Treatment of non-positive definite integrands with Normalising Flows

Rene Poncelet

based on work together with Timo Janßen and Steffen Schumann [2505.xxxx]

The problem

• Numerical integration of highly dimensional integrands → Monte Carlo Sampling

Integral

MC estimate

MC error estimate

$$I = \int_{\mathbf{x} \in \Omega} d\mathbf{x} f(\mathbf{x})$$

$$\hat{I} = \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}_i) , \quad \delta \hat{I} = \sqrt{\frac{1}{N-1} \left(\frac{1}{N} \sum_{i=1}^{N} f^2(\mathbf{x}_i) - \hat{I}^2 \right)}$$

• Variance reduction techniques improve performance, mapping $\mathbf{H}:\Omega\to\Omega,\mathbf{x}\mapsto\mathbf{H}(\mathbf{x})$

$$I = \int_{\mathbf{H}(\mathbf{x}) \in \Omega} d\mathbf{H} \frac{f(\mathbf{x})}{h(\mathbf{x})} \qquad h(\mathbf{x}) = \left| \det \left(\frac{\partial \mathbf{H}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

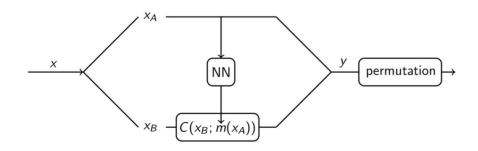
Find with $h(\mathbf{x})$ adaptive MC techniques: VEGAS [Lepage'78], Parni [Hameren'14], ML techniques: Normalising Flows Iflow [Bothmann'20] Madnis [Heimel'22], ...

How to build h(x)?

- by hand...
- 'Standard': VEGAS/Parni
 → essentially histograms, assuming integrand factorises wrt to integration variables
- Deep Learning approach: Normalising Flows
 - Coupling Layer (CL) Flows
 - Continuous (ODE) Flows

Coupling Layer Normalizing Flow

Based on the i-flow paper: 2001.05486

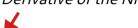

Series of bijections:

$$\vec{x}_K = c_K(c_{K-1}(\cdots c_2(c_1(\vec{x}))))$$

Distribution:

$$g_K(\vec{x}_K) = g_0(\vec{x}_0) \prod_{k=1}^K \left| \frac{\partial c_k(\vec{x}_{k-1})}{\partial \vec{x}_{k-1}} \right|^{-1}, \text{ where } \begin{cases} \vec{x}_0 = \vec{x} \\ \vec{x}_k = c_k(\vec{x}_{k-1}) \end{cases}$$

Structure of a single coupling layer:


$$x'_A = x_A,$$
 $A \in [1, d],$ $x'_B = C(x_B; m(\vec{x}_A)),$ $B \in [d+1, D].$

The inverse map

$$x_A = x'_A$$
,
 $x_B = C^{-1}(x'_B; m(\vec{x}'_A)) = C^{-1}(x'_B; m(\vec{x}_A))$

Inverse Jacobian:
$$\left| \frac{\partial c(\vec{x})}{\partial \vec{x}} \right|^{-1} = \left| \begin{pmatrix} \vec{1} & 0 \\ \frac{\partial C}{\partial m} \frac{\partial m}{\partial \vec{x}_A} & \frac{\partial C}{\partial \vec{x}_B} \end{pmatrix} \right|^{-1} = \left| \frac{\partial C(\vec{x}_B; m(\vec{x}_A))}{\partial \vec{x}_B} \right|^{-1}$$

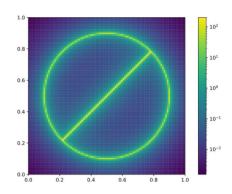
Derivative of the NN

→ Performance

Big advantage: $\frac{\partial m}{\partial x_A}$ not needed!

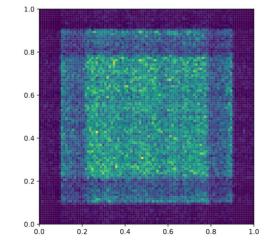
How many coupling layers you need?

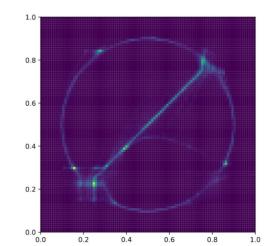
$$\begin{aligned} 2 \mathrm{log}_2 D & \text{for} \quad D > 5 \\ D & \text{for} \quad D < 5 \end{aligned}$$


Example: Masking to capture all correlations for D=12

	Dimension	0	1	2	3	4	5	6	7	8	9	10	11	
	Transformation 1	0	1	0	1	0	1	0	1	0	1	0	1	
	Transformation 2	0	0	1	1	0	0	1	1	0	0	1	1	
2x	Transformation 3	0	0	0	0	1	1	1	1	0	0	0	0	
	Transformation 4	0	0	0	0	0	0	0	0	1	1	1	1	

A toy example


Multi-modular function ("stop-sign"):


$$f(x,y) = \frac{1}{2\pi^2} \cdot \frac{\Delta r}{\left(\sqrt{(x-x_0)^2 + (y-y_0)^2} - r_0\right)^2 + (\Delta r)^2} \cdot \frac{1}{\sqrt{(x-x_0)^2 + (y-y_0)^2}} + \frac{1}{2\pi r_0} \cdot \frac{\Delta r}{\left((y-y_0) - (x-x_0)\right)^2 + (\Delta r)^2} \cdot \Theta\left(r_0 - \sqrt{(x-x_0)^2 + (y-y_0)^2}\right).$$

Sampling densities:

Coupling-Layer Flow

Continuous Flows

"time"-dependent probability density function:

$$\log q_t(\mathbf{y}_t) = \log q_0(\mathbf{y}_0) - \log \left| \det \frac{\partial \phi_t}{\partial \mathbf{y}_0} \right|$$

constructed from
$$\frac{\mathrm{d}}{\mathrm{d}t}\phi_t(\mathbf{y}) = v_t(\phi_t(\mathbf{y}))$$
, with $\phi_0(\mathbf{y}) = \mathbf{y}$ +continuity equation (preserve prob.)

vector-field is given by a trainable NN

 $\mathbf{y}_1 = \phi_1(\mathbf{y}_0) = \int_1^1 v_t(\phi_t(\mathbf{y}_0)) dt$ The mapped point is the solution of a simple ODE:

Jacobian by inverse ODE:

$$\frac{\mathrm{d}}{\mathrm{d}s} \begin{bmatrix} \phi_{1-s}(\mathbf{y}) \\ f(1-s) \end{bmatrix} = \begin{bmatrix} -v_{1-s}(\phi_{1-s}(\mathbf{y})) \\ -\operatorname{div}(v_{1-s}(\phi_{1-s}(\mathbf{y}))) \end{bmatrix} \qquad \begin{bmatrix} \phi_1(\mathbf{y}) \\ f(1) \end{bmatrix} = \begin{bmatrix} \mathbf{y}_1 \\ 0 \end{bmatrix}$$

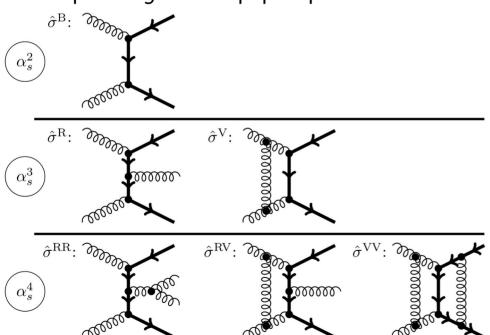
Training and model parameters

Training target based on Kullback–Leibler (KL) divergence:

$$D_{\mathrm{KL}}(p \parallel q_{\theta}) = \sum_{i=1}^{N} p(\mathbf{y}_{i}) \log \left(\frac{p(\mathbf{y}_{i})}{q_{\theta}(\mathbf{y}_{i})} \right)$$

- 1) Generate sample & evaluate target function (1M points)
- 2) Do NN optimization step with gradient descend (ADAM)
- 3) Repeat 1) *(10 times)*

Size of neural networks depends on the dimension of the problem.


- → we investigated 4 to 13 dimensional problems + discrete parameters (conditional NNs):
 - ~ 100k 10M parameters for CL flows
 - ~ 1M parameter for ODE flows

The integrands

Cross sections in STRIPPER:

$$\sigma(h(P_1)h(P_2) \to X) = \sum_{ab} \iint_0^1 dx_1 dx_2 \phi_a(x_1) \phi_b(x_2) \hat{\sigma}_{ab}(x_1 P_1, x_2 P_2)$$

Example diagrams top-pair production

NNLO pQCD: $\hat{\sigma}_{ab} = \hat{\sigma}_{ab}^{(0)} + \hat{\sigma}_{ab}^{(1)} + \hat{\sigma}_{ab}^{(2)}$

$$\hat{\sigma}_{ab}^{(0)} = \hat{\sigma}_{ab}^{\mathrm{B}}$$

$$\hat{\sigma}_{ab}^{(1)} = \hat{\sigma}_{ab}^{\mathrm{R}} + \hat{\sigma}_{ab}^{\mathrm{V}} + \hat{\sigma}_{ab}^{\mathrm{C}}$$

$$\hat{\sigma}_{ab}^{(2)} = \hat{\sigma}_{ab}^{RR} + \hat{\sigma}_{ab}^{RV} + \hat{\sigma}_{ab}^{VV} + \hat{\sigma}_{ab}^{C1} + \hat{\sigma}_{ab}^{C2}$$

The integrands II

Structure of partonic contributions:

Matrix elements + measurement functions

$$\hat{\sigma}_{ab}^{i} = \sum_{j \in \mathcal{C}_{ab}^{i}(ab \to X)} \hat{\sigma}_{ab,j}^{i}$$

$$\text{different partonic channels} \quad \hat{\sigma}^i_{ab} = \sum_{j \in \mathcal{C}^i_{ab}(ab \to X)} \hat{\sigma}^i_{ab,j} \qquad \qquad \hat{\sigma}^i_{ab,j} = N_j \int \mathrm{d}\Phi_j \mathcal{F}_{ab,j}(\Phi_j)$$

Subtraction for real-emission contributions based on sector-decomposition + residue subtraction:

$$\hat{\sigma}^{(1)} \ni \int d\Phi_j \sum_{i,j} \mathcal{S}_{kl} |\mathcal{M}_j(\Phi_j)|^2 F(\Phi_j).$$

$$\hat{\sigma}^{(1)} \ni \int d\Phi_j \sum_{kl} \mathcal{S}_{kl} |\mathcal{M}_j(\Phi_j)|^2 F(\Phi_j). \qquad \hat{\sigma}^{(i)} \ni \int_{[0,1]^m} d^m \chi \int_{[0,1]^n} d^n \mathbf{x} \frac{f_{\{k\}}^{j}(\chi, \mathbf{x}) - \sum_{kl} f_{\{k\}}^{j}(\chi|_{\to 0}, \mathbf{x})}{\prod_{i}^m \chi_i}$$

But for the integration problem (in case of tot cross sections) it is enough to consider:

$$\hat{\sigma}^{(i)} \ni \int_{[0,1]^n} \mathrm{d}\mathbf{y} g^j_{\{k\}}(\mathbf{y})$$

$$\sum_{\{k\},h} \int_{[0,]}$$

 $\sum_{\{k\},h}\int_{[0,1]^n}\mathrm{d}\mathbf{y}g^j_{\{k\},h}(\mathbf{y})=\sum_l\int_{[0,1]^n}\mathrm{d}\mathbf{y}g^j_l(\mathbf{y})$ Sum of

Sectors, helicities, channels

Benchmarks

- To make life simple: Optimization goal is total integral (i.e. total cross section)
 → focusing on gluonic top-pair production (small number of channels)
- Three integrators: VEGAS (reference for the current default), CL, ODE each with standard absolute training and positive/negative stratified training
- Benchmark quantities
 - Weight variance
 - Unweighting efficiency

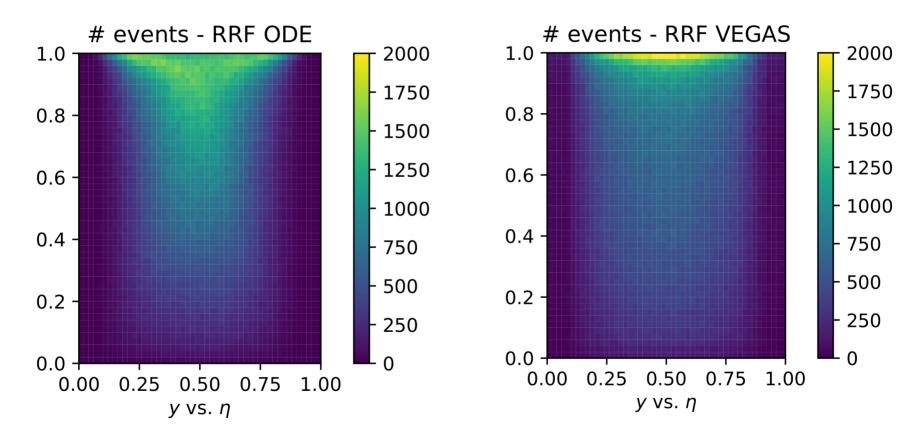
Results LO and NLO

Frozen integrators 1M points

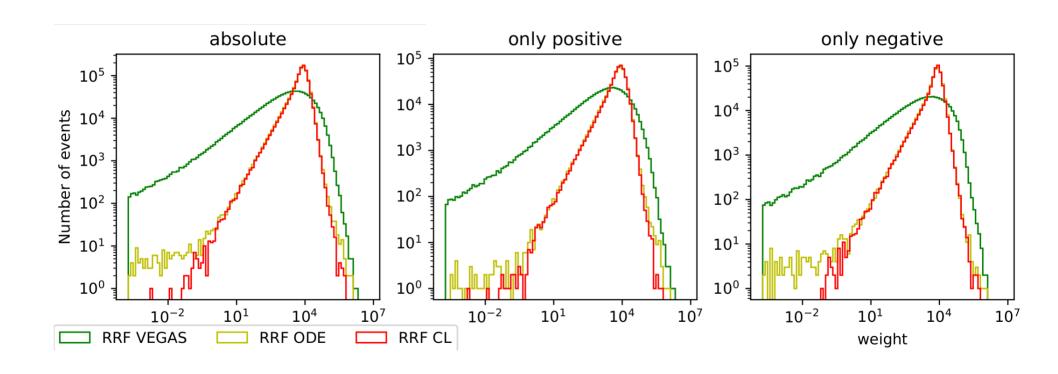
Estimate + Error

Observation #1:

Saturation of lower bounds with flows, for VEGAS only in the simpler ones


	Contribution $\sigma_{\rm B} \cdot 10^{-2}$		$\sigma_{ m RF} \cdot 10^{-2}$	$\sigma_{ m RU} \cdot 10^{-2}$	$\sigma_{ m VF} \cdot 10^{-1}$	
	$\delta^{ m opt}$	0.0001	0.008	0.01	0.006	
	CPU cost [a.u.]	1	6	1.5	1.3	
			VEGAS			
	$\hat{\sigma} \pm \delta \hat{\sigma}$	5.3278 ± 0.002	6.967 ± 0.01	-5.378 ± 0.02	-4.487 ± 0.006	
	$\hat{\sigma}^+ \perp \hat{s}\hat{\sigma}^+$	5.3284 ± 0.002	8.955 ± 0.01	4.432 ± 0.006	1.403 ± 0.0008	
	$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	$-0.0006446 \pm 5e - 07$	-1.981 ± 0.004	-9.8098 ± 0.008	-5.8939 ± 0.003	
	Σ^\pm	5.3278 ± 0.002	6.973 ± 0.01	-5.378 ± 0.01	-4.4909 ± 0.003	
	ϵ_{Φ}^{+}	0.99	0.728	0.639	0.808	
	ϵ_{Φ}^{-}	0.834	0.384	0.852	0.95	
	ϵ_{Φ}^{+} ϵ_{Φ}^{-} $\epsilon^{+}(\epsilon_{0.1\%}^{+})$	0.13(0.43)	0.048(0.098)	0.02(0.048)	0.082(0.21)	
	$\epsilon^{-}(\epsilon_{0}^{-})$	0.016(0.066)	0.013(0.021)	0.049(0.17)	0.12(0.27)	
	0.11	<u> </u>	ODE Flow			
	$\hat{\sigma} \pm \delta \hat{\sigma}$	5.3279 ± 0.0005	6.98 ± 0.009	-5.394 ± 0.01	-4.483 ± 0.006	
	$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	5.32872 ± 0.0004	8.9494 ± 0.002	4.4185 ± 0.002	1.4018 ± 0.0001	
	$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	$-0.00064495 \pm 1e - 07$	-1.9844 ± 0.0006	-9.802 ± 0.003	-5.89315 ± 0.0005	
	Σ^{\pm}	5.32808 ± 0.0004	6.965 ± 0.003	-5.3835 ± 0.004	-4.4914 ± 0.0006	
	ϵ_{d}^{+}	1.0	0.991	0.992	1.0	
	ϵ_{Φ}^{-}	0.997	0.99	0.987	0.999	
	$\epsilon^+(\epsilon_{0.1\%}^{ar{+}})$	0.33(0.7)	0.025(0.3)	0.0059(0.099)	0.11(0.56)	
	$\epsilon^-(\epsilon_{0.1\%}^{-1})$	0.055(0.36)	0.028(0.17)	0.02(0.16)	0.12(0.73)	
2.5	312/	Co	oupling Layer Flow			
	$\hat{\sigma} \pm \delta \hat{\sigma}$	5.32795 ± 0.0003	6.972 ± 0.009	-5.39 ± 0.01	-4.492 ± 0.006	
	$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	5.32807 ± 0.0003	8.949 ± 0.002	4.4101 ± 0.002	$1.40155 \pm 9e - 05$	
	$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	$-0.000644883 \pm 3e - 08$	-1.9821 ± 0.0007	-9.8 ± 0.002	-5.89183 ± 0.0003	
	Σ^{\pm}	5.32742 ± 0.0003	6.9669 ± 0.003	-5.3899 ± 0.004	-4.49028 ± 0.0004	
	ϵ_Φ^+	1.0	0.989	0.988	1.0	
	ϵ_Φ^{-}	1.0	0.99	0.994	1.0	
	ϵ_{Φ}^{+} $\epsilon_{0.1\%}^{+}$	0.53(0.81)	0.028(0.24)	0.0082(0.046)	0.17(0.63)	
	$\epsilon^-(\epsilon_{0.1\%}^{1.1\%})$	0.11(0.79)	0.0074(0.06)	0.009(0.19)	0.4(0.79)	
	N 100 A A					

07.05.2025 CERN Rene Poncelet – IFJ PAN 12


Results NNLO

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & 0.0081 \\ \hline & 1542 \\ \hline \hline \hline VEGAS \\ \hline 7 & -6.808 \pm 0.022 \\ 5 & 1.669 \pm 0.0026 \\ 85 & -8.4539 \pm 0.0068 \\ .5 & -6.785 \pm 0.0094 \\ & 0.55 \\ & 0.871 \\) & 0.013 (0.024) \\) & 0.014 (0.038) \\ \hline \end{array}$	$\sigma_{\text{RVFR}} \cdot 10^{-2}$ 0.0018 2.7 0.2864 ± 0.0023 1.051 ± 0.0014 -0.7635 ± 0.0012 0.2871 ± 0.0025 0.593 0.501 $0.025 (0.06)$ $0.021 (0.05)$	$\begin{array}{c} \sigma_{\rm RVDU} \cdot 10^{-3} \\ \hline 0.0045 \\ \hline 2.7 \\ \hline \\ 0.267 \pm 0.0049 \\ 2.381 \pm 0.0011 \\ -2.1114 \pm 0.0012 \\ 0.2696 \pm 0.0023 \\ \hline 0.946 \\ 0.916 \\ 0.029 (0.22) \\ \hline \end{array}$	$ \begin{array}{c c} \sigma_{\text{VVF}} \cdot 10^{-0} \\ \hline 0.011 \\ \hline 13 \\ \hline \\ 14.768 \pm 0.014 \\ 16.711 \pm 0.0067 \\ -1.955 \pm 0.0011 \\ 14.756 \pm 0.0078 \\ \hline 0.956 \\ 0.816 \\ 0.015 (0.1) \\ \end{array} $			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} VEGAS \\ \hline 7 & -6.808 \pm 0.022 \\ 5 & 1.669 \pm 0.0026 \\ 85 & -8.4539 \pm 0.0068 \\ .5 & -6.785 \pm 0.0094 \\ & 0.55 \\ & 0.871 \\) & 0.013 \ (0.024) \\) & 0.014 \ (0.038) \\ \end{array} $	0.2864 ± 0.0023 1.051 ± 0.0014 -0.7635 ± 0.0012 0.2871 ± 0.0025 0.593 0.501 $0.025 (0.06)$	0.267 ± 0.0049 2.381 ± 0.0011 -2.1114 ± 0.0012 0.2696 ± 0.0023 0.946 0.916 $0.029 (0.22)$	14.768 ± 0.014 16.711 ± 0.0067 -1.955 ± 0.0011 14.756 ± 0.0078 0.956 0.816			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} .7 & -6.808 \pm 0.022 \\ 5 & 1.669 \pm 0.0026 \\ 85 & -8.4539 \pm 0.0068 \\ .5 & -6.785 \pm 0.0094 \\ & 0.55 \\ & 0.871 \\) & 0.013 (0.024) \\) & 0.014 (0.038) \end{array} $	1.051 ± 0.0014 -0.7635 ± 0.0012 0.2871 ± 0.0025 0.593 0.501 $0.025 (0.06)$	$\begin{array}{c} 2.381 \pm 0.0011 \\ -2.1114 \pm 0.0012 \\ 0.2696 \pm 0.0023 \\ 0.946 \\ 0.916 \\ 0.029 (0.22) \end{array}$	16.711 ± 0.0067 -1.955 ± 0.0011 14.756 ± 0.0078 0.956 0.816			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} 5 & 1.669 \pm 0.0026 \\ 85 & -8.4539 \pm 0.0068 \\ 5 & -6.785 \pm 0.0094 \\ & 0.55 \\ & 0.871 \\) & 0.013 (0.024) \\) & 0.014 (0.038) \end{array} $	1.051 ± 0.0014 -0.7635 ± 0.0012 0.2871 ± 0.0025 0.593 0.501 $0.025 (0.06)$	$\begin{array}{c} 2.381 \pm 0.0011 \\ -2.1114 \pm 0.0012 \\ 0.2696 \pm 0.0023 \\ 0.946 \\ 0.916 \\ 0.029 (0.22) \end{array}$	16.711 ± 0.0067 -1.955 ± 0.0011 14.756 ± 0.0078 0.956 0.816			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} 85 & -8.4539 \pm 0.0068 \\ 5 & -6.785 \pm 0.0094 \\ & 0.55 \\ & 0.871 \\) & 0.013 (0.024) \\) & 0.014 (0.038) \\ \end{array} $	-0.7635 ± 0.0012 0.2871 ± 0.0025 0.593 0.501 $0.025 (0.06)$	-2.1114 ± 0.0012 0.2696 ± 0.0023 0.946 0.916 $0.029 (0.22)$	-1.955 ± 0.0011 14.756 ± 0.0078 0.956 0.816			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2871 ± 0.0025 0.593 0.501 $0.025 (0.06)$	0.2696 ± 0.0023 0.946 0.916 $0.029 (0.22)$	14.756 ± 0.0078 0.956 0.816			
$\begin{array}{c cccc} \epsilon_{\Phi}^{+} & 0.54 & 0.732 & 0.803 \\ \hline \epsilon_{\Phi}^{-} & 0.513 & 0.402 & 0.8 \end{array}$	0.55 0.871) 0.013 (0.024)) 0.014 (0.038)	0.593 0.501 0.025 (0.06)	0.946 0.916 $0.029 (0.22)$	0.956 0.816			
$\begin{array}{c cccc} \epsilon_{\Phi}^{+} & 0.54 & 0.732 & 0.803 \\ \epsilon_{\Phi}^{-} & 0.513 & 0.402 & 0.8 \\ \epsilon^{+}(\epsilon_{0.1\%}^{+}) & 0.004 (0.0052) & 0.0073 (0.017) & 0.0018 (0.022) \end{array}$	0.871 0.013 (0.024) 0.014 (0.038)	0.501 0.025 (0.06)	0.916 $0.029 (0.22)$	0.816			
ϵ_{Φ}^{-} 0.513 0.402 0.8 $\epsilon^{+}(\epsilon_{0.1\%}^{+})$ 0.004 (0.0052) 0.0073 (0.017) 0.0018 (0.022)	0.013 (0.024) 0.014 (0.038)	0.025(0.06)	0.029(0.22)				
$\epsilon^{+}(\epsilon_{0.1\%}^{+})$ 0.004 (0.0052) 0.0073 (0.017) 0.0018 (0.022)	0.014 (0.038)	` ′	` '	0.015(0.1)			
	,	0.021 (0.05)		0.0-0 (0)			
$\epsilon^{-}(\epsilon_{0.1\%}^{-177})$ 0.0041 (0.0053) 0.0035 (0.01) 0.0037 (0.019)		0.021 (0.00)	0.011(0.11)	0.024(0.17)			
ODE Flow							
$\hat{\sigma} \pm \delta \hat{\sigma}$ -0.333 ± 0.011 2.823 ± 0.0048 -2.421 ± 0.018	$.5 \qquad -6.784 \pm 0.0081$	0.2893 ± 0.0019	0.271 ± 0.0046	14.758 ± 0.012			
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$ 3.812 ± 0.0063 3.7056 ± 0.0028 5.6439 ± 0.003	$36 1.6764 \pm 0.00085$	1.0495 ± 0.00038	2.3806 ± 0.00043	16.72 ± 0.0026			
$\hat{\sigma}^- \pm \delta \hat{\sigma}^- \qquad -4.142 \pm 0.0057 -0.8848 \pm 0.0045 -8.071 \pm 0.006$	$68 -8.4578 \pm 0.0019$	-0.76271 ± 0.00026	-2.1109 ± 0.0005	-1.9554 ± 0.00023			
Σ^{\pm} -0.33 ± 0.012 2.821 ± 0.0073 -2.427 ± 0.01	$1 -6.7814 \pm 0.0027$	0.2868 ± 0.00064	0.2697 ± 0.00093	14.765 ± 0.0028			
$\begin{array}{c cccc} \epsilon_{\Phi}^{+} & 0.855 & 0.945 & 0.977 \\ \hline \epsilon_{\Phi}^{-} & 0.853 & 0.834 & 0.982 \end{array}$	0.988	0.981	0.998	0.999			
ϵ_{Φ}^{-} 0.853 0.834 0.982	0.991	0.983	0.998	0.998			
$ \epsilon^{+}(\epsilon_{0.1\%}^{+}) \qquad \boxed{0.0013(0.0027)} \qquad \boxed{0.0028(0.022)} \qquad \boxed{0.003(0.023)} $	0.0029(0.067)	0.0081(0.099)	0.03(0.27)	0.0086(0.49)			
$\epsilon^{-}(\epsilon_{0.1\%}^{-})$ 0.0019 (0.0053) 0.00025 (0.00025) 0.0018 (0.0096)	0.051(0.25)	0.017(0.095)	0.017(0.18)	0.17(0.49)			
	oupling Layer Flow						
$\hat{\sigma} \pm \delta \hat{\sigma}$ -0.317 ± 0.01 2.829 ± 0.0044 -2.414 ± 0.014	-6.778 ± 0.0079	0.285 ± 0.0019	0.276 ± 0.0045	14.771 ± 0.012			
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$ 3.814 \pm 0.0054 3.7038 \pm 0.0025 5.6425 \pm 0.003	$39 \qquad 1.676 \pm 0.0024$	1.05 ± 0.00059	2.3799 ± 0.00043	16.718 ± 0.0021			
$\hat{\sigma}^- \pm \delta \hat{\sigma}^- \qquad -4.134 \pm 0.0063 -0.8849 \pm 0.0015 -8.0756 \pm 0.004$		-0.76256 ± 0.00055	-2.1091 ± 0.00036	-1.95479 ± 0.00011			
Σ^{\pm} -0.32 ± 0.012 2.819 ± 0.0041 -2.433 ± 0.008	$86 -6.7803 \pm 0.005$	0.2874 ± 0.0011	0.2708 ± 0.00079	14.763 ± 0.0022			
$\begin{array}{c cccc} \epsilon_{\Phi}^{+} & 0.838 & 0.956 & 0.985 \\ \hline \epsilon_{\Phi}^{-} & 0.852 & 0.836 & 0.988 \end{array}$	0.987	0.988	0.998	1.0			
ϵ_{Φ}^{-} 0.852 0.836 0.988	0.991	0.985	0.999	1.0			
$\epsilon^{+}(\epsilon_{0.1\%}^{\mp})$ 0.0022 (0.0056) 0.0096 (0.022) 0.0029 (0.011)) $0.00076(0.00076)$	0.0024(0.035)	0.01(0.22)	0.02(0.31)			
$\epsilon^{-}(\epsilon_{0.1\%}^{-})$ 0.0034 (0.006) 0.0012 (0.0028) 0.0044 (0.011)	$) \qquad 0.0054 (0.13)$	0.0017(0.018)	0.022(0.22)	0.1(0.68)			

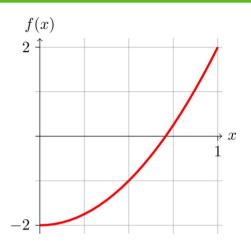
Non-factorizing phase space features

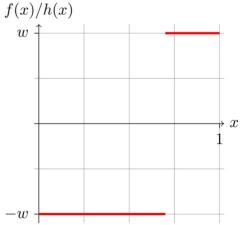
Weight distribution for double real

Non-positive definite integrands

- Non-definite integrands introduce new challenges
 - → cancellation between +/- parts increase the variance
- Consider extreme case: |f(x)|/h(x) = w = const.

MC estimate:


$$\hat{I} = w \frac{N_+ - N_-}{N} \equiv w(2\alpha - 1) \qquad \alpha = N_+/N$$


Lower bound on variance:

$$Var(\hat{I}) = w^2 - w^2(2\alpha - 1)^2 = w^2(4\alpha(1 - \alpha))$$

 \Rightarrow relative uncertainty: $\frac{\delta \hat{I}}{\hat{I}} = \frac{1}{\sqrt{N-1}} \frac{\sqrt{\alpha(1-\alpha)}}{\alpha - \frac{1}{2}}$

Rephrased: at some point it doesn't matter any more how good your adaptive MC is...

Stratification of signed integrands

There are ways around:

- 1) Add a large constant
- 2) Stratification: $f(\mathbf{x}) = f_{+}(\mathbf{x}) + f_{-}(\mathbf{x})$, with $f_{\pm}(\mathbf{x}) = \Theta(\pm f(\mathbf{x})) f(\mathbf{x})$

$$I = \int_{\mathbf{H}_{+}(\mathbf{x}) \in \Omega} d\mathbf{H}_{+} \frac{f_{+}(\mathbf{x})}{h_{+}(\mathbf{x})} + \int_{\mathbf{H}_{-}(\mathbf{x}) \in \Omega} d\mathbf{H}_{-} \frac{f_{-}(\mathbf{x})}{h_{-}(\mathbf{x})}$$
 "two independent integrals"

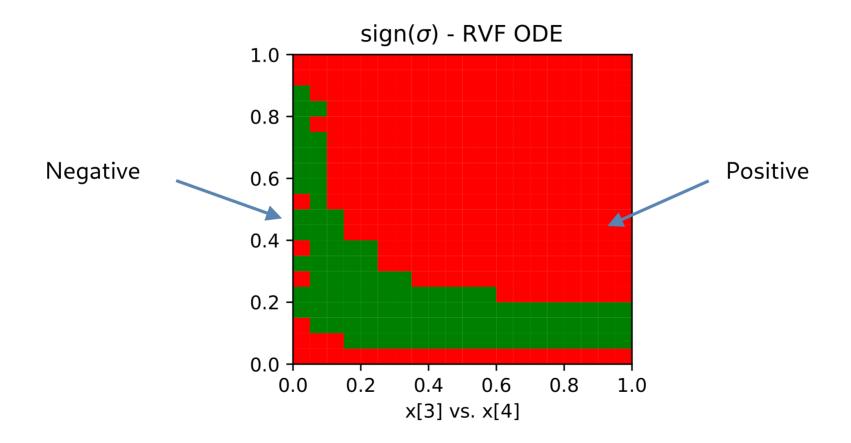
$$\hat{I}_{\text{strat}} = \hat{I}_{+} + \hat{I}_{-} = \frac{1}{N_{+}} \sum_{i=1}^{N_{+}} \frac{f_{+}(\mathbf{x}_{i})}{h_{+}(\mathbf{x}_{i})} + \frac{1}{N_{-}} \sum_{i=1}^{N_{-}} \frac{f_{-}(\mathbf{x}_{i})}{h_{-}(\mathbf{x}_{i})} \qquad \delta \hat{I}_{\text{strat}} = \sqrt{\frac{1}{N-1} \left[\frac{N}{N_{+}} \operatorname{Var}(\hat{I}_{+}) + \frac{N}{N_{-}} \operatorname{Var}(\hat{I}_{-}) \right]}$$

$$\operatorname{Var}(\hat{I}_{\pm}) = \frac{1}{N_{+}} \sum_{i=1}^{N_{\pm}} \left(\frac{f_{\pm}(\mathbf{x}_{i})}{h_{+}(\mathbf{x}_{i})} \right)^{2} - \hat{I}_{\pm}^{2}$$

- + The total variance is now bounded by the individual variances
- The mappings are more complicated (need high phase space efficiency)

Results LO and NLO

Observatio	n #2:
------------	-------

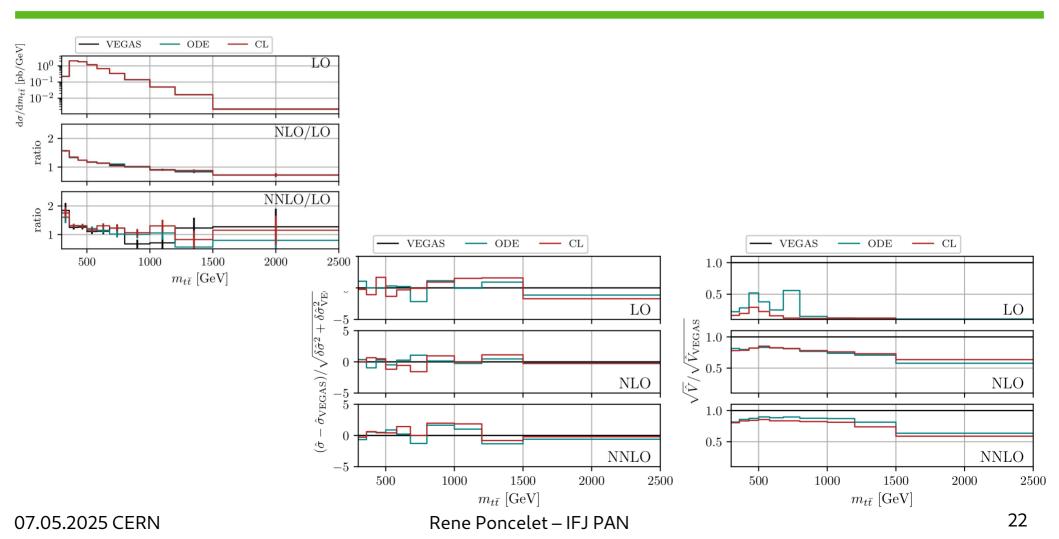

Splitting can give a significant performance gains for flow based integrators

integrators
→ requires high
phase space eff.

Contribution	$\sigma_{ m B} \cdot 10^{-2}$	$\sigma_{ m RF} \cdot 10^{-2}$	$\sigma_{ m RU} \cdot 10^{-2}$	$\sigma_{ m VF} \cdot 10^{-1}$	
$\delta^{ m opt}$	0.0001	0.008	0.01	0.006	
CPU cost [a.u.]	1	6	1.5	1.3	
		VEGAS			
$\hat{\sigma} \pm \delta \hat{\sigma}$	5.3278 ± 0.002	6.967 ± 0.01	-5.378 ± 0.02	-4.487 ± 0.006	
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	5.3284 ± 0.002	8.955 ± 0.01	4.432 ± 0.006	1.403 ± 0.0008	
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	$-0.0006446 \pm 5e - 07$	-1.981 ± 0.004	-9.8098 ± 0.008	-5.8939 ± 0.003	
Σ^\pm	5.3278 ± 0.002	6.973 ± 0.01	-5.378 ± 0.01	-4.4909 ± 0.003	
ϵ_{Φ}^{+}	0.99	0.728	0.639	0.808	
$\epsilon_{\Phi}^{\frac{1}{\alpha}}$	0.821	0.384	0.852	0.95	
$\epsilon_{\Phi}^{+} \atop \epsilon_{\Phi}^{-} \atop \epsilon^{+}(\epsilon_{0.1\%}^{+})$	6.13(0.43)	0.048(0.098)	0.02(0.048)	0.082(0.21)	
$\epsilon^-(\epsilon_{0.1\%}^{\stackrel{\circ}{=}1\%})$	0.016(0.066)	0.013(0.021)	0.049(0.17)	0.12(0.27)	
		ODE Flow			
$\sigma \pm \delta \hat{\sigma}$	5.3279 ± 0.0005	6.98 ± 0.009	-5.394 ± 0.01	-4.483 ± 0.006	
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	5.32872 ± 0.0004	8.9494 ± 0.002	4.4185 ± 0.002	1.4018 ± 0.0001	
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	$-0.00064495 \pm 1e - 07$	-1.9844 ± 0.0006	-9.802 ± 0.003	-5.89315 ± 0.0005	
Σ^{\pm}	5.32808 ± 0.0004	6.965 ± 0.003	-5.3835 ± 0.004	-4.4914 ± 0.0006	
ϵ_{Φ}^{+}	1.0	0.991	0.992	1.0	
ϵ_{Φ}^{-}	0.997	0.99	0.987	0.999	
$\epsilon_{\Phi}^{+} \ \epsilon_{\Phi}^{-} \ \epsilon^{+}(\epsilon_{0.1\%}^{+})$	0.33(0.7)	0.025(0.3)	0.0059(0.099)	0.11(0.56)	
$\epsilon^-(\epsilon_{0.1\%}^-)$	0.055(0.36)	0.028(0.17)	0.02(0.16)	0.12(0.73)	
	Co	oupling Layer Flow			
$\hat{\sigma} \pm \delta \hat{\sigma}$	5.32795 ± 0.0003	6.972 ± 0.009	-5.39 ± 0.01	-4.492 ± 0.006	
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	5.32807 ± 0.0003	8.949 ± 0.002	4.4101 ± 0.002	$1.40155 \pm 9e - 05$	
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	$-0.000644883 \pm 3e$ 08	-1.9821 ± 0.0007	-9.8 ± 0.002	-5.89183 ± 0.0003	
Σ^{\pm}	5.32742 ± 0.0003	6.9669 ± 0.003	-5.3899 ± 0.004	-4.49028 ± 0.0004	
$\epsilon_{\Phi}^{+} \ \epsilon_{\Phi}^{-} \ \epsilon^{+}(\epsilon_{0.1\%}^{+})$	1.0	0.989	0.988	1.0	
ϵ_{Φ}^{-}	1.0	0.99	0.994	1.0	
$\epsilon^+(\epsilon_{0.1\%}^+)$	0.53(0.81)	0.028(0.24)	0.0082(0.046)	0.17(0.63)	
$\epsilon^-(\epsilon_{0.1\%}^{-17\%})$	0.11(0.79)	0.0074(0.06)	0.009(0.19)	0.4(0.79)	

07.05.2025 CERN Rene Poncelet – IFJ PAN 18

Non-trivial positive/negative structure


Results NNLO

Contribution	$\sigma_{ m RRF} \cdot 10^{-2}$	$\sigma_{ m RRSU} \cdot 10^{-3}$	$\sigma_{ m RRDU} \cdot 10^{-3}$	$\sigma_{ m RVF} \cdot 10^{-2}$	$\sigma_{ m RVFR} \cdot 10^{-2}$	$\sigma_{ m RVDU} \cdot 10^{-3}$	$\sigma_{ m VVF} \cdot 10^{-0}$		
δ^{opt}	0.0079	0.0036	0.013	0.0081	0.0018	0.0045	0.011		
CPU cost [a.u.]	53	26	8	1542	2.7	2.7	13		
	VEGAS								
$\hat{\sigma} \pm \delta \hat{\sigma}$	-0.3 ± 0.02	2.835 ± 0.0069	-2.461 ± 0.017	-6.808 ± 0.022	0.2864 ± 0.0023	0.267 ± 0.0049	14.768 ± 0.014		
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	3.823 ± 0.013	3.718 ± 0.0056	5.639 ± 0.0065	1.669 ± 0.0026	1.051 ± 0.0014	2.381 ± 0.0011	16.711 ± 0.0067		
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	-4.135 ± 0.013	-0.8813 ± 0.0022	-8.078 ± 0.0085	-8.4539 ± 0.0068	-0.7635 ± 0.0012	-2.1114 ± 0.0012	-1.955 ± 0.0011		
Σ^{\pm}	-0.312 ± 0.025	2.836 ± 0.0079	-2.439 ± 0.015	-6.785 ± 0.0094	0.2871 ± 0.0025	0.2696 ± 0.0023	14.756 ± 0.0078		
ϵ_{Φ}^{+}	0.54	0.732	0.803	0.55	0.593	0.946	0.956		
ϵ_{Φ}^{+} ϵ_{Φ}^{-}	0.513	0.402	0.8	0.871	0.501	0.916	0.816		
$\epsilon^+(\epsilon_{0.1\%}^+)$	0.004(0.0052)	0.0073(0.017)	0.0018(0.022)	0.013(0.024)	0.025(0.06)	0.029(0.22)	0.015(0.1)		
$\epsilon^-(\epsilon_{0.1\%}^{0.1\%})$	0.0041(0.0053)	0.0035(0.01)	0.0037(0.019)	0.014(0.038)	0.021(0.05)	0.011(0.11)	0.024(0.17)		
	ODE Flow								
$\hat{\sigma} \pm \delta \hat{\sigma}$	-0.333 ± 0.011	2.823 ± 0.0048	-2.421 ± 0.015	-6.784 ± 0.0081	0.2893 ± 0.0019	0.271 ± 0.0046	14.758 ± 0.012		
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	3.812 ± 0.0063	3.7056 ± 0.0028	5.6439 ± 0.0036	1.6764 ± 0.00085	1.0495 ± 0.00038	2.3806 ± 0.00043	16.72 ± 0.0026		
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	-4.142 ± 0.0057	-0.8848 ± 0.0045	-8.071 ± 0.0068	-8.4578 ± 0.0019	-0.76271 ± 0.00026	-2.1109 ± 0.0005	-1.9554 ± 0.00023		
Σ^\pm	-0.33 ± 0.012	2.821 ± 0.0073	-2.427 ± 0.01	-6.7814 ± 0.0027	0.2868 ± 0.00064	0.2697 ± 0.00093	14.765 ± 0.0028		
ϵ_{Φ}^{+}	0.855	0.945	0.977	0.988	0.981	0.998	0.999		
ϵ_{Φ}^{+} ϵ_{Φ}^{-}	0.853	0.834	0.982	0.991	0.983	0.998	0.998		
$\epsilon^+(\epsilon_{0.1\%}^{\uparrow})$	0.0013(0.0027)	0.0028(0.022)	0.003(0.023)	0.0029(0.067)	0.0081(0.099)	0.03(0.27)	0.0086(0.49)		
$\epsilon^-(\epsilon_{0.1\%}^{-177})$	0.0019(0.0053)	0.00025(0.00025)	0.0018(0.0096)	0.051(0.25)	0.017(0.095)	0.017(0.18)	0.17(0.49)		
		,	Coupl	ing Layer Flow					
$\hat{\sigma} \pm \delta \hat{\sigma}$	-0.317 ± 0.01	2.829 ± 0.0044	-2.414 ± 0.014	-6.778 ± 0.0079	0.285 ± 0.0019	0.276 ± 0.0045	14.771 ± 0.012		
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	3.814 ± 0.0054	3.7038 ± 0.0025	5.6425 ± 0.0039	1.676 ± 0.0024	1.05 ± 0.00059	2.3799 ± 0.00043	16.718 ± 0.0021		
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	-4.134 ± 0.0063	-0.8849 ± 0.0015	-8.0756 ± 0.0047	-8.456 ± 0.0026	-0.76256 ± 0.00055	-2.1091 ± 0.00036	-1.95479 ± 0.00011		
Σ^{\pm}	-0.32 ± 0.012	2.819 ± 0.0041	-2.433 ± 0.0086	-6.7803 ± 0.005	0.2874 ± 0.0011	0.2708 ± 0.00079	14.763 ± 0.0022		
ϵ_{Φ}^{+}	0.838	0.956	0.985	0.987	0.988	0.998	1.0		
$rac{\epsilon_{\Phi}^{+}}{\epsilon_{\Phi}^{-}}$	0.852	0.836	0.988	0.991	0.985	0.999	1.0		
$\epsilon^+(\epsilon_{0.1\%}^+)$	0.0022(0.0056)	0.0096(0.022)	0.0029(0.011)	0.00076(0.00076)	0.0024(0.035)	0.01(0.22)	0.02(0.31)		
$\epsilon^-(\epsilon_{0.1\%}^{0.1\%})$	0.0034(0.006)	0.0012(0.0028)	0.0044(0.011)	0.0054(0.13)	0.0017(0.018)	0.022(0.22)	0.1 (0.68)		
0.170									

Results NNLO

Contribution	$\sigma_{\mathrm{RRF}} \cdot 10^{-2}$	$\sigma_{ m RRSU} \cdot 10^{-3}$	$\sigma_{ m RRDU} \cdot 10^{-3}$	$\sigma_{\mathrm{RVF}} \cdot 10^{-2}$	$\sigma_{\mathrm{RVFR}} \cdot 10^{-2}$	$\sigma_{ m RVDU} \cdot 10^{-3}$	$\sigma_{ m VVF} \cdot 10^{-0}$		
$\delta^{ m opt}$	0.0079	0.0036	0.013	0.0081	0.0018	0.0045	0.011		
CPU cost [a.u.]	53	26	8	1542	2.7	2.7	13		
	VEGAS								
$\hat{\sigma} \pm \delta \hat{\sigma}$	-0.3 ± 0.02	2.835 ± 0.0069	-2.461 ± 0.017	-6.808 ± 0.022	0.2864 ± 0.0023	0.267 ± 0.0049	14.768 ± 0.014		
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	3.823 ± 0.013	3.718 ± 0.0056	5.639 ± 0.0065	1.669 ± 0.0026	1.051 ± 0.0014	2.381 ± 0.0011	16.711 ± 0.0067		
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	-4.135 ± 0.013	-0.8813 ± 0.0022	-8.078 ± 0.0085	-8.4539 ± 0.0068	-0.7635 ± 0.0012	-2.1114 ± 0.0012	-1.955 ± 0.0011		
Σ^\pm	-0.312 ± 0.025	2.836 ± 0.0079	-2.439 ± 0.015	-6.785 ± 0.0094	0.2871 ± 0.0025	0.2696 ± 0.0023	14.756 ± 0.0078		
ϵ_{Φ}^{+}	0.54	0.732	0.803	0.55	0.593	0.946	0.956		
$\epsilon_{\Phi}^{\frac{1}{-}}$	0.513	0.402	0.8	0.871	0.501	0.916	0.816		
$\epsilon_{\Phi}^{+} \atop \epsilon_{\Phi}^{-} \atop \epsilon^{+}(\epsilon_{0.1\%}^{+})$	0.004(0.0052)	0.0073(0.017)	0.0018(0.022)	0.013(0.024)	0.025(0.06)	0.029(0.22)	0.015(0.1)		
$\epsilon^{-}(\epsilon_{0.1\%}^{0.1\%})$	0.0041(0.0053)	0.0035(0.01)	0.0037(0.019)	0.014(0.038)	0.021(0.05)	0.011(0.11)	0.024(0.17)		
ODE Flow									
$\hat{\sigma} \pm \delta \hat{\sigma}$	-0.333 ± 0.011	2.823 ± 0.0048	-2.421 ± 0.015	-6.784 ± 0.0081	0.2893 ± 0.0019	0.271 ± 0.0046	14.758 ± 0.012		
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	3.812 ± 0.0063	3.7056 ± 0.0028	5.6439 ± 0.0036	1.6764 ± 0.00085	1.0495 ± 0.00038	2.3806 ± 0.00043	16.72 ± 0.0026		
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	-4.142 ± 0.0057	-0.8848 ± 0.0045	-8.071 ± 0.0068	-8.4578 ± 0.0019	-0.76271 ± 0.00026	-2.1109 ± 0.0005	-1.9554 ± 0.00023		
Σ^{\pm}	-0.33 ± 0.012	2.821 ± 0.0073	-2.427 ± 0.01	-6.7814 ± 0.0027	0.2868 ± 0.00064	0.2697 ± 0.00093	14.765 ± 0.0028		
$\epsilon_{\Phi}^{+} \ \epsilon_{\Phi}^{-}$	0.855	0.945	0.977	0.988	0.981	0.998	0.999		
ϵ_{Φ}^{-}	0.853	0.834	0.982	0.991	0.983	0.998	0.998		
$\epsilon^+(\epsilon_{0.1\%}^{ar{+}})$	0.0013(0.0027)	0.0028(0.022)	0.003(0.023)	0.0029(0.067)	0.0081(0.099)	0.03(0.27)	0.0086(0.49)		
$\epsilon^-(\epsilon_{0.1\%}^{-1})$	0.0019(0.0053)	0.00025(0.00025)	0.0018(0.0096)	0.051(0.25)	0.017(0.095)	0.017(0.18)	0.17(0.49)		
			Coupl	ing Layer Flow			,		
$\hat{\sigma} \pm \delta \hat{\sigma}$	-0.317 ± 0.01	2.829 ± 0.0044	-2.414 ± 0.014	-6.778 ± 0.0079	0.285 ± 0.0019	0.276 ± 0.0045	14.771 ± 0.012		
$\hat{\sigma}^+ \pm \delta \hat{\sigma}^+$	3.814 ± 0.0054	3.7038 ± 0.0025	5.6425 ± 0.0039	1.676 ± 0.0024	1.05 ± 0.00059	2.3799 ± 0.00043	16.718 ± 0.0021		
$\hat{\sigma}^- \pm \delta \hat{\sigma}^-$	-4.134 ± 0.0063	-0.8849 ± 0.0015	-8.0756 ± 0.0047	-8.456 ± 0.0026	-0.76256 ± 0.00055	-2.1091 ± 0.00036	-1.95479 ± 0.00011		
Σ^{\pm}	-0.32 ± 0.012	2.819 ± 0.0041	-2.433 ± 0.0086	-6.7803 ± 0.005	0.2874 ± 0.0011	0.2708 ± 0.00079	14.763 ± 0.0022		
$\epsilon_{\Phi}^{+} \atop \epsilon_{\Phi}^{-} \\ \epsilon_{\Phi}^{+} (\epsilon_{0.1\%}^{+})$	0.838	0.956	0.985	0.987	0.988	0.998	1.0		
ϵ_Φ^-	0.852	0.836	0.988	0.991	0.985	0.999	1.0		
$\epsilon^+(\epsilon_{0.1\%}^{\mp})$	0.0022(0.0056)	0.0096(0.022)	0.0029(0.011)	0.00076(0.00076)	0.0024(0.035)	0.01(0.22)	0.02(0.31)		
$\epsilon^-(\epsilon_{0.1\%}^{0.1\%})$	0.0034(0.006)	0.0012(0.0028)	0.0044(0.011)	0.0054(0.13)	0.0017(0.018)	0.022(0.22)	0.1(0.68)		
							•		

Differential distributions

Summary

- Investigated the usage of flow-based methods for phase space sampling
- Reduction of weight distributions
 → Pos/Neg cancellation bottleneck in many cases → lower bound
- Pos/Neg splitting allows to go beyond this bound
- Performance gains of O(10) with pos/neg splitting + normalising flow can be achieved
 → non-factorising model is crucial!

Outlook:

- → fully fledged integration in STRIPPER & HighTEA
- → go beyond "simple" NNLO QCD top-pair
- → differential pos/neg splitting