Flavoured jets and how to define them

Rene Poncelet

Flavoured jets are everywhere

- Flavoured jets as signature
 - Top-quarks
 - Vector+heavy flavour: $pp \rightarrow W/Z/A + c/b$
 - Higgs \rightarrow charm, Higgs \rightarrow bottom
 - New physics searches
 - Studies of QCD dynamics
- Focus of this talk: V + heavy-flavour (→ but many aspects are generalisable)
 - Benchmark for flavour tagging
 - IR safety/sensitivity

Rely on our capability to → identify (i.e. tag) flavoured jets → interpret (i.e. predict) them

- What do we mean by "flavoured jets" and why are there problems?
- Anti-kT "like" flavoured jet algorithms
- → Phenomenology → Les Houches study
- Interface to experiment
- → Wrap up & outlook

A look back: Snowmass accord 1990 ...

Toward a Standardization of Jet Definitions

John E. Huth and Naor Wainer Fermi National Accelerator Laboratory P.O. Box 500 Batavia, Illinois 60510

Karlheinz Meier Deutsches Elektronen Synchrotron (DESY) Hamburg 52, Germany

> Nicholas Hadley University of Maryland College Park, Maryland 20742

F. Aversa and Mario Greco Instituto Nazionale di Fiscia Nucleare (INFN) Frascati, Italy

P. Chiappetta and J. Ph. Guillet CTP-CRNS, Luminy Marseille, France

> Stephen Ellis University of Washington Seattle, Washington 98195

Zoltan Kunszt Eidg. Technische Hochschule Zurich, Switzerland

> Davison Soper University of Oregon Eugene, Oregon 97403

> > December 1990

A sensible jet definition should be:

- 1) Simple to implement in experimental analysis
- 2) Simple to implement in theoretical calculations
- 3) Defined at any order of perturbation theory
- 4)Yields finite cross section at any order of perturbation theory
- 5) Yields a cross section that is relatively insensitive to hadronization

Purpose: "undo" parton evolution to define the "hard scattering" process

14.01.25 Krakow

A look back: Snowmass accord 1990 ...

For theory:

- Infrared collinear (IRC) safety
- Small sensitivity of 'inclusive observables' to parton-shower & hadronisation

A sensible jet definition should be:

- 1) Simple to implement in experimental analysis
- 2) Simple to implement in theoretical calculations
- 3) Defined at any order of perturbation theory
- 4)Yields finite cross section at any order of perturbation theory

5) Yields a cross section that is relatively insensitive to hadronisation

Purpose: "undo" parton evolution to define the "hard scattering" process

14.01.25 Krakow

Jets at the LHC

Many proposals of jet algorithms since '90:

- Cone-based algorithms: PxCone, midpoint, seedless, SISCone, ...
- 2-to-1 recombination algorithms: C/A, Jade, kT, anti-kT, ...

The **standard** algorithm for the LHC is the **anti-kT algorithm**:

$$d_{ij} = \min(k_{T,i}^{-2}, k_{T,j}^{-2})R_{ij}^2 \quad d_i = k_{T,i}^{-2}$$

- \rightarrow nice geometric properties
- \Rightarrow theoretically okay
- \Rightarrow insensitive to soft physics, pile up, etc.

14.01.25 Krakow

Precision comparisons of jet cross sections

Following these guidelines means that we can compare theory and experiment even though theorist talk about quarks+gluons and experimentalists about particles

14.01.25 Krakow

jet that initiated from a "hard scatter" product of specific flavour: bottom, charm , "quark/gluon"

jet that initiated from a "hard scatter" product of specific flavour: bottom, charm , "quark/gluon"

jet that initiated from a "hard scatter" product of specific flavour: bottom, charm , "quark/gluon"

jet that initiated from a "hard scatter" product of specific flavour: bottom, charm , "quark/gluon"

Example for experimental 'truth level' flavour tagging

Example definition for experimental tagging

A 'truth-level' jet is defined as flavoured if:

- 1) it contains at least one B hadron FO: IRC-unsafe because of $g \rightarrow b \overline{b}$ splitting
- 2) with pT > pT_cut

FO: collinear unsafe b → b g splitting (okay in fragmentation approach)

3) within dR < R of jet axis

FO: IRC-unsafe because soft wide angle emission

Infrared safety issues with flavoured jets I

Picture from [Gauld et al. 2302.12844]

14.01.25 Krakow

- IRC unsafe due to g→quark-anti-quark splitting
 - Quarks massless: cross-section not defined
 - Quarks massive: logarithmic sensitivity to quark mass
- Can resolved by proper flavour recombination schemes:

jet contents scheme	b	$b + \bar{b}$	b + b	
"any flavour"	b	b	Ь	simplest experimentally (but collinear unsafe for $m_{\rm b} \rightarrow 0$)
net flavour	b	g	2 <i>b</i>	theoretically "ideal" definition; but not robust wrt B–Bbar oscillations
flavour modulo 2	b	g	g	theoretically OK; robust wrt B–Bbar oscillations

[Salam]

Infrared safety issues with flavoured jets II

Picture from [Gauld et al. 2302.12844]

14.01.25 Krakow

- Collinear unsafe if pT requirement on the quark is present
- Not implementable in pQCD with massless quarks
 → proper treatment needs fragmentation functions
 → NNLO QCD example:

<mark>B-hadron production in NNLO QCD: application to LHC ttbar events with leptonic decays</mark>, Czakon, Generet, Mitov and Poncelet, 2102.08267

Infrared safety issues with flavoured jets III

Starting at NNLO QCD:
 → Soft singularity from quark pairs

Needs modified jet algorithms!

- Massless quarks → cross section not defined
- Massive quarks \rightarrow logarithmic IRC sensitivity

Picture from [Gauld et al. 2302.12844] These issues are known since 2006... a solution as well:

Standard kT algorithm:

Pair distance:

$$d_{ij} = \min(k_{T,i}^2, k_{T,j}^2) R_{ij}^2$$
$$R_{ij}^2 = (\Delta \phi_{ij}^2 + \Delta \eta_{ij}^2) / R^2$$

"Beam" distance for determination condition:

$$d_i = k_{T,i}^2$$

Flavour kT algorithm: Infrared safe definition of jet flavor, Banfi, Salam, Zanderighi hep-ph/0601139 Pair distance: $d_{ij} = R_{ij}^2 \begin{cases} \max(k_{T,i}, k_{T,j})^{\alpha} \min(k_{T,i}, k_{T,j})^{2-\alpha} & \text{softer of i,j is flavoured} \\ \min(k_{T,i}, k_{T,j})^{\alpha} & \text{else} \end{cases}$ Beam distance: $d_{i,B} = \begin{cases} \max(k_{T,i}, k_{T,B}(y_i))^{\alpha} \min(k_{T,i}, k_{T,B}(y_i))^{2-\alpha} & \text{i is flavoured} \\ \min(k_{T,i}, k_{T,B}(y_i))^{\alpha} & \text{else} \end{cases}$ $d_B(\eta) = \sum_i k_{T,i} (\theta(\eta_i - \eta) + \theta(\eta - \eta_i) e^{\eta_i - \eta})$ $d_{\bar{B}}(\eta) = \sum_i k_{T,i} (\theta(\eta - \eta_i) + \theta(\eta_i - \eta) e^{\eta - \eta_i})$

 \rightarrow problem for LHC: this is a kT algorithm \rightarrow 'apples to apples' comparison not possible

New proposals for flavour-safe anti-kT jets

 Flavour with Soft-drop Practical Jet Flavour Through NNLO Caletti, Larkoski, Marzani, Reichelt 2205.01109
 Flavour anti-kT Infrared-safe flavoured anti-kT jets, Czakon, Mitov, Poncelet 2205.11879
 Fragmentation approach A Fragmentation Approach to Jet Flavor Caletti, Larkoski, Marzani, Reichelt 2205.01117
 B-hadron production in NNLO QCD: application to LHC ttbar events with leptonic decays, Czakon, Generet, Mitov and Poncelet, 2102.08267
 Flavour dressing → standard anti-kT + flavour assignment

QCD-aware partonic jet clustering for truth-jet flavour labelling Buckley, Pollard 1507.00508 <mark>A dress of flavour to suit any jet</mark> Gauld, Huss, Stagnitto 2208.11138

• Interleaved flavour neutralisation

Flavoured jets with exact anti-kT kinematics and tests of infrared and collinear safety Caola, Grabarczyk, Hutt, Salam, Scyboz, Thaler 2306.07314

• TBC...

New proposals for flavour-safe anti-kT jets

IRC-safe anti-kT flavoured jet algorithm? Yes, but which one?

Criteria:

• IRC-safety

← Highly desirable: fulfilled by all candidates (at least through NNLO)

- "truthfully" reconstruct reconstruct the original "hard" object
 → insensitive to PS+HAD+SOFT ← Desirable: robust theory predictions!
- experimentally implementable ← comment at the end
- numerically efficient ← not yet the focus of the effort
 → important for experimental implementation
- easy to implement in analysis ← wip towards full release
 → FastJet-contrib (test implementations: https://github.com/jetflav/)
- Jet-substructure?

Les Houches "FlavourFest"

$$pp \rightarrow Z + \text{jet}/b - \text{jet}/c - \text{jet}$$

- @13 TeV
- Algorithms: Flavour anti-kT (CMP), Flavour dressing (GHS), Interleaved flavour neutralisation (IFN), Soft-drop (SDF)
- pQCD computations: up to NNLO QCD in the nf=5 scheme → massless b, c quarks
- NLO PS matched calculations:
 - SHERPA (massive quarks, dipole)
 - HERWIG7 (massive quarks, angular) and HERWIG7 (massless quarks, dipole)
- Parton-level and Particle-level

Many people contribute to this:

14.01.25 Krakow

Simone Marzani, Arnd Behring, Daniel Reichelt, James Whitehead, Andrzej Siódmok, Ludovic Scyboz, Gavin Salam, Ezra Lesser, Giovanni Stagnitto, Rene Poncelet, ...

Fixed-order comparisons NLO QCD

- minimal differences at FO 2-5%
- overall consistent definition of the "hard" object
- other processes tested: WH, W+charm, ttbar+decays

Fixed-order comparisons NNLO QCD

- minimal differences at FO 2-5%
- overall consistent definition of the "hard" object
- other processes tested: WH, W+charm, ttbar+decays

NLO+PS at parton-level

Larger differences → in particular in high pT tail → IFN removes flavour more aggressive than CMP > GHS > SDF

NLO+PS at particle-level

Larger differences → in particular in high pT tail → observations insensitive to hadronisation effects

Fixed-order and NLO+PS comparisons: b-jets

- Overall good agreement
- SDF, CMP & GHS show some shape &
 PS model dependence
- IFN more stable
- H7 and SHERPA give consistent results

14.01.25 Krakow

Fixed-order and NLO+PS comparisons: c-jets

Similar to b-jets but differences enhanced

→ smaller mass leads to larger flavour abundance

→ enhances sensitivity to flavour treatment

14.01.25 Krakow

Comparison of experimental tagging

Net-flavour tagging makes already a huge difference! Driven by $g \rightarrow cc$ splittings

14.01.25 Krakow

Towards experimental implementation

- The flavoured jet algorithms require detailed flavour information
 → flavour algorithms difficult to implement experimentally
 Limited by detector-resolution & efficiencies!
- 1) Unfolding (that is done so far):
 - g → b b splitting if both b's hadronise to B-hadrons (this is different to b b = g @ fixed order)
 - Hadronisation/non-perturbative models
 - Unfolding corrections can be sizeable O(5-10%) and relies on IR sensitive anti-kT

2) Improvement on experimental side:

 \rightarrow Potential improvements if g \rightarrow bb splittings can be captured experimentally

3)Using IRC-safe truth labels in ML – tagger training

Experimental b/c-tagging with NN

Credit: Arnaud Duperrin (DIS23 talk)

Using NN to perform b-tagging

- Many Run II/III analysis use already NN based taggers
- For example ATLAS: DL1
 → uses precomputed low-level infos
- Next generation will directly use hit, track and jet information
 - \rightarrow further performance boost

The truth level information comes (partially or indirectly) from MC simulations

Truth-level input

[Thanks to Ludovic Scyboz & Gavin Salam]

14.01.25 Krakow

Rene Poncelet – IFJ PAN Krakow

wrongly tagged jets!

Example flavoured jet measurement

Measurements of the production cross-section for a Z boson in association with b- or c-jets in proton-proton collisions at sqrt{s}=13 TeV with the ATLAS detector, 2403.15093

• Using unfolding to compare to GHS algorithm

Clear mismodelling of high-pT tails → likely to due g→bb splittings

14.01.25 Krakow

- Accurate modelling of (heavy) flavour jets requires improvement on the jet definition
 →needed for precision phenomenology
- New flavoured jet-algorithms provide IRC safe definitions
- Les Houches Study to study qualitative and quantitative differences between proposals
 → implementation in fastJet framework
- Experimental implementation still an open questions
 - Unfolding? → Large uncertainties (still uses the IRC unsafe anti-kT jets)
 - Improvement on tagging procedures? Challenging! (maybe g→ bb tagging?)
 - Truth label for ML-tagger training? Seems a sensible way forward!

Thanks to all the contributors to the Les Houches study!

Backup

14.01.25 Krakow

LHC precision computations with flavoured jets

Associated Higgs production + decays in b-quarks:

Associated production of a Higgs boson decaying into bottom quarks at the LHC in full NNLO QCD Ferrera, Somogyi, Tramontano 1705.10304

NNLO QCD corrections to associated WH production and H → bbbar decay Caola, Luisoni, Melnikov, Röntsch 1712.06954

Associated production of a Higgs boson decaying into bottom quarks and a weak vector boson decaying leptonically at NNLO in QCD Gauld, Gehrmann-De Ridder, Glover, Huss, Majer 1907.05836

Bottom quark mass effects in associated WH production with the H → bbbar decay through NNLO QCD Behring, Bizoń, Caola, Melnikov, Röntsch 2003.08321

VH + jet production in hadron-hadron collisions up to order \alpha_s^3 in perturbative QCD Gauld, Gehrmann-De Ridder, Glover, Huss, Majer 2110.12992

+Partonshower:

NNLOPS accurate associated HZ production with H → bbbar decay at NLO Astill, Bizoń, Re, Zanderighi 1804.08141

NNLOPS description of the H → bbbar decay with MiNLO Bizoń, Re, Zanderighi 1912.09982

Next-to-next-to-leading order event generation for VH production with H → bbbar decay Zanoli, Chiesa, Re, Wiesemann, Zanderighi 2112.04168

LHC precision computations with flavoured jets

Vector + flavoured jet(s) production:

NLO QCD predictions for Wbbbar production in association with up to three light jets at the LHC Anger,Cordero, Ita, Sotnikov 1712.05721

Predictions for Z-Boson Production in Association with a b-jet at O(\alpha_s^3) Gauld, Gehrmann-De Ridder, Glover, Huss, Majer 2005.03016

NNLO QCD predictions for W+c-jet production at the LHC, Czakon, Mitov, Pellen, Poncelet 2011.01011

NNLO QCD corrections to Wbbbar production at the LHC, Hartanto, Poncelet, Popescu, Zoia 2205.01687

A detailed investigation of W+c-jet at the LHC, Czakon, Mitov, Pellen, Poncelet 2212.00467

Associated production of a W boson and massive bottom quarks at next-to-next-to-leading order in QCD, Buonocore, Devoto, Kallweit, Mazzitelli, Rottoli, Savoini, 2212.04954

NNLO QCD predictions for Z-boson production in association with a charm jet within the LHCb fiducial region Gauld, Gehrmann-De Ridder, Glover, Huss, Rodriguez Garcia, Stagnitto 2302.12844

Precise QCD predictions for W-boson production in association with a charm jets Gehrmann-De Ridder, Gehrmann, Glover, Huss, Garcia, Stagnitto, 2311.14991

Tests of IR safety

14.01.25 Krakow

Tests of IR safety

- Rate of bad-identified jetflavour as a function of IR sensitive variable
- Parton-shower to model many emissions

Tests of IR safety with parton showers

In the di-jet limit the flavour needs to correspond to tree level flavours
 → misidentification rate needs to vanish in di-jet back-to-back limit
 → IR sensitive observable 2-jettiness

14.01.25 Krakow

Tests of IR safety with NNLO FO computations

14.01.25 Krakow

More tests...

Flavoured jets with exact anti-kT kinematics and tests of infrared and collinear safety Caola, Grabarczyk, Hutt, Salam, Scyboz, Thaler 2306.07314

► IRC safety testing suite:

14.01.25 Krakow

	Caola Grabarczyk Hutt Salam Scyboz Thaler 2306 07314								
Caola, Grabarczyk, Hull, Salam, Scyboz, Hialer 2500.07514									
			flav- k_t		$\operatorname{GHS}_{\alpha,\beta}$	anti-			
order r	elative to Born	anti- k_t	$(\alpha = 2)$	CMP	(2,2)	$k_t + \text{IFN}_{\alpha}$	$C/A + IFN_{\alpha}$		
$lpha_s$	FHC	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
	IHC	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
α_s^2	FDS	XIIB	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
	IDS	XIIB	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
	FHC×IHC	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
	IHC^2	\checkmark	\checkmark	\times C2	\checkmark	\checkmark	\checkmark		
	FHC^2	\checkmark	\checkmark	\checkmark	XC4	\checkmark	\checkmark		
$lpha_s^3$	IHC×IDS		\sim C1	\times C3	\sim C1	\checkmark	\checkmark		
	rest					\checkmark	\checkmark		
$lpha_s^4$	IDS×FDS				XC 5	\checkmark	\checkmark		
	rest					\checkmark	\checkmark		
$lpha_s^5$						\checkmark	\checkmark		
$lpha_s^6$						\checkmark	\checkmark		

Flavoured iets with exact anti-kT kinematics and tests of infrared and collinear safety

14.01.25 Krakow

Improved distance for CMP/flavour anti-kT

14.01.25 Krakow

Flavour anti-kT: impact of Ω_{ij}

Calculations performed with sector-improved residue subtraction scheme 1408.2500 & 1907.12911

Les Houches Jet Flavour WG

Negligible difference between CMP Ω and CMP

Benchmark process: Z+b-jet

 $pp \rightarrow Z(ll) + b$ -jet Well studied up to $\mathcal{O}(\alpha_s^3)$: Predictions for Z-Boson Production in Association with a b-jet at O(a_s^3), Gauld, Gehrmann-De Ridder, Glover, Huss, Majer 2005.03016 5fs: 4fs: Flavour-kT algorithm $b\bar{b}$ Unfolding of experimental data (RooUnfold, bin-by-bin unfolding) lơ/d|n_b| [pb] -----/GeV flavour-k $R = 0.5 \alpha = 3$ Unfolded CMS dat flavour-k T. R Unfolded CMS Matching between four- and five-FONLL α^2 FONLL α^2 FONLL a FONLL α_{a}^{3} flavour schemes (FONLL) $\mathrm{d}\sigma^{\mathrm{FONLL}} = \mathrm{d}\sigma^{\mathrm{5fs}} + (\mathrm{d}\sigma^{\mathrm{4fs}}_{m_{\mathrm{h}}} - \mathrm{d}\sigma^{\mathrm{4fs}}_{m_{\mathrm{h}} \to 0})$ to data data CMS measurement @ 8 TeV Measurements of the associated production of a Z boson and NLO b jets in pp collisions at \sqrt{s} = 8 TeV}, CMS 1611.06507 atio 1 1.5 200p_{T b} [GeV] \rightarrow Ideal testing ground for flavour anti-kT

14.01.25 Krakow

Estimation of hadronisation and experimental tagging corrections → NLO + PS (Madraph+Pythia8)

Unfolding factor = NLO+PS (had = Off) / NLO+PS (had = On)

