Theory uncertainties from theory nuisance parameters

Rene Poncelet

based on [Lim, Poncelet, 2412.14910]

Outline

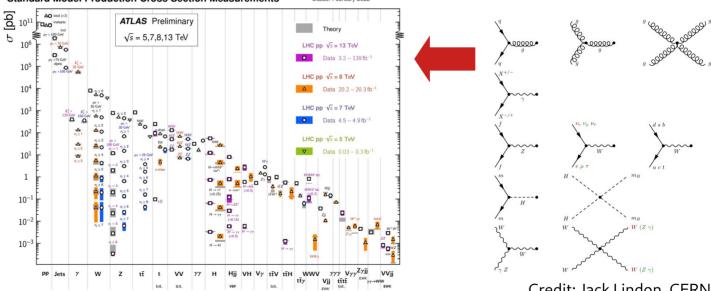
- Precision predictions at the LHC
- Missing Higher Order Uncertainties (MHOU)
 How to estimate the uncertainty of (truncated) perturbative expansions?
 - Scale variations for fixed-order and resummed cross sections
 - Bayesian methods
 - Theory Nuisance Parameters (TNPs)
- Application of TNPs to fixed-order perturbation theory
- Discussion/Summary/Outlook

Standard Model phenomenology at the LHC

Scattering experiments

Credit: CERN

Standard Model Production Cross Section Measurements Status: February 2022



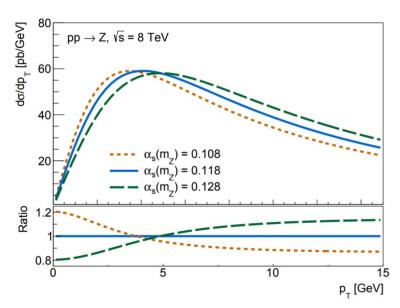
Credit: ATLAS

Credit: Jack Lindon, CERN

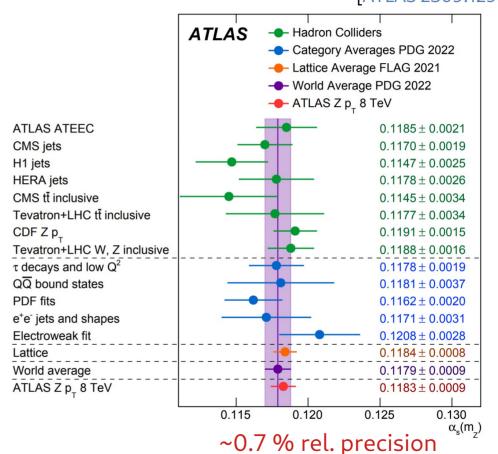
Precision example: strong coupling from pT(Z)

[ATLAS 2309.12986]

Sensitivity of Z-boson's recoil to the strong coupling constant:



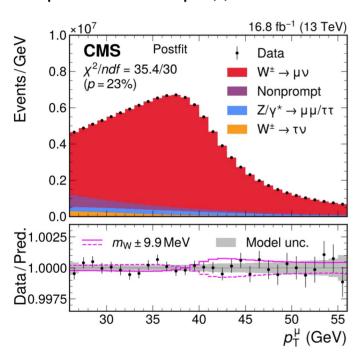
- → at low pT resummation regime!
- → theory uncertainty?

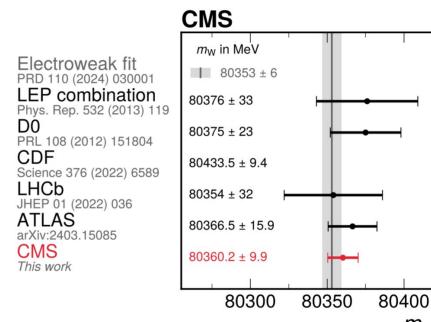


Precision example: W-mass measurement by CMS

[CMS 2412.13872]

Mass dependence of pT(l):





Jacobian peak position $\sim m(W)/2 \rightarrow resummation sensitive \rightarrow theory uncertainty?$

80450

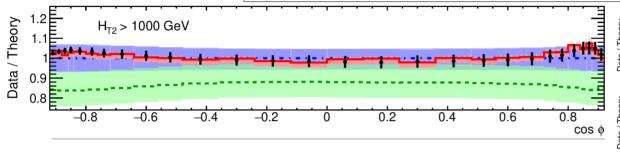
 $m_{\rm W}$ (MeV)

Precision example: strong-coupling from TEEC

Next-to-Next-to-Leading Order Study of Three-Jet Production at the LHC Czakon, Mitov, Poncelet Phys.Rev.Lett. 127 (2021) 15, 152001

[ATLAS 2301.09351]

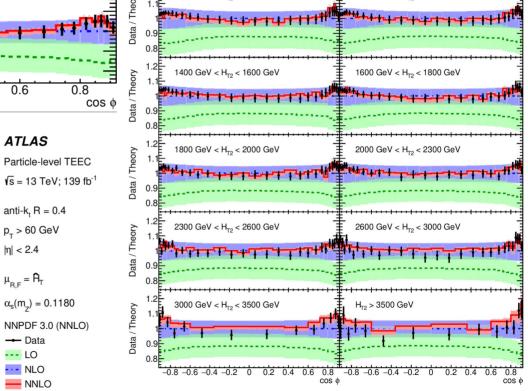
1200 GeV < H_{T2} < 1400 GeV



Multi-jet angular correlations

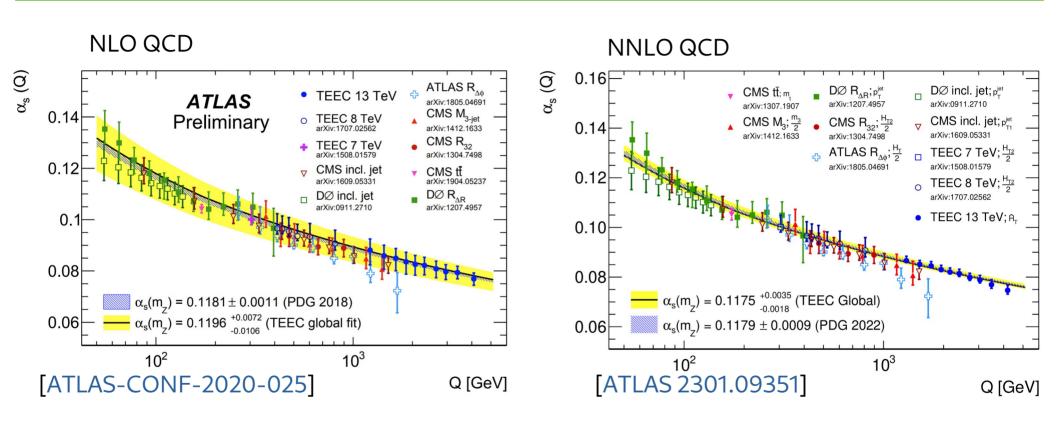
Uncertainties driven by fixed-order precision through ratio:

$$R^{i}(\mu_{R}, \mu_{F}, PDF, \alpha_{S,0}) = \frac{d\sigma_{3}^{i}(\mu_{R}, \mu_{F}, PDF, \alpha_{S,0})}{d\sigma_{2}^{i}(\mu_{R}, \mu_{F}, PDF, \alpha_{S,0})}$$



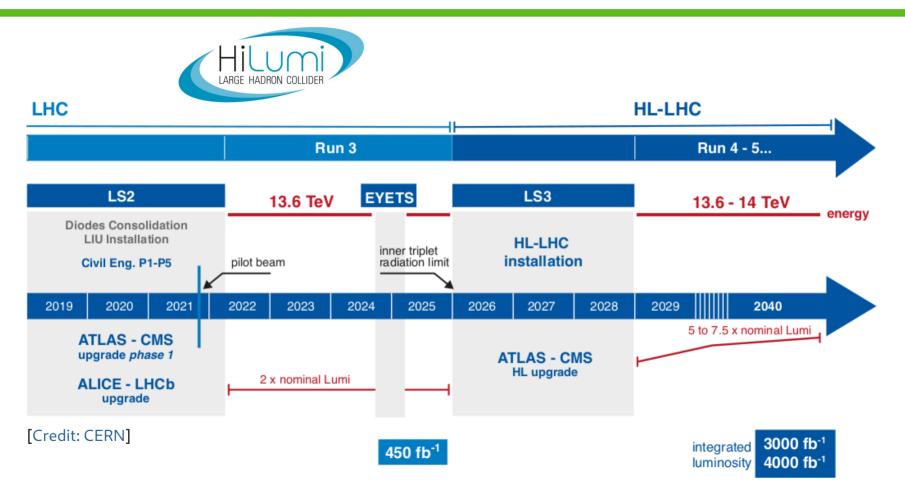
1000 GeV < H_{T2} < 1200 Ge\

Precision example: strong-coupling from TEEC



Theory uncertainty dominant effect!

LHC Precision era and future experiments

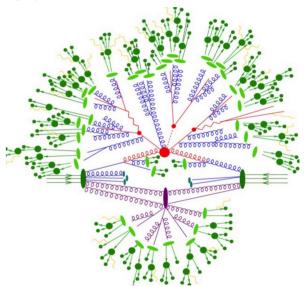


Uncertainties in precision phenomenology

Experiments are getting more precise → theory uncertainties matter!

Sources of theory uncertainties:

- parametric (values of coupling parameters etc.)
- → variation of parameters within their uncertainties
- parton distribution functions (PDFs)
- → different error propagation methods (fit parameter, replicas,...)
- non-perturbative parameters in Monte Carlo simulations.
- → needs data constraints by definition. Problematic if dominant effect...
- missing higher orders in fixed-order and resummed predictions (MHOU)
- → tricky because we are trying to estimate the unknown....



[Credit: SHERPA]

Missing higher orders

Notation from: [Tackmann 2411.18606]

$$f(\alpha) = f_0 + f_1 \alpha + f_2 \alpha^2 + f_3 \alpha^3 + \dots$$

 f_i : the coefficient of the series, potentially unknown

We can compute the truncated series: \hat{f}_i : the true value, i.e. a value we actually computed

$$f^{\text{LO}}(\alpha) = \hat{f}_0$$
 $f^{\text{NLO}}(\alpha) = \hat{f}_0 + \hat{f}_1 \alpha$ $f^{\text{NNLO}}(\alpha) = \hat{f}_0 + \hat{f}_1 \alpha + \hat{f}_2 \alpha^2$

The missing terms are the source of uncertainty. (assume convergence → the first missing is the dominant one)

$$f^{\text{LO}+1}(\alpha) = \hat{f}_0 + f_1 \alpha$$
 $f^{\text{NLO}+1}(\alpha) = \hat{f}_0 + \hat{f}_1 \alpha + f_2 \alpha^2$ $f^{\text{NNLO}+1}(\alpha) = \hat{f}_0 + \hat{f}_1 \alpha + \hat{f}_2 \alpha^2 + f_3 \alpha^3$

Challenge: how to estimate f_1 , f_2 , f_3 , ... without computing them?

Theory uncertainties from scale variations

Lets focus on QCD as an example: $\alpha = \alpha_s(\mu_0)$

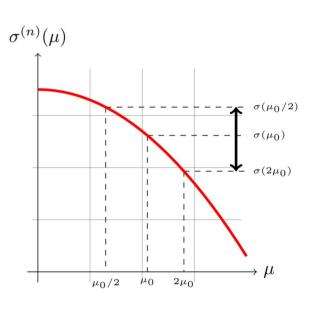
$$d\sigma = d\sigma^{(0)} + \alpha_s d\sigma^{(1)} + \alpha_s^2 d\sigma^{(2)} + \dots$$
RGE

 $\mu \frac{\mathrm{d}\sigma^{(n)}}{\mathrm{d}\mu} = \mathcal{O}\left(\alpha_s^{(n_0+n+1)}\right)$

Of same order as the next dominant term \rightarrow exploiting this to estimate size of $d\sigma^{(n+1)}$

Scale variation prescription (ad-hoc and heuristic choice)

- choose 'sensible' μ_0
 - \Rightarrow principle of fasted apparent convergence: $\sigma^{(n)}(\mu_{\text{FAC}}) = 0$
 - → principle of minimal sensitivity:
 - → ...
- vary with a factor (typically 2)
- take envelope as uncertainty



Scale variation approach

Change of scale = change of renormalisation scheme: $\tilde{\alpha}(\alpha) = \alpha(1 + b_0\alpha + b_1\alpha^2 + b_2\alpha^3 + \dots)$

For QCD:
$$\alpha = \alpha_s(\mu_0)$$
 $\tilde{\alpha} = \alpha_s(\mu)$

$$b_0 = \frac{\beta_0}{2\pi}L \qquad b_1 = \frac{\beta_0^2}{4\pi^2}L^2 + \frac{\beta_1}{8\pi^2}L \qquad b_2 = \frac{\beta_0^3}{8\pi^3}L^3 + \frac{5\beta_0\beta_1}{32\pi^2}L^2 + \frac{\beta_2}{32\pi^3}L \qquad L = \ln\frac{\mu_0}{\mu}$$

$$\tilde{f}^{\mathrm{LO}}(\tilde{\alpha}) = \hat{\tilde{f}}_{0}$$

$$\tilde{f}^{\text{NLO}}(\tilde{\alpha}) = \hat{\tilde{f}}_0 + \hat{\tilde{f}}_1 \tilde{\alpha} = \hat{f}_0 + \alpha \hat{f}_1 + \alpha^2 b_0 \hat{f}_1 + \mathcal{O}(\alpha^3)$$

$$\tilde{f}^{\text{NNLO}}(\tilde{\alpha}) = \hat{\tilde{f}}_0 + \hat{\tilde{f}}_1 \tilde{\alpha} + \hat{\tilde{f}}_2 \tilde{\alpha}^2 = \hat{f}_0 + \alpha \hat{f}_1 + \alpha^2 \hat{f}_2 + \alpha^3 (2b_0(\hat{f}_2 - b_0 \hat{f}_1) + b_1 \hat{f}_1) + \mathcal{O}(\alpha^4)$$

Scale variation approach

Change of scale = change of renormalisation scheme: $\tilde{\alpha}(\alpha) = \alpha(1 + b_0\alpha + b_1\alpha^2 + b_2\alpha^3 + \dots)$

For QCD:
$$\alpha = \alpha_s(\mu_0)$$
 $\tilde{\alpha} = \alpha_s(\mu)$

$$b_0 = \frac{\beta_0}{2\pi}L \qquad b_1 = \frac{\beta_0^2}{4\pi^2}L^2 + \frac{\beta_1}{8\pi^2}L \qquad b_2 = \frac{\beta_0^3}{8\pi^3}L^3 + \frac{5\beta_0\beta_1}{32\pi^2}L^2 + \frac{\beta_2}{32\pi^3}L \qquad L = \ln\frac{\mu_0}{\mu}$$

$$\Delta f^{\rm NLO} = f^{\rm NLO} - \tilde{f}^{\rm NLO}(\tilde{\alpha}) = -\alpha^2 b_0 \hat{f}_1 + \mathcal{O}(\alpha^3)$$

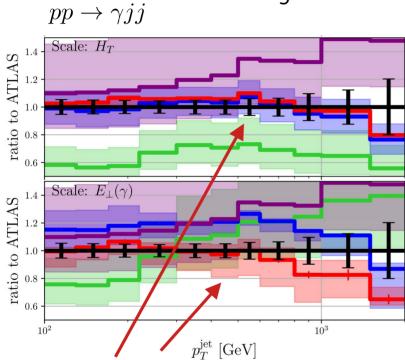
$$\Delta f^{\text{NNLO}} = f^{\text{NNLO}} - \tilde{f}^{\text{NNLO}}(\tilde{\alpha}) = \alpha^3 (2b_0(\hat{f}_2 - b_0\hat{f}_1) + b_1\hat{f}_1) + \mathcal{O}(\alpha^4)$$

Issues:

- 1) There is no reason to believe that there is a value L (i.e. scale choice) that describes all \hat{f}_i
- 2) If f is not a scalar, correlations are unclear

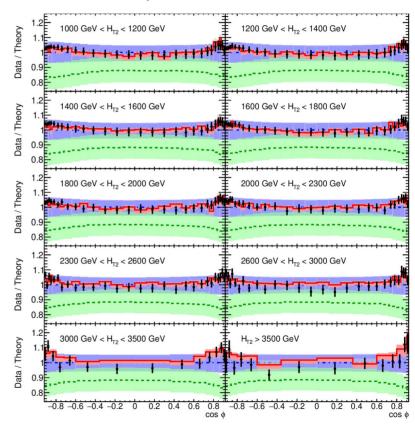
Still, scale variation works ...

"Agreement within the variation envelope"



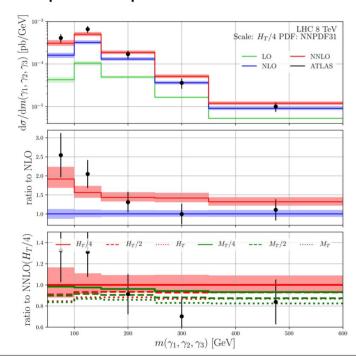
Different scale choices give different uncertainties corresponding to the perturbative convergence.

Badger, Czakon, Hartanto, Moodie, Peraro, **Poncelet**, Zoia [2304.06682]



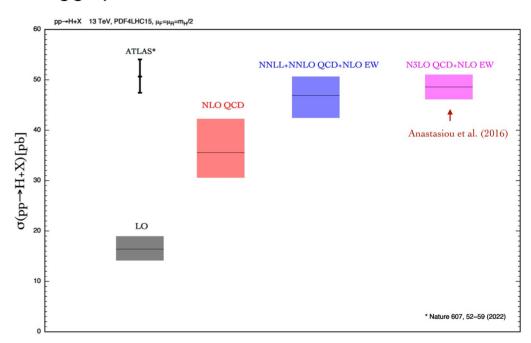
...sometimes:/

Three photon production



NNLO QCD corrections to three-photon production at the LHC, Chawdhry, Czakon, Mitov, Poncelet [JHEP 02 (2020) 057]

Higgs production



[talk by Grazzini]

NNLO QCD needed before "convergence" kicks in...

Short comings of scale variations

- not always reliable ... however in most cases issues are understood/expected:
 new channels, phase space constraints, etc. → often we can design workarounds
- however, some issues are more fundamental:
 - → how to choose the central scale? → not a physical parameter, no 'true' value (Principle of fasted apparent convergence, principle of minimal sensitivity,...)
 - → how to propagate the estimated uncertainty, no statistical interpretation!
 - → what about correlations? Based on 'fixed form' of the lower orders and RGE.

(At the moment) two alternative approaches under investigation:

"Bayesian"

[Cacciari, Houdeau 1105.5152] [Bonvini 2006.16293] [Duhr, Huss, Mazeliauskas, Szafron 2106.04585] "Theory Nuisance Parameter"

[Tackmann 2411.18606]

→ W mass extraction: [CMS 2412.13872]

[Cal,Lim, Scott,Tackmann Waalewijn 2408.13301]

[Lim, Poncelet, 2412.14910]

Bayesian approach I

→ Instead of ad-hoc fixed variation try to give some probabilistic interpretation

$$d\sigma = d\sigma^{(0)}(1 + \delta^{(1)} + \delta^{(2)} + \dots)$$

Probability to find coefficient $\delta^{(n+1)}$ given $\delta^{(n)}$: [Cacciari, Houdeau 1105.5152]

$$P(\delta^{(n+1)}|\delta^{(n)}) = \frac{P(\delta^{(n+1)})}{P(\delta^{(n)})} = \frac{\int \mathrm{d}a P(\delta^{(n+1)}|a) P_0(a)}{\int \mathrm{d}a P(\delta^{(n)}|a) P_0(a)}$$
 Need to provide model and prior

Bayes: P(A|B) = P(B|A)P(A)/P(B) with: $P(\delta^{(n)}|\delta^{(n+1)}) = 1$

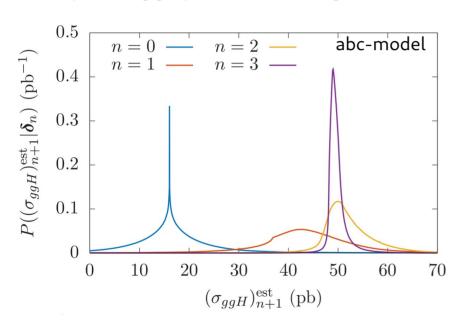
CH model:
$$\delta_k = c_k \alpha_s^k \quad c_k \text{ come from geometric series: } |c_k| \leq \overline{c} \quad \forall k$$

Geometric model: $|\delta_k| \le ca^k \quad \forall k$ [Bonvini 2006.16293]

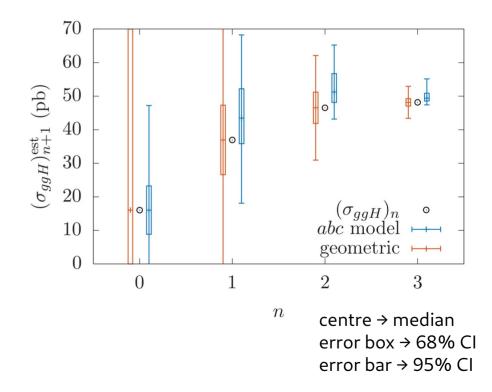
abc model:
$$b-c \le \frac{\delta_k}{c^k} \le b+c \quad \forall k$$
 [Duhr, Huss, Mazeliauskas, Szafron 2106.04585]

Bayesian approach II

Example: Higgs production in gluon - fusion



Comparison of different unc. estimates:



Bayesian approach III

Inclusion of scale dependence:

$$P(\delta_{n+1}|\delta_n) = \int d\mu P(\delta_{n+1}|\delta_n;\mu) P(\mu|\delta_n)$$

Scale marginalisation (the scale becomes a model parameter)

$$\mathcal{P}_{\rm sm}(\Sigma|\mathbf{\Sigma}_n) \approx \frac{\int d\mu \, P(\Sigma - \Sigma_n(\mu)|\mathbf{\Sigma}_n(\mu)) \, P(\mathbf{\Sigma}_n(\mu)) \, P_0(\mu)}{\int d\mu' \, P(\mathbf{\Sigma}_n(\mu')) \, P_0(\mu')} \,. \qquad \longrightarrow \qquad \mu_{\rm FAC}$$

Scale average (the results are averaged with weight function)

$$\mathcal{P}_{\rm sa}(\Sigma|\mathbf{\Sigma}_n) \approx \int d\mu \, w(\mu) \, P(\Sigma - \Sigma_n(\mu)|\mathbf{\Sigma}_n(\mu))$$
 \longrightarrow $\mu_{\rm PMS}$

Introducing theory nuisance parameters (TNPs)

Generic perturbative expansion:

$$f(\alpha) = f_0 + f_1 \alpha + f_2 \alpha^2 + f_3 \alpha^3 + \dots$$

Beyond Scale Variations: Perturbative Theory Uncertainties from Nuisance Parameters, Frank Tackmann [2411.18606]

$$f^{\text{LO}+1}(\alpha) = \hat{f}_0 + f_1(\theta)\alpha$$

$$f^{\text{NLO}+1}(\alpha) = \hat{f}_0 + \hat{f}_1 \alpha + f_2(\theta) \alpha^2$$

$$f^{\text{NNLO}+1}(\alpha) = \hat{f}_0 + \hat{f}_1 \alpha + \hat{f}_2 \alpha^2 + f_3(\theta) \alpha^3$$

Introduce a parametrisation of unknown coefficients in terms of

"Theory nuisance parameters" θ

- The parametrization such that there is a true value: $f_i(\hat{ heta}) = \hat{f}_i$
- Distributions of θ "known" (for example from already existing computations)
- → Expert knowledge to construct such a parametrisation

Example: TNPs in resummed cross sections

[Tackman 2411.18606]

Transverse momentum resummation:

$$\frac{d\sigma}{dp_T} = [H \times B_a \times B_b \times S](\alpha_s, \ln\left(\frac{p_T}{Q}\right)) + \mathcal{O}\left(\frac{p_T}{Q}\right)$$
$$X(\alpha_s, L) = X(\alpha_s) \exp \int_0^L dL' \{\Gamma(\alpha_s(L'))L' + \gamma_X(\alpha_s(L'))\}$$

Perturbative expansion of resummation ingredients:

$$X(\alpha_s) = X_0 + \alpha_s X_1 + \alpha_s^2 X_2 + \cdots + \alpha_s^n X_n(\theta)$$

$$\Gamma(\alpha_s) = \alpha_s [\Gamma_0 + \alpha_s \Gamma_1 + \alpha_s^2 \Gamma_2 + \cdots + \alpha_s^n \Gamma_n(\theta)]$$

$$\gamma(\alpha_s) = \alpha_s [\gamma_0 + \alpha_s \gamma_1 + \alpha_s^2 \gamma_2 + \cdots + \alpha_s^n \gamma_n(\theta)]$$

Task: find suitable parametrization and variation range

These are numbers for simple processes → only need normalisation

TNP parametrisations for resummation

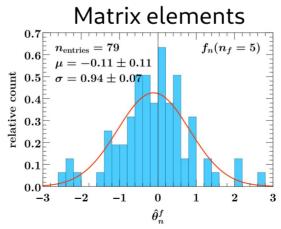
[Tackman 2411.18606]

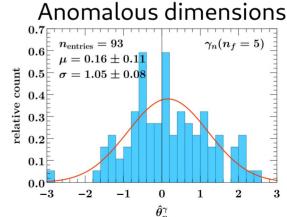
22

$\gamma(\alpha_s)$	N_n	$\hat{\gamma}_0/N_0$	$\hat{\gamma}_1/N_1$	$\hat{\gamma}_2/N_2$	$\hat{\gamma}_3/N_3$	$\hat{\gamma}_4/N_4$
β	1	-15.3	-77.3	-362	-9652	-30941
	4^{n+1}	-3.83	-4.83	-5.65	-37.7	-30.2
	$4^{n+1}C_FC_A^n$	-1.28	-0.54	-0.21	-0.47	-0.12
γ_m	1	-8.00	-112	-950	-5650	-85648
	4^{n+1}	-2.00	-7.028	-14.8	-22.1	-83.6
	$4^{n+1}C_FC_A^n$	-1.50	-1.76	-1.24	-0.61	-0.77
$2\Gamma_{\mathrm{cusp}}^q$	1	+10.7	+73.7	+478	+282	(+140000)
	4^{n+1}	+2.67	+4.61	+7.48	+1.10	(+137)
	$4^{n+1}C_FC_A^n$	+2.00	+1.15	+0.62	+0.03	(+1.27)

"Statistics over many computations"

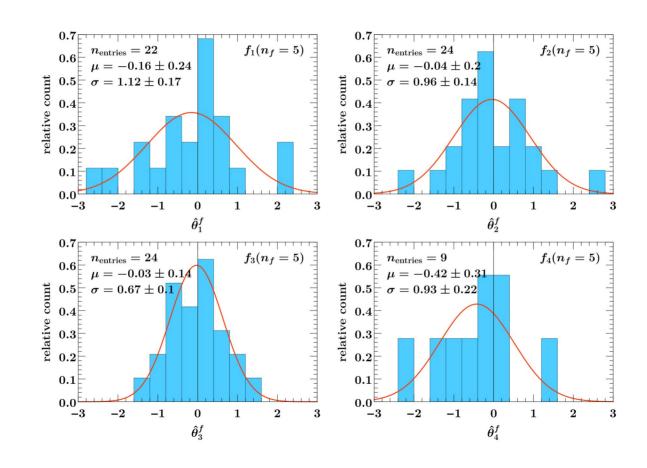
•





09.09.25 Gent Rene Poncelet – IFJ PAN Krakow

TNP parametrisations for resummation



Higgs pT spectrum

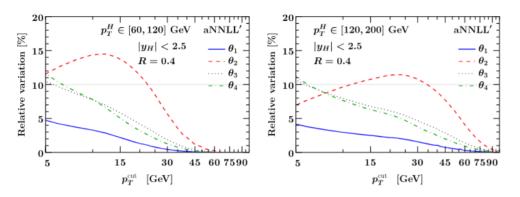
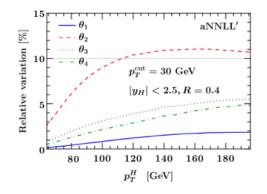


Figure 6: Relative uncertainty from varying each theory nuisance parameter as a function of p_T^{cut} for two different STXS bins.



[Cal,Lim, Scott,Tackmann Waalewijn 2408.13301]

Example: incomplete knowledge of NNLL resummation

- → some two-loop ingredients unknown
- → parametrise by TNPs
- → Make predictions and vary TNPs:
- Bin-to-bin correlations
- Estimate impact of different missing ingredients

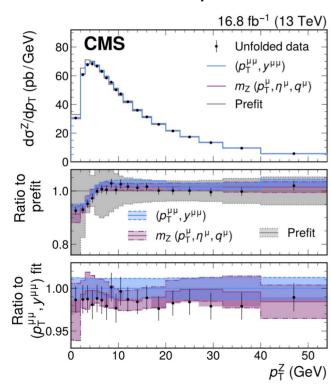
Constraint of TNPs from data → W-mass extraction

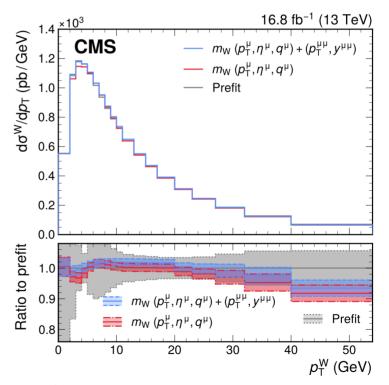
[CMS 2412.13872]

Check with Z boson: TNP fit with p_T^{μ} , η^{μ} can constrain p_T^V red: use only p_T^{μ} , η^{μ} from W to constrain p_T^W modelling

_____ this is used in the measurement

blue: use additionally Z observables





Some remarks on TNPs in resummation

Picture: simple ingredients that enter different computations/processes etc.

→ ideal situation

But actually not that simple:

- Scheme dependence of ingredients? E.g. scales, IR subtraction, ...
 → might need modified parametrisations
- Some TNPs represent directly numbers: Γ , γ , H for simple processes but others are functions \Rightarrow Beam functions, hard functions for more complicated processes
- Parametrisation works for the resummed spectrum. What about other observables?
- "Easy to implement" for use-cases so far
 → might be really expensive if each variation needs a full computation (Monte Carlos,...)

Is there a simpler, say "effective", way to do this for a general computation?

TNP approach for fixed-order computations

[Lim, Poncelet, 2412.14910]

$$d\sigma = \alpha_s^n N_c^m d\bar{\sigma}^{(0)} + \alpha_s^{n+1} N_c^{m+1} d\bar{\sigma}^{(1)} + \alpha_s^{n+2} N_c^{m+2} d\bar{\sigma}^{(2)} + \dots$$

$$= \alpha_s^n N_c^m d\bar{\sigma}^{(0)} \left[1 + \alpha_s N_c \left(\frac{d\bar{\sigma}^{(1)}}{d\bar{\sigma}^{(0)}} \right) + \alpha_s^2 N_c^2 \left(\frac{d\bar{\sigma}^{(2)}}{d\bar{\sigma}^{(0)}} \right) + \dots \right]$$

Observation, i.e. "expert knowledge":
$$\frac{\mathrm{d}\bar{\sigma}^{(i)}}{\mathrm{d}\bar{\sigma}^{(0)}}\sim\mathcal{O}(1)$$

Use some knowledge about lower orders but introduce parametric dependence:

$$\frac{\mathrm{d}\bar{\sigma}_{\mathrm{TNP}}^{(N+1)}}{\mathrm{d}\bar{\sigma}^{(0)}} = \sum_{i=1}^{N} f_k^{(j)} \left(\vec{\theta}, x\right) \left(\frac{\mathrm{d}\bar{\sigma}^{(j)}}{\mathrm{d}\bar{\sigma}^{(0)}}\right)$$

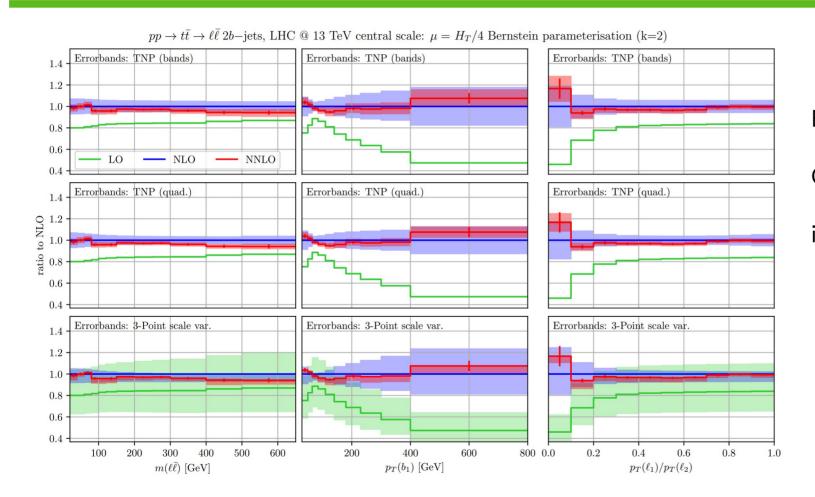
 $x \rightarrow \text{mapped kinematic variable}$

Approximation of original TNP philosophy \rightarrow there is only $f_i(\hat{\theta}) \approx \hat{f}_i$

Bernstein:
$$f_k^B(\vec{\theta},x) = \sum_{i=0}^k \theta_i \binom{k}{i} x^{k-i} (1-x)^i$$
 Chebyshev: $f_k^C(\vec{\theta},x) = \frac{1}{2} \sum_{i=0}^k \theta_i T_i(x)$ $x \in [0,1]$ $x \in [-1,1]$

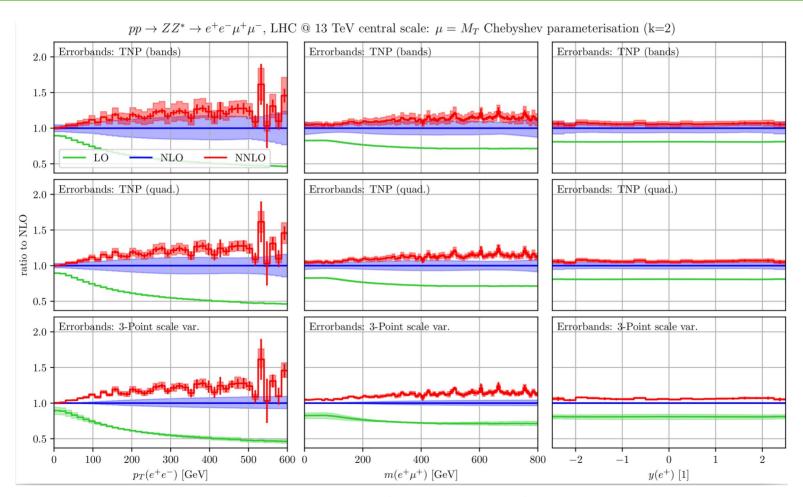
09.09.25 Gent

Uncertainties from TNPs - ttbar+decays



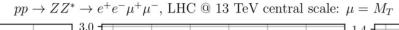
Band: sample $\theta \in [-1,1]$ Quad: add individual $\theta = \pm 1$ in quadrature

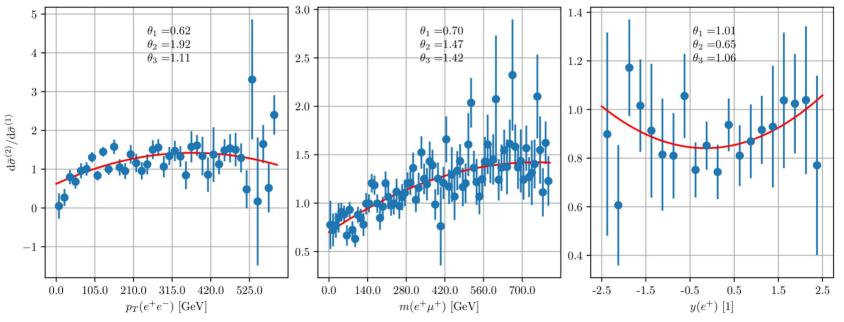
Uncertainties from TNPs - ZZ



Example of TNP fit: pp → ZZ

$$\frac{\mathrm{d}\bar{\sigma}_{\mathrm{TNP}}^{(N+1)}}{\mathrm{d}\bar{\sigma}^{(0)}} = \sum_{j=1}^{N} f_k^{(j)} \left(\vec{\theta}, x\right) \left(\frac{\mathrm{d}\bar{\sigma}^{(j)}}{\mathrm{d}\bar{\sigma}^{(0)}}\right) \qquad f_k^B \left(\vec{\theta}, x\right) = \sum_{i=0}^{k} \theta_i \binom{k}{i} x^{k-i} (1-x)^i$$

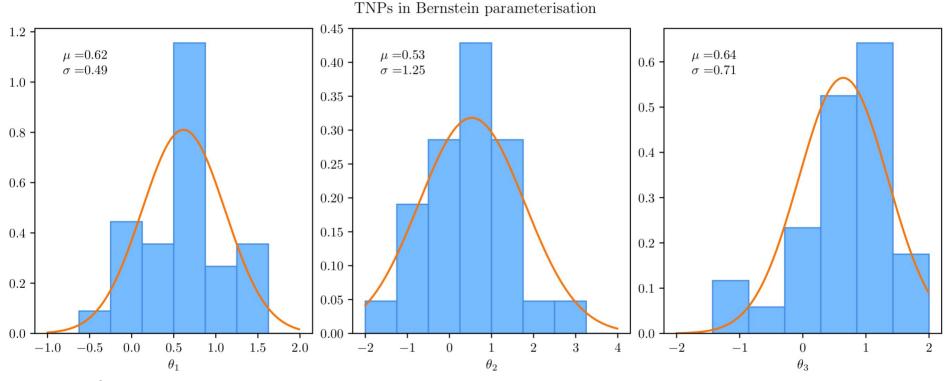




Process meta study

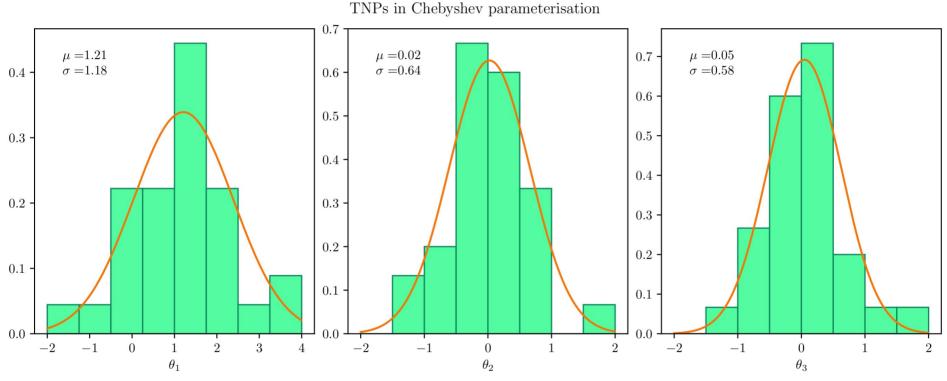
Process	\sqrt{s}/TeV	Scale	PDF	Distributions
$pp \to H \text{ (full theory)}$	13	$m_H/2$	NNPDF3.1	y_H
$pp \to ZZ^* \to e^+e^-\mu^+\mu^-$	13	M_T	NNPDF3.1	$M_{e^+\mu^+},p_T^{e^+e^-},y_{e^+}$
$pp \to WW^* \to e\nu_e\mu\nu_\mu$	13	m_W	NNPDF3.1	$M_{WW}, p_T^{\mu^-}, y_{W^-}$
$pp \to (W \to \ell \nu) + c$	13	$E_T + p_T^c$	NNPDF3.1	$p_T^\ell \; , y_\ell \; ,$
$pp o t ar{t}$	13	$H_T/4$	NNPDF3.1	$M_{t\bar{t}},p_T^t,y_t$
$pp o t ar t o b ar b \ell ar \ell$	13	$H_T/4$	NNPDF3.1	$M_{\ellar{\ell}},p_T^{b_1},p_{T,\ell_1}/p_{T,\ell_2}$
$pp \to \gamma \gamma$	8	$M_{\gamma\gamma}$	NNPDF3.1	$M_{\gamma\gamma},p_T^{\gamma_1},y_{\gamma\gamma}$
$pp \to \gamma \gamma j$	13	$H_T/2$	NNPDF3.1	$M_{\gamma\gamma},p_T^{\gamma\gamma},\cos\phi_{ ext{CS}}, y_{\gamma_1} ,\Delta\phi_{\gamma\gamma}$
pp o jjj	13	\hat{H}_T	MMHT2014	TEEC with $H_{T,2} \in [1000, 1500), [1500, 2000), [3500, \infty)$ GeV
$pp \to \gamma jj$	13	H_T	NNPDF3.1	$M_{\gamma jj},p_T^j, y_{\gamma-{ m jet}} ,E_{T,\gamma}$

Fits - Bernstein parametrisation



$$f_k^B(\vec{\theta}, x) = \sum_{i=0}^k \theta_i \binom{k}{i} x^{k-i} (1-x)^i$$

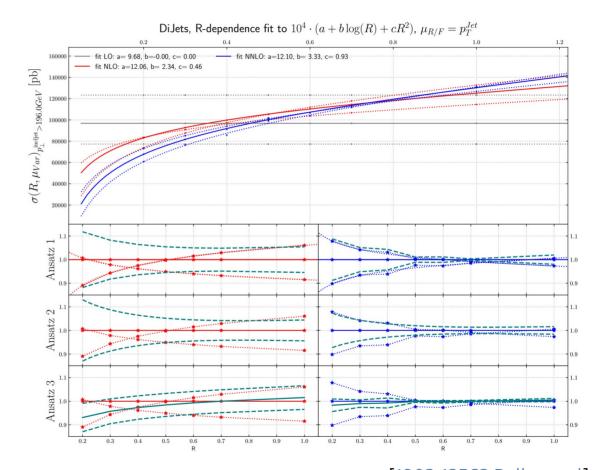
Fits - Chebyshev parametrisation



$$f_k^C(\vec{\theta}, x) = \frac{1}{2} \sum_{i=0}^k \theta_i T_i(x)$$

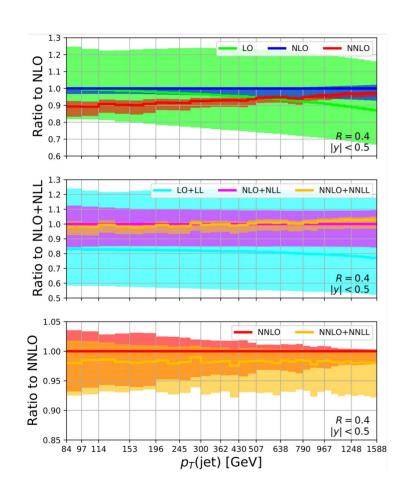
Example: inclusive jet production

- → Important process for PDF fits: sensitivity to gluon PDF at large-x
- → NNLO QCD corrections imply very small theory uncertainty
- → Significant jet radius dependence of uncertainties from scale variations



[1903.12563 Bellm et al]

Inclusive jet production: small-R resummation NNLO+NNLL



FO scale variations

R = 0.4

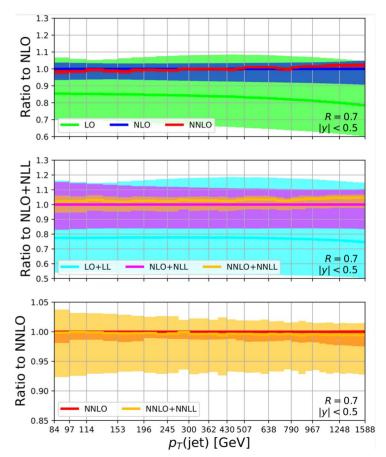
→ underestimation of NNLO correction

R = 0.7

→ very small NNLO uncertainty

Resummation

→ stabilization of pert. series and uncertainties. [Generet, Lee, Moult, Poncelet, Zhang'25]

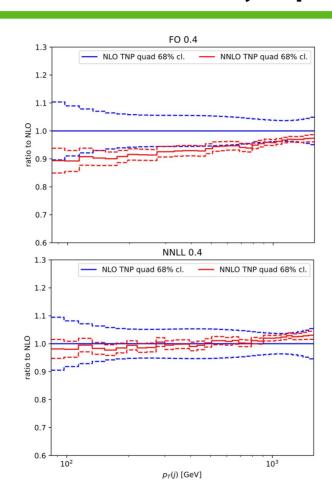


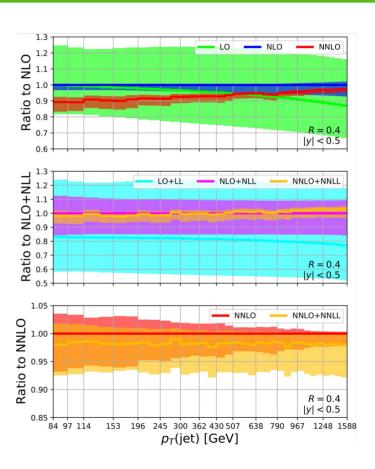
TNP uncertainties for inclusive jet production

R = 0.4

TNP uncertainties

- More sensible
 NLO uncertainties
- Similar to resummed scale variation



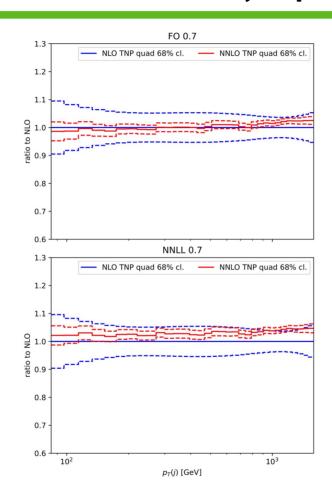


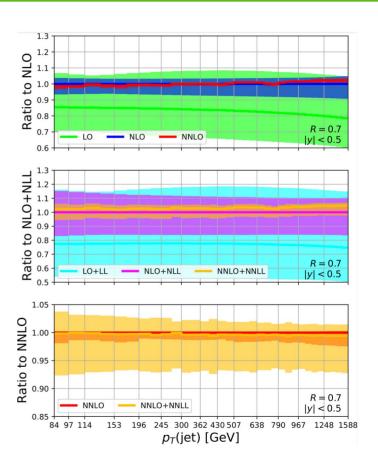
TNP uncertainties for inclusive jet production

R = 0.7

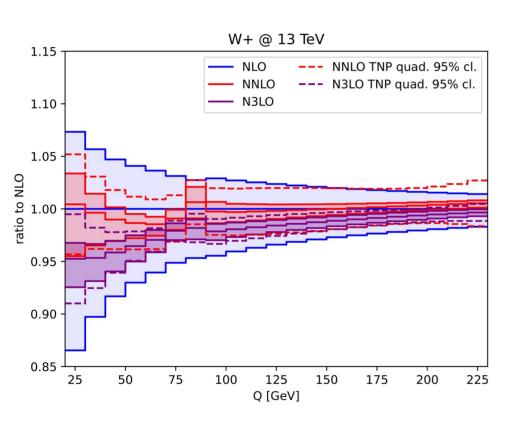
TNP uncertainties

- More sensible NNLO QCD uncertainties
- Similar to resummed scale variation

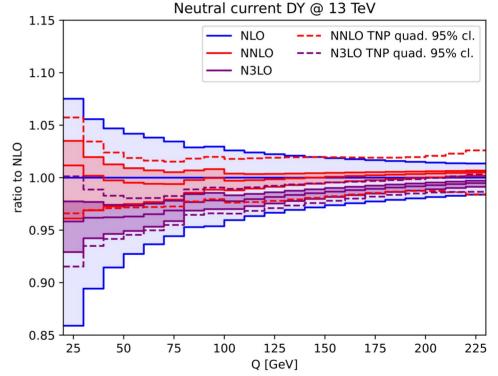




N3LO example: Drell-Yan



Numbers from n3loxs [Baglio, Duhr, Mistlberger, Szafron'22]

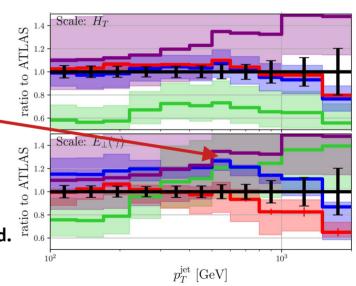


Caveats and open questions

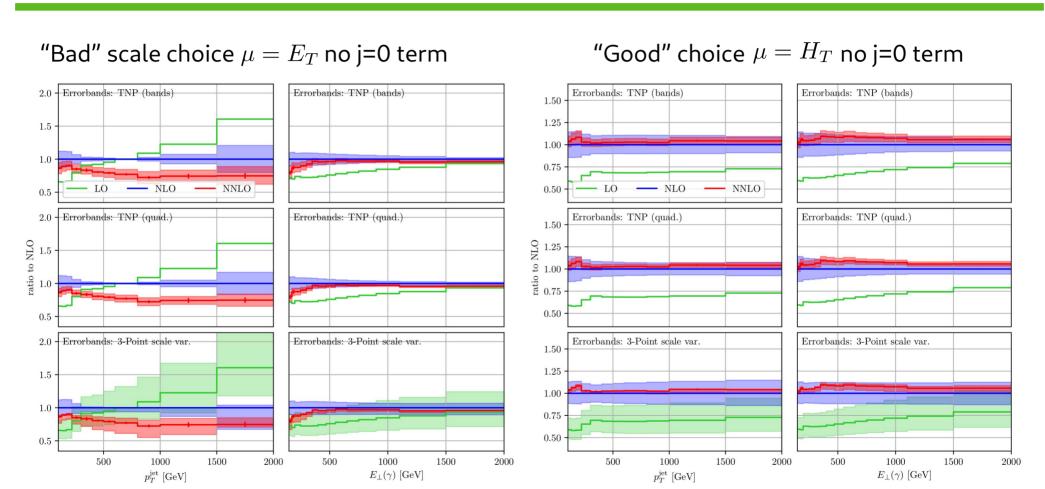
Some arising questions regarding fixed-order model:

$$\frac{\mathrm{d}\bar{\sigma}_{\mathrm{TNP}}^{(N+1)}}{\mathrm{d}\bar{\sigma}^{(0)}} = \sum_{j=1}^{N} f_k^{(j)} \left(\vec{\theta}, x\right) \left(\frac{\mathrm{d}\bar{\sigma}^{(j)}}{\mathrm{d}\bar{\sigma}^{(0)}}\right)$$

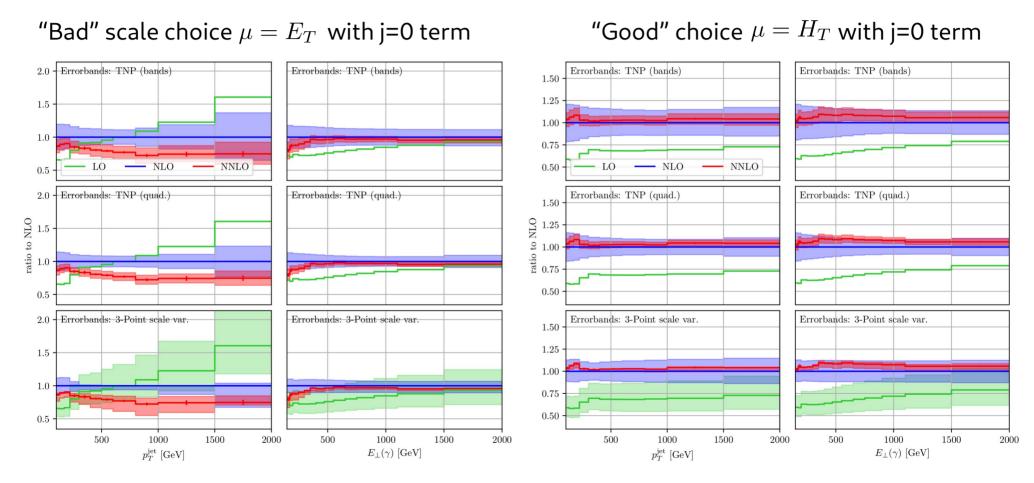
- How does the uncertainty estimate depend on the central scale choice?
 - → bad scale choices lead to large uncertainties by construction due to large corrections.
- What about NLO uncertainty if $d\bar{\sigma}^{(1)} = 0$ for given scale?
 - \rightarrow amend parametrisation by j = 0 term.
- How sensitive are we to the parametrisation?
 How many terms?
 - → two quite general parametrisations tested, increase degree by demand.



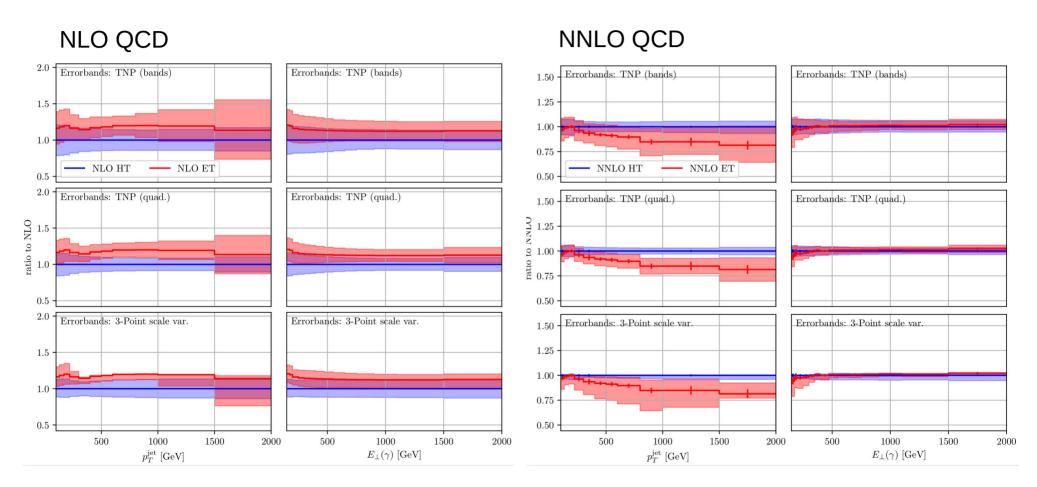
Challenging scale choice case



Challenging case → extended parametrisations



Challenging case → comparisons



More caveats and open questions

Some arising questions regarding fixed-order model:

$$\frac{\mathrm{d}\bar{\sigma}_{\mathrm{TNP}}^{(N+1)}}{\mathrm{d}\bar{\sigma}^{(0)}} = \sum_{j=1}^{N} f_k^{(j)} \left(\vec{\theta}, x\right) \left(\frac{\mathrm{d}\bar{\sigma}^{(j)}}{\mathrm{d}\bar{\sigma}^{(0)}}\right)$$

- Each parametrisation is for one observable at a time
 - How to deal with higher dimensional distributions? Correlations between observables?
 - Consistency upon integration?
 - → work in progress
- What about EW corrections?
 - → here the approach should work well for Sudakov logs!
 - → Radiation from resonances more difficult.
- How to correlate different processes? $d\bar{\sigma}^{(n)}(\theta) = d\Phi \langle M^0 | \mathcal{P}(\theta) | M^0 \rangle$ \Rightarrow that's tricky \Rightarrow back to the original TNP approach...

 $\mathcal{P}(\theta) \rightarrow \text{process-independent "operator"}$?

Take home message

- Increasing precision demands accurate theory uncertainty estimates
- De-facto standard: scale variations → various short-comings: robustness, no statistical interpretation, correlations,...
- Alternative approaches to scale variations: Bayesian and TNP approach
- Theory Nuisance Parameters
 - In principle less biased, better correlations → does not depend on any "known" orders ... however needs "expert knowledge"
 - Allows for a statistical interpretation and constraints from data!
 - Fixed-order tricky, not much knowledge about higher-order terms Proposed TNP parametrisation of differential cross sections shows promising first results next step: application to an actual parameter fit

Is this the ultimate answer? Surely not, but a step in the right direction!