17/			Coupl	ing Layer Flow				
$\hat{\sigma} \pm \delta \hat{\sigma}$	-0.317 ± 0.01	2.829 ± 0.0044	-2.414 ± 0.014	-6.778 ± 0.0079	0.285 ± 0.0019	0.276 ± 0.0045	14.771 ± 0.012	
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	3.814 ± 0.0054	3.7038 ± 0.0025	5.6425 ± 0.0039	1.676 ± 0.0024	1.05 ± 0.00059	2.3799 ± 0.00043	16.718 ± 0.0021	
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	-4.134 ± 0.0063	-0.8849 ± 0.0015	-8.0756 ± 0.0047	-8.456 ± 0.0026	-0.76256 ± 0.00055	-2.1091 ± 0.00036	-1.95479 ± 0.00011	
Σ^{\pm}	-0.32 ± 0.012	2.819 ± 0.0041	-2.433 ± 0.0086	-6.7803 ± 0.005	0.2874 ± 0.0011	0.2708 ± 0.00079	14.763 ± 0.0022	
ϵ_{Φ}^{+} ϵ_{Φ}^{-}	0.838	0.956	0.985	0.987	0.988	0.998	1.0	
ϵ_Φ^-	0.852	0.836	0.988	0.991	0.985	0.999	1.0	
$\epsilon^+(\epsilon_{0.1\%}^{\hat{+}})$	0.0022(0.0056)	0.0096(0.022)	0.0029(0.011)	0.00076(0.00076)	0.0024(0.035)	0.01(0.22)	0.02(0.31)	
$\epsilon^-(\epsilon_{0.1\%}^{0.1\%})$	0.0034(0.006)	0.0012(0.0028)	0.0044(0.011)	0.0054(0.13)	0.0017(0.018)	0.022(0.22)	0.1(0.68)	
							•	

Results NNLO

Contribution	$\sigma_{ m RRF} \cdot 10^{-2}$	$\sigma_{ m RRSU} \cdot 10^{-3}$	$\sigma_{ m RRDU} \cdot 10^{-3}$	$\sigma_{ m RVF} \cdot 10^{-2}$	$\sigma_{\mathrm{RVFR}} \cdot 10^{-2}$	$\sigma_{ m RVDU} \cdot 10^{-3}$	$\sigma_{ m VVF} \cdot 10^{-0}$	
$\delta^{ m opt}$	0.0079	0.0036	0.013	0.0081	0.0018	0.0045	0.011	
CPU cost [a.u.]	53	26	8	1542	2.7	2.7	13	
VEGAS								
$\hat{\sigma} \pm \delta \hat{\sigma}$	-0.3 ± 0.02	2.835 ± 0.0069	-2.461 ± 0.017	-6.808 ± 0.022	0.2864 ± 0.0023	0.267 ± 0.0049	14.768 ± 0.014	
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	3.823 ± 0.013	3.718 ± 0.0056	5.639 ± 0.0065	1.669 ± 0.0026	1.051 ± 0.0014	2.381 ± 0.0011	16.711 ± 0.0067	
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	-4.135 ± 0.013	-0.8813 ± 0.0022	-8.078 ± 0.0085	-8.4539 ± 0.0068	-0.7635 ± 0.0012	-2.1114 ± 0.0012	-1.955 ± 0.0011	
Σ^{\pm}	-0.312 ± 0.025	2.836 ± 0.0079	-2.439 ± 0.015	-6.785 ± 0.0094	0.2871 ± 0.0025	0.2696 ± 0.0023	14.756 ± 0.0078	
ϵ_{Φ}^{+}	0.54	0.732	0.803	0.55	0.593	0.946	0.956	
ϵ_{Φ}^{+} ϵ_{Φ}^{-}	0.513	0.402	0.8	0.871	0.501	0.916	0.816	
$\epsilon^+(\epsilon_{0.1\%}^{\stackrel{+}{+}})$	0.004(0.0052)	0.0073(0.017)	0.0018(0.022)	0.013(0.024)	0.025(0.06)	0.029(0.22)	0.015(0.1)	
$\epsilon^-(\epsilon_{0.1\%}^{0.1\%})$	0.0041(0.0053)	0.0035(0.01)	0.0037(0.019)	0.014(0.038)	0.021(0.05)	0.011(0.11)	0.024(0.17)	
0.170			(DDE Flow				
$\hat{\sigma} \pm \delta \hat{\sigma}$	-0.333 ± 0.011	2.823 ± 0.0048	-2.421 ± 0.015	-6.784 ± 0.0081	0.2893 ± 0.0019	0.271 ± 0.0046	14.758 ± 0.012	
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	3.812 ± 0.0063	3.7056 ± 0.0028	5.6439 ± 0.0036	1.6764 ± 0.00085	1.0495 ± 0.00038	2.3806 ± 0.00043	16.72 ± 0.0026	
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	-4.142 ± 0.0057	-0.8848 ± 0.0045	-8.071 ± 0.0068	-8.4578 ± 0.0019	-0.76271 ± 0.00026	-2.1109 ± 0.0005	-1.9554 ± 0.00023	
Σ^\pm	-0.33 ± 0.012	2.821 ± 0.0073	-2.427 ± 0.01	-6.7814 ± 0.0027	0.2868 ± 0.00064	0.2697 ± 0.00093	14.765 ± 0.0028	
$rac{\epsilon_{\Phi}^{+}}{\epsilon_{\Phi}^{-}}$	0.855	0.945	0.977	0.988	0.981	0.998	0.999	
ϵ_{Φ}^{-}	0.853	0.834	0.982	0.991	0.983	0.998	0.998	
$\epsilon^+(\epsilon_{0.1\%}^{\hat{+}})$	0.0013(0.0027)	0.0028(0.022)	0.003(0.023)	0.0029(0.067)	0.0081(0.099)	0.03(0.27)	0.0086(0.49)	
$\epsilon^-(\epsilon_{0.1\%}^{-170})$	0.0019(0.0053)	0.00025(0.00025)	0.0018(0.0096)	0.051(0.25)	0.017(0.095)	0.017(0.18)	0.17(0.49)	
0.170			Coupl	ing Layer Flow				
$\hat{\sigma}\pm\delta\hat{\sigma}$	-0.317 ± 0.01	2.829 ± 0.0044	-2.414 ± 0.014	-6.778 ± 0.0079	0.285 ± 0.0019	0.276 ± 0.0045	14.771 ± 0.012	
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	3.814 ± 0.0054	3.7038 ± 0.0025	5.6425 ± 0.0039	1.676 ± 0.0024	1.05 ± 0.00059	2.3799 ± 0.00043	16.718 ± 0.0021	
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	-4.134 ± 0.0063	-0.8849 ± 0.0015	-8.0756 ± 0.0047	-8.456 ± 0.0026	-0.76256 ± 0.00055	-2.1091 ± 0.00036	-1.95479 ± 0.00011	
Σ^\pm	-0.32 ± 0.012	2.819 ± 0.0041	-2.433 ± 0.0086	-6.7803 ± 0.005	0.2874 ± 0.0011	0.2708 ± 0.00079	14.763 ± 0.0022	
$\epsilon_{\Phi}^{+} \over \epsilon_{\Phi}^{-}$	0.838	0.956	0.985	0.987	0.988	0.998	1.0	
ϵ_{Φ}^{-}	0.852	0.836	0.988	0.991	0.985	0.999	1.0	
$\epsilon^+(\epsilon_{0.1\%}^{\hat{+}})$	0.0022(0.0056)	0.0096(0.022)	0.0029(0.011)	0.00076(0.00076)	0.0024(0.035)	0.01(0.22)	0.02(0.31)	
$\epsilon^{-}(\epsilon_{0.1\%}^{-1\%})$	0.0034(0.006)	0.0012(0.0028)	0.0044(0.011)	0.0054(0.13)	0.0017(0.018)	0.022(0.22)	0.1 (0.68)	
0.170							-	