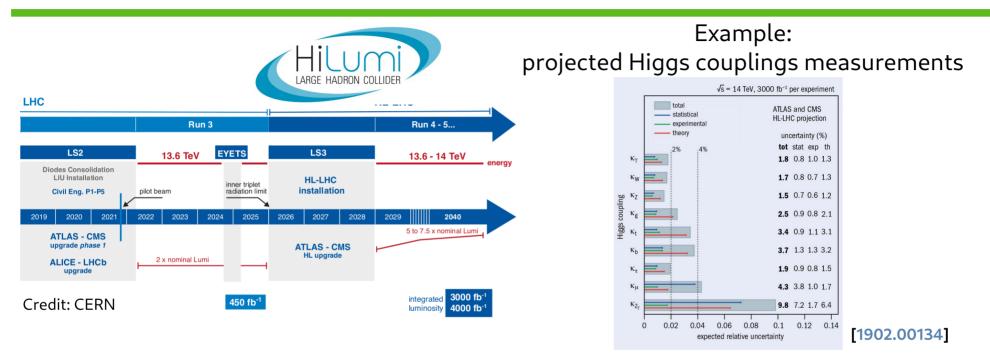

# Precision predictions for hadron collider physics

### René Poncelet




24.03.25 Capetown – XXXII DIS – Altarelli Award

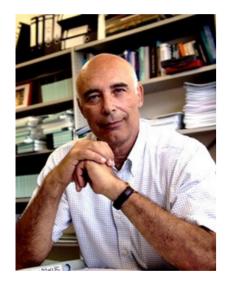
### Standard Model phenomenology at the LHC



24.03.25 Capetown – XXXII DIS – Altarelli Award

## LHC Precision era and future experiments




Theory input needed:

- Accurate → avoid wrong interpretation of excesses
- Precise → getting most out of our precious experiments

24.03.25 Capetown – XXXII DIS – Altarelli Award

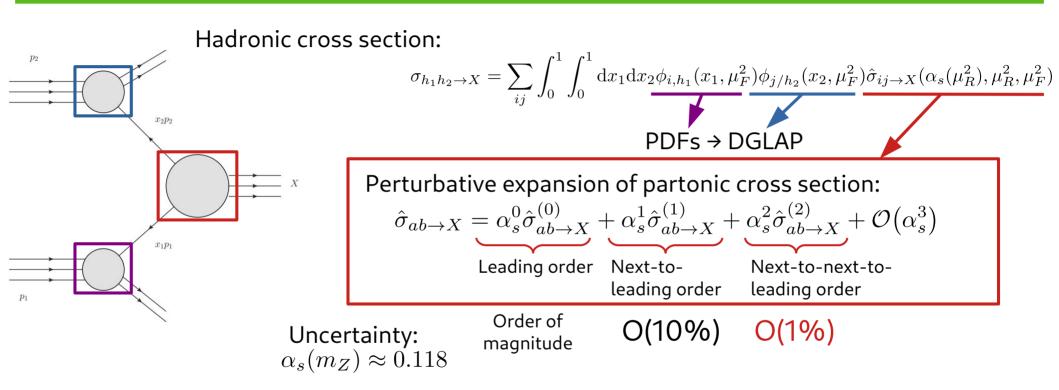
### A pillar of precision phenomenology at hadron colliders

[Dokshitzer–Gribov–Lipatov–Altarelli–Parisi, '77]





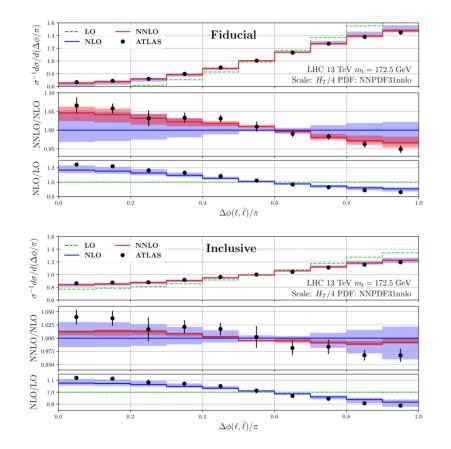
[Zeus, hep-ph/0502029]


Evolution of the proton PDF with the energy:

- $\rightarrow$  Resummation of large logarithms from collinear emissions
- $\rightarrow$  correlation of processes at different energies → allows precise PDF determination

Basis of precision computation at hadron colliders today

24.03.25 Capetown – XXXII DIS – Altarelli Award


### Precision through higher orders



### Next-to-next-to-leading order QCD needed to match experimental precision! → in some cases even next-to-next-to-next-to-leading order!

### Accurate predictions, example: spin-correlations

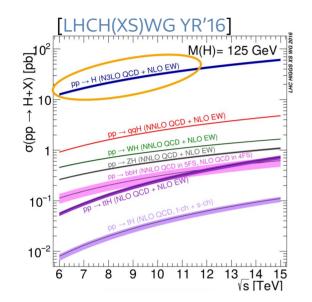
#### Azimuthal correlations for leptons



[Behring, Czakon, Mitov, Papanastasiou, Poncelet'19 Czakon, Mitov, **Poncelet** '21]

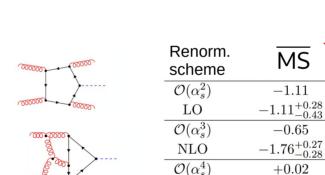
#### Spin-density-matrix

 $\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta_1^i \mathrm{d}\cos\theta_2^j} = \frac{1}{4} \left( 1 + B_1^i \cos\theta_1^i + B_2^j \cos\theta_2^j - C_{ij} \cos\theta_1^i \cos\theta_2^j \right)$ 


| Coefficient       | LO (×10 <sup>3</sup> )             | NLO $(\times 10^3)$                   | NNLO ( $\times 10^3$ )             | CMS $(\times 10^3)$ |
|-------------------|------------------------------------|---------------------------------------|------------------------------------|---------------------|
| $B_1^k$           | $1^{+0}_{-0}$ [sc] $\pm 1$ [mc]    | $1^{+0}_{-1}$ [sc] $\pm 2$ [mc]       | $-1^{+0}_{-1}$ [sc] $\pm 4$ [mc]   | $5 \pm 23$          |
| $B_1^r$           | $0^{+0}_{-0}$ [sc] $\pm 1$ [mc]    | $0^{+1}_{-0}$ [sc] $\pm 2$ [mc]       | $0^{+1}_{-2}$ [sc] $\pm 2$ [mc]    | $-23 \pm 17$        |
| $B_1^n$           | $0^{+0}_{-0}$ [sc] $\pm 1$ [mc]    | $3^{+1}_{-1}$ [sc] $\pm 1$ [mc]       | $4^{+1}_{-0}$ [sc] $\pm 3$ [mc]    | $6\pm13$            |
| $B_2^{i_k}$       | $0^{+0}_{-0}$ [sc] $\pm 1$ [mc]    | $0^{+0}_{-1}$ [sc] $\pm 1$ [mc]       | $-5^{+2}_{-3}$ [sc] $\pm 3$ [mc]   | $7\pm23$            |
| $B_2^r$           | $0^{+0}_{-0}$ [sc] $\pm 1$ [mc]    | $0^{+2}_{-0}$ [sc] $\pm 1$ [mc]       | $-2^{+0}_{-1}$ [sc] $\pm 2$ [mc]   | $-10 \pm 20$        |
| $B_2^{\tilde{n}}$ | $0^{+0}$ [sc] $\pm 1$ [mc]         | $-2^{+0}$ [sc] $\pm 1$ [mc]           | $-3^{+1}_{0}$ [sc] $\pm 3$ [mc]    | $17 \pm 13$         |
| $ C_{kk}$         | $324^{+7}_{-7}$ [sc] $\pm 1$ [mc]  | $330^{+2}_{-2}$ [sc] $\pm 3$ [mc]     | $323^{+2}_{-5}$ [sc] $\pm 6$ [mc]  | $300 \pm 38$        |
| $C_{rr}$          | $6^{+5}_{-5}$ [sc] $\pm 1$ [mc]    | $58^{+18}_{-12}$ [sc] $\pm 2$ [mc]    | $69^{+8}_{-7}$ [sc] $\pm 3$ [mc]   | $81\pm32$           |
| $C_{nn}$          | $332^{+1}_{-0}$ [sc] $\pm 1$ [mc]  | $330^{+1}_{-1}$ [sc] $\pm 2$ [mc]     | $326^{+1}_{-1}$ [sc] $\pm 4$ [mc]  | $329\pm20$          |
| $C_{nr} + C_{rn}$ | $1^{+0}_{-0}$ [sc] $\pm 1$ [mc]    | $-1^{+1}_{-0}$ [sc] $\pm 3$ [mc]      | $-4^{+4}_{-0}$ [sc] $\pm 6$ [mc]   | $-4 \pm 37$         |
| $C_{nr} - C_{rn}$ | $0^{+0}_{-1}  [sc] \pm 1  [mc]$    | $-1^{+1}_{-0}$ [sc] $\pm 2$ [mc]      | $2^{+4}_{-2}$ [sc] $\pm 8$ [mc]    | $-1\pm38$           |
| $C_{nk} + C_{kn}$ | $0^{+0}_{-0}  [sc] \pm 1  [mc]$    | $2^{+1}_{-0}$ [sc] $\pm 1$ [mc]       | $3^{+4}_{-1}$ [sc] $\pm 3$ [mc]    | $-43 \pm 41$        |
| $C_{nk} - C_{kn}$ | $1^{+0}_{-0}$ [sc] $\pm 1$ [mc]    | $1^{+1}_{-1}  [ m sc] \pm 2  [ m mc]$ | $6^{+0}_{-2}[ m sc]\pm7[ m mc]$    | $40\pm29$           |
| $C_{rk} + C_{kr}$ | $-229^{+4}_{-4}$ [sc] $\pm 1$ [mc] | $-203^{+9}_{-7}$ [sc] $\pm 2$ [mc]    | $-194^{+8}_{-6}$ [sc] $\pm 7$ [mc] | $-193\pm64$         |
| $C_{rk} - C_{kr}$ | $1^{+0}_{-0}$ [sc] $\pm 1$ [mc]    | $1^{+0}_{-1}  [sc] \pm 4  [mc]$       | $-1^{+1}_{-3}$ [sc] $\pm 5$ [mc]   | $57\pm46$           |
| [CMS 1907 0372    |                                    |                                       |                                    |                     |

[CMS 1907.03729]

24.03.25 Capetown – XXXII DIS – Altarelli Award


Rene Poncelet – IFJ PAN Krakow

# Precision example: Quark-mass effects in Higgs production



Higgs-production in gluon fusion, main uncertainties:

 $\delta$ (PDF-TH)  $\delta$ (trunc)  $\delta(EW)$  $\delta(t, b, c)$  $\delta(1/m_{t})$  $\delta$ (scale) +0.10 pb $\pm 0.18$  pb  $\pm 0.56$  pb  $\pm 0.49$  pb  $\pm 0.40$  pb ±0.49 pb -1.15 pb+0.21% $\pm 0.37\%$  $\pm 1.16\%$  $\pm 1\%$  $\pm 0.83\%$  $\pm 1\%$ -2.37%



Second-order corrections to top-bottom interference effects with full mass dependence!

[Czakon, Eschment, Niggetiedt, **Poncelet**, Schellenberger: 2312.09896, 2407.12413]

MS vs. on-shell scheme: → first agreement at NNLO!

on-shell

-1.98

 $-1.98^{+0.38}_{-0.53}$ 

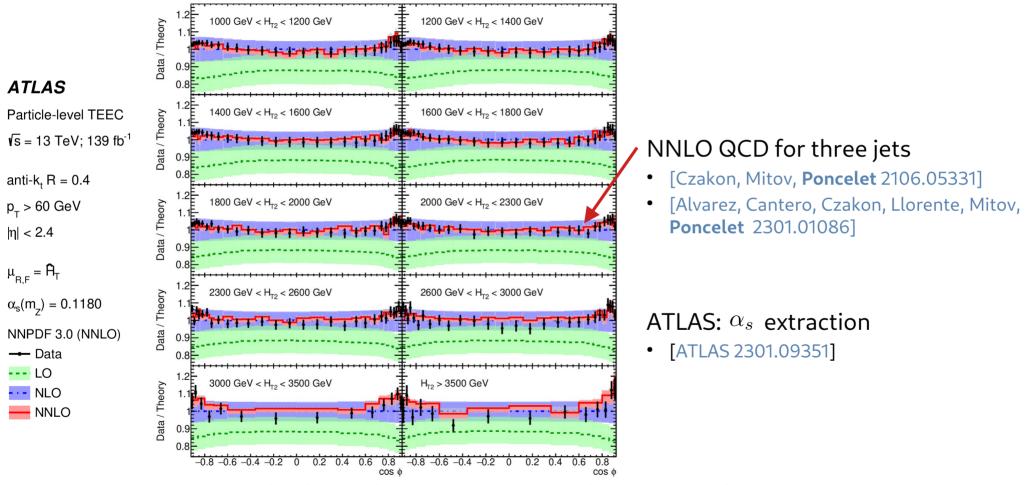
-0.44

 $-2.42^{+0.19}_{-0.12}$ 

+0.43

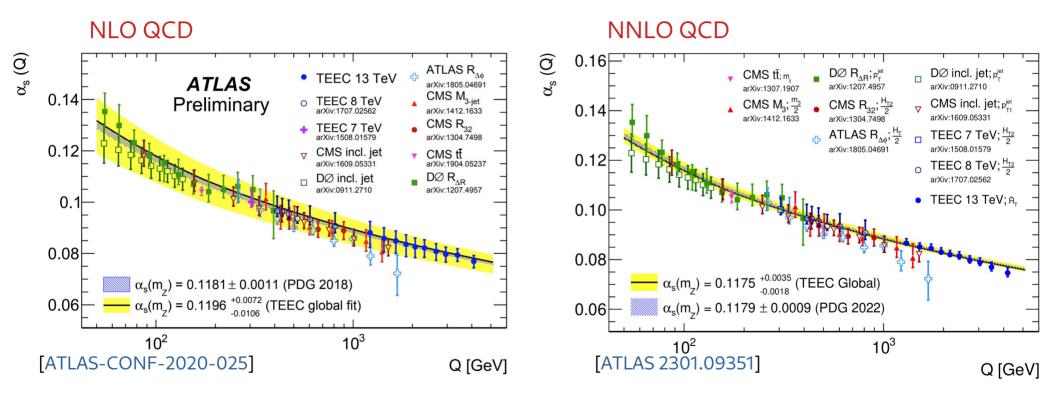
 $-1.99(2)^{+0.29}_{-0.15}$ 

00000


24.03.25 Capetown – XXXII DIS – Altarelli Award

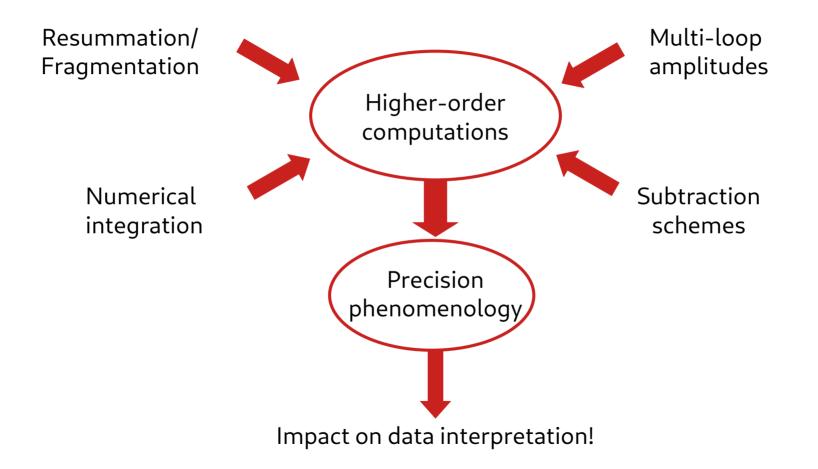
Rene Poncelet – IFJ PAN Krakow

NNLO


 $-1.74(2)^{+0.13}_{-0.03}$ 

### Precision example: strong-coupling from TEEC




24.03.25 Capetown – XXXII DIS – Altarelli Award

### Precision example: strong-coupling from TEEC



24.03.25 Capetown – XXXII DIS – Altarelli Award

### From calculations to phenomenology



24.03.25 Capetown – XXXII DIS – Altarelli Award

### Conclusions

Predictions are essential for data interpretation. We need them

- accurate → avoid wrong interpretation of excesses
- precise → getting most out of our precious experiments

QCD calculations went a long way from '77 to today:

- → Miles stones like NNLO QCD multi-jet production and N3LO QCD for simple inclusive processes
- → Next challenge: full automation of NNLO QCD and incorporation into Monte Carlos (main bottlenecks: multi-loop amplitudes, parton-shower matching)
- $\Rightarrow$  A lot of space for surprises and novel ideas!

### Many thanks to all my collaborators, in particular to my mentors Michal Czakon and Alexander Mitov! Thank you!

24.03.25 Capetown – XXXII DIS – Altarelli Award