High precision prediction for multi-scale processes at the LHC

Rene Poncelet

What is the universe made of and where does it come from?

Credit: NASA

What are the fundamental building blocks of matter?

Standard Model of Particle Physics and beyond

BUT:

Credit: ATLAS

- Is the Higgs a fundamental scalar?
- What is dark matter?
- Why is there a matter-anti-matter asymmetry?

Credit: NASA

5.11.24 APCTP - Pohang

LHC Precision era and future experiments

Precision phenomenology

- Populate the tails and corners of phase space to direct discover new particles/interactions.
- Constraining missing pieces such as Higgs potential (self-coupling and overall consistency of the Higgs mechanism) and missing Yukawa model
- Precision test of the EW and QCD theory: particle masses, (running of) coupling constants, PDFs, ...
- Tests of the quantum nature of our universe at the highest possible energies.
- → All these directions need precision theory input!

Example: Projected Higgs coupling measurements

Precision era of the LHC

Standard Model of Elementary Particles

- At the LHC QCD is part of any process!
 - 1) The limiting factor in many analyses is QCD and associated uncertainties.
 - → Radiative corrections indispensable
 - 2) How well we do know QCD? Coupling constant, running, PDFs, ...
- Asymptotic freedom: high energy scattering processes allow to probe pQCD directly

$$\mathcal{L}_{\text{QCD}} = \bar{q_i} (\gamma^{\mu} \mathcal{D}_{\mu} - m_i) q_i - \frac{1}{4} F_a^{\mu\nu} F_{\mu\nu}^a$$

MPI, colour reconnection,

Fragmentation/hadronisation

...

Precision through higher orders

Next-to-next-to-leading order QCD needed to match experimental precision! → In some cases even next-to-next-to-next-to-leading order!

Hadronic cross section in collinear factorization – NNLO QCD

5.11.24 APCTP - Pohang

Hadronic cross section in collinear factorization – NNLO QCD

The NNLO QCD revolution

NNLO QCD for $2 \rightarrow 3$ processes - inputs

Two-loop amplitudes

- (Non-) planar 5 point massless external states
 [Chawdry'19'20'21,Abreu'20'21'23,Agarwal'21'23,Badger'21'23]

 > triggered by efficient MI representation [Chicherin'20]
- 5 point with one external mass [Abreu'20,Syrrakos'20,Canko'20,Badger'21'22,Chicherin'22]

One-loop amplitudes → OpenLoops [Buccioni'19]

• Many legs and IR stable (soft and collinear limits)

Double-real Born amplitudes → AvHlib[Bury'15]

 IR finite cross-sections → NNLO subtraction schemes qT-slicing [Catani'07], N-jettiness slicing [Gaunt'15/Boughezal'15], Antenna [Gehrmann'05-'08], Colorful [DelDuca'05-'15], Projetction [Cacciari'15], Geometric [Herzog'18], Unsubtraction [Aguilera-Verdugo'19], Nested collinear [Caola'17], Local Analytic [Magnea'18], Sector-improved residue subtraction [Czakon'10-'14,'19]

NNLO QCD cross sections for massless $2 \rightarrow 3$ processes

LHC 13 TeV PDF: NNPDF31

Scale: $\mu_R = \mu_F = m_T(\gamma\gamma)/2$

LO

GeV

 $\frac{d}{d}$

 $/dp_T^{jet}$

NLO

atio

NLO

1.4

NLO

Scale: H_T

1.4 Scale: $E_{\perp}(\gamma)$

NNLO

ATLAS

SHERPA

 $pp \rightarrow \gamma \gamma j$ $pp \rightarrow \gamma \gamma \gamma$

 $pp \rightarrow \gamma j j$

LHC 13 TeV PDF: NNPDF31 Scale: H_T

inclusive

 $pp \rightarrow jjj$

Chawdhry, Czakon, Mitov, RP [1911.00479]

Kallweit, Sotnikov, Wiesemann [2010.04681] Chawdhry, Czakon, Mitov, RP [2103.04319]

 $p_T(\gamma\gamma)$ [GeV]

 $p_T^{\rm jet} \, [{\rm GeV}]$ Badger, Czakon, Hartanto, Moodie, Peraro, RP, Zoia [2304.06682]

NNPDF30 $\mu_R = \mu_F = \hat{H}_T$

Czakon, Mitov, RP [2106.05331] + Alvarez, Cantero, Llorente [2301.01086]

5.11.24 APCTP - Pohang

Multi-jet observables

Test of pQCD and extraction of strong coupling constant NLO theory unc. > experimental unc.

- NNLO QCD needed for precise theory-data comparisons → Restricted to two-jet data [Currie'17+later][Czakon'19]
- New NNLO QCD three-jet → access to more observables
 - Jet ratios •

Next-to-Next-to-Leading Order Study of Three-Jet Production at the LHC Czakon, Mitov, Poncelet [2106.05331]

$$R^{i}(\mu_{R}, \mu_{F}, \text{PDF}, \alpha_{S,0}) = \frac{\mathrm{d}\sigma_{3}^{i}(\mu_{R}, \mu_{F}, \text{PDF}, \alpha_{S,0})}{\mathrm{d}\sigma_{2}^{i}(\mu_{R}, \mu_{F}, \text{PDF}, \alpha_{S,0})}$$

• Event shapes

NNLO QCD corrections to event shapes at the LHC

Alvarez, Cantero, Czakon, Llorente, Mitov, Poncelet [2301.01086]

Encoding QCD dynamics in event shapes

Using (global) event information to separate different regimes of QCD event evolution:

- Thrust & Thrust-Minor $T_{\perp} = \frac{\sum_{i} |\vec{p}_{T,i} \cdot \hat{n}_{\perp}|}{\sum_{i} |\vec{p}_{T,i}|}$, and $T_{m} = \frac{\sum_{i} |\vec{p}_{T,i} \times \hat{n}_{\perp}|}{\sum_{i} |\vec{p}_{T,i}|}$.
- Energy-energy correlators

$$-\frac{1}{\sigma_2}\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\Delta\phi} = \frac{1}{\sigma_2}\sum_{ij}\int\frac{\mathrm{d}\sigma \, x_{\perp,i}x_{\perp,j}}{\mathrm{d}x_{\perp,i}\mathrm{d}x_{\perp,j}\mathrm{d}\cos\Delta\phi_{ij}}\delta(\cos\Delta\phi - \cos\Delta\phi_{ij})\mathrm{d}x_{\perp,i}\mathrm{d}x_{\perp,j}\mathrm{d}\cos\Delta\phi_{ij}\,,$$

Separation of energy scales: $H_{T,2} = p_{T,1} + p_{T,2}$

Ratio to 2-jet: $R^{i}(\mu_{R}, \mu_{F}, \text{PDF}, \alpha_{S,0}) = \frac{\mathrm{d}\sigma_{3}^{i}(\mu_{R}, \mu_{F}, \text{PDF}, \alpha_{S,0})}{\mathrm{d}\sigma_{2}^{i}(\mu_{R}, \mu_{F}, \text{PDF}, \alpha_{S,0})}$

Here: use jets as input → experimentally advantageous (better calibrated, smaller non-pert.)

Transverse Thrust @ NNLO QCD

5.11.24 APCTP - Pohang

$$\frac{1}{\sigma_2} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\Delta\phi} = \frac{1}{\sigma_2} \sum_{ij} \int \frac{\mathrm{d}\sigma \; x_{\perp,i} x_{\perp,j}}{\mathrm{d}x_{\perp,i} \mathrm{d}x_{\perp,j} \mathrm{d}\cos\Delta\phi_{ij}} \delta(\cos\Delta\phi - \cos\Delta\phi_{ij}) \mathrm{d}x_{\perp,i} \mathrm{d}x_{\perp,j} \mathrm{d}\cos\Delta\phi_{ij},$$

- Insensitive to soft radiation through energy weighting $x_{T,i} = E_{T,i} / \sum E_{T,j}$
- Event topology separation:
 - Central plateau contain isotropic events
 - To the right: self-correlations, collinear and in-plane splitting
 - To the left: back-to-back

[ATLAS 2301.09351]

ATLAS

Particle-level TEEC

√s = 13 TeV; 139 fb⁻¹

anti- $k_{+}R = 0.4$

 $p_{\tau} > 60 \text{ GeV}$

Double differential TEEC

[ATLAS 2301.09351]

ATLAS

Particle-level TEEC √s = 13 TeV; 139 fb⁻¹ anti- $k_{t} R = 0.4$ $p_{\tau} > 60 \text{ GeV}$ |η| < 2.4 $\mu_{R,F} = \mathbf{\hat{H}}_{T}$ $\alpha_{\rm s}({\rm m_{z}}) = 0.1180$ NNPDF 3.0 (NNLO) - Data --- LO - NLO - NNLO

Running of $\alpha_{\mathbf{S}}$

5.11.24 APCTP - Pohang

Prompt photon production

Direct production

- Test of perturbative QCD
- Gluon PDF sensitivity
- Estimates for BSM backgrounds

Fragmentation

- Depends on non-perturbative fragmentation functions
- Separation from "direct" not unique

Why photon plus a jet pair?

- Non-back-to-back Born configurations
 → access to angular correlations between the photon and jets
- Access to different kinematic regimes through distinguishable photon
 → enhance direct, high- or low-z fragmentation
- Background process for BSM: $pp \rightarrow \gamma + Y(\rightarrow jj)$

Photon plus jet pair

Measurement of isolated-photon plus two-jet production in pp collisions at sqrt(s) = 13 TeV with the ATLAS detector [1912.09866]

Requirements on photon	$E_{\rm T}^{\gamma} > 150 \text{ GeV}, \eta^{\gamma} < 2.37 \text{ (excluding } 1.37 < \eta^{\gamma} < 1.56)$				
	$E_{\rm T}^{\rm iso} < 0.0042 \cdot E_{\rm T}^{\gamma} + 4.8 \text{ GeV} (\text{reconstruction level})$				
	$E_{\rm T}^{\rm iso} < 0.0042 \cdot E_{\rm T}^{\gamma} + 10 \text{ GeV} \text{ (particle level)}$				
Requirements on jets A at least two jets using anti- k_t algorithm with $R = 0$					
	$p_{\rm T}^{\rm jet} > 100 \text{ GeV}, y^{\rm jet} < 2.5, \Delta R^{\gamma-\rm jet} > 0.8$				
Phase space	total	fragmentation enriched	direct enriched		
		$E_{\mathrm{T}}^{\gamma} < p_{\mathrm{T}}^{\mathrm{jet2}}$	$E_{\mathrm{T}}^{\gamma} > p_{\mathrm{T}}^{\mathrm{jet1}}$		
Number of events	755 270	111 666	386 846		

Modelled with hybrid isolation

$$E_{\perp}(r) \leq E_{\perp \max}(r) = 0.1 E_{\perp}(\gamma) \left(\frac{1 - \cos(r)}{1 - \cos(R_{\max})}\right)^2 \text{ for } r \leq R_{\max} = 0.1$$

 $E_{\perp}(r) \leq E_{\perp \max} = 0.0042 E_{\perp}(\gamma) + 10 \text{ GeV } \text{ for } r \leq R_{\max} = 0.4$

No fragmentation contribution → Purely pQCD through NNLO → focus on "inclusive" and "direct" PS

5.11.24 APCTP - Pohang

Theory - data comparisons

NNLO QCD

- Describes data well
- Improvements on the shape
- Small corrections
- Small remaining scale dependence

Comment on the SHERPA predictions

- Large NLO scale uncertainties
- The shape is not well described
- \rightarrow Newer version fix this issue

Inclusive vs. direct vs. fragmentation

Transverse photon energy

5.11.24 APCTP - Pohang

Five-point amplitude with one mass

Overview

"Old school" approach: Projection Integration-by-parts **Differential equations** Scalar Feynman Master Pentagon functions diagrams integrals integrals

> Automated framework using finite fields to avoid expression swell based on FiniteFlow [Peraro'19]

Projection to scalar integrals

Factorizing decay: $A_6^{(L)} = A_5^{(L)\mu} D_\mu P$ $M_6^{2(L)} = \sum_{\text{spin}} A_6^{(0)^*} A_6^{(L)} = M_5^{(L)\mu\nu} D_{\mu\nu} |P|^2$

Projection on scalar functions (FORM+Mathematica): \rightarrow anti-commuting γ_5 + Larin prescription $M_5^{(L)\mu\nu} = \sum_{i=1}^{16} a_i^{(L)} v_i^{\mu\nu}$

$$a_i^{(L)} = a_i^{(L),\text{even}} + \text{tr}_5 a_i^{(L),\text{odd}} \qquad a_i^{(L),p} = \sum_i c_{j,i}(\{p\},\epsilon)\mathcal{I}(\{p\},\epsilon)$$

5.11.24 APCTP - Pohang

$$a_i^{(L),p} = \sum_i c_{j,i}(\{p\}, \epsilon) \mathcal{I}(\{p\}, \epsilon) \longrightarrow \text{ prohibitively large number of integrals}$$

$$\mathcal{I}_i(\{p\}, \epsilon) \equiv \mathcal{I}(\vec{n_i}, \{p\}, \epsilon) = \int \frac{\mathrm{d}^d k_1}{(2\pi)^d} \frac{\mathrm{d}^d k_2}{(2\pi)^d} \prod_{k=1}^{11} D_k^{-n_{i,k}}(\{p\}, \{k\})$$

Integration-By-Parts identities connect different integrals → system of equations → only a small number of independent "master" integrals

$$0 = \int \frac{\mathrm{d}^d k_1}{(2\pi)^d} \frac{\mathrm{d}^d k_2}{(2\pi)^d} l_\mu \frac{\partial}{\partial l^\mu} \prod_{k=1}^{11} D_k^{-n_{i,k}}(\{p\},\{k\}) \quad \text{with} \quad l \in \{p\} \cap \{k\}$$

LiteRed (+ Finite Fields)

$$a_i^{(L),p} = \sum_i d_{j,i}(\{p\},\epsilon) \operatorname{MI}(\{p\},\epsilon)$$

5.11.24 APCTP - Pohang

Master integrals & finite remainder

Differential Equations:
$$d\vec{MI} = dA(\{p\}, \epsilon)\vec{MI}$$
[Remiddi, 97]Canonical basis: $d\vec{MI} = \epsilon d\tilde{A}(\{p\})\vec{MI}$ [Henn, 13]

Simple iterative solution

$$MI_{i} = \sum_{w} \epsilon^{w} \tilde{MI}_{i}^{w} \text{ with } \tilde{MI}_{i}^{w} = \sum_{j} c_{i,j} m_{j}$$
Chen-iterated integrals
"Pentagon"-functions
[Chicherin, Sotnikov, 20]
[Chicherin, Sotnikov, Zoia, 21]

Putting everything together (and removing of IR poles):

$$f_i^{(L),p} = a_i^{(L),p} - \text{poles}$$
 $f_i^{(L),p} = \sum_j c_{i,j}(\{p\})m_j + \mathcal{O}(\epsilon)$

5.11.24 APCTP - Pohang

Reconstruction of Amplitudes

[Badger'23]

New optimizations

- Syzygy's to simplify IBPs
- Exploitation of Q-linear relations
- Denominator Ansaetze
- On-the-fly partial fractioning

amplitude	helicity	original	stage 1	stage 2	stage 3	stage 4
$A^{(2),1}_{34;q}$	-++-+	94/91	74/71	74/0	22/18	22/0
$A^{(2),1}_{34;q}$	-+-++	93/89	90/86	90/0	24/14	18/0
$A^{(2),1/N_c^2}_{34;q}$	-++-+	90/88	73/71	73/0	23/18	22/0
$A^{(2),1/N_c^2}_{34;q}$	-+-++	90/86	86/82	86/0	24/14	19/0
$A^{(2),1/N_c}_{34;l}$	-+-++	89/82	74/67	73/0	27/14	20/0
$A^{(2),1/N_c}_{34;l}$	-++-+	85/81	61/58	60/0	27/18	20/0
$A^{(2),N^2_c}_{34;q}$	-+-++	58/55	54/51	53/0	20/16	20/0

Massive reduction of complexity

5.11.24 APCTP - Pohang

Wbb @ NNLO QCD

[Hartanto, Poncelet, Popescu, Zoia '22]

- LHC @ 8 TeV in 5 FS, NNPDF31, scale: H_T = E_T(lv) + pT(b1) + pT(b2)
- Phasespace definition to model **[CMS, 1608.07561]:** $pT(l) \ge 30 \text{ GeV} |y(l)| < 2.1 pT(j) \ge 25 \text{ GeV}, |y(j)| < 2.4$
- Inclusive (at least 2 b-jets) and exclusive (exactly 2 b-jets, no other jets) jet phase spaces (defined by the flavour-kT jet algorithm [Banfi'06])
- Inclusive :
 - ~ +20% corrections
 - ~7% scale dependence
- Exclusive:
 - ~+6% corrections
 - ~ 2.5% scale dependence (7-pt)
 - Compare decorrelated model: [Steward'12]
 - ~ 11% scale dependence

	inclusive [fb]	$\mathcal{K}_{ ext{inc}}$	exclusive [fb]	$\mathcal{K}_{ ext{exc}}$
$\sigma_{ m LO}$	$213.2(1)^{+21.4\%}_{-16.1\%}$	-	$213.2(1)^{+21.4\%}_{-16.1\%}$	-
$\sigma_{ m NLO}$	$362.0(6)^{+13.7\%}_{-11.4\%}$	1.7	$249.8(4)^{+3.9(+27)\%}_{-6.0(-19)\%}$	1.17
$\sigma_{ m NNLO}$	$445(5)^{+6.7\%}_{-7.0\%}$	1.23	$267(3)^{+1.8(+11)\%}_{-2.5(-11)\%}$	1.067

$$\sigma_{Wb\bar{b},\text{excl.}} = \sigma_{Wb\bar{b},\text{incl.}} - \sigma_{Wb\bar{b}j,\text{incl.}}$$
$$\Delta \sigma_{Wb\bar{b},excl.} = \sqrt{(\Delta \sigma_{Wb\bar{b},incl.})^2 + (\Delta \sigma_{Wb\bar{b}j,incl.})^2}$$

Differential cross sections

Transverse momentum of lepton

5.11.24 APCTP - Pohang

Take home messages

- Precision at collider needs precise predictions
 → Higher order QCD corrections are crucial to compare to current and future LHC data
- Very good description of data using perturbative NNLO QCD

 → Significantly improved theory uncertainty estimates
 → First phenomenological applications: extraction of the strong coupling constant
- Completion of massless 2 \Rightarrow 3 processes at hadron colliders through NNLO QCD $pp \rightarrow \gamma \gamma \gamma \qquad pp \rightarrow \gamma \gamma j \qquad pp \rightarrow \gamma j j \qquad pp \rightarrow j j j$
- Most important bottlenecks:
 → Monte Carlo integration of real radiation contributions → improved methods needed!
 - → Two-loop amplitudes

(including external/internal masses are the current frontier)

Backup

Hadronic cross section

Partonic cross section beyond LO

Perturbative expansion of partonic cross section: $\hat{\sigma}_{ab\to X} = \hat{\sigma}_{ab\to X}^{(0)} + \hat{\sigma}_{ab\to X}^{(1)} + \hat{\sigma}_{ab\to X}^{(2)} + \mathcal{O}(\alpha_s^3)$

Contributions with different multiplicities and # convolutions:

$$\hat{\sigma}_{ab}^{(2)} = \hat{\sigma}_{ab}^{\mathrm{RR}} + \hat{\sigma}_{ab}^{\mathrm{RV}} + \hat{\sigma}_{ab}^{\mathrm{VV}} + \hat{\sigma}_{ab}^{\mathrm{C2}} + \hat{\sigma}_{ab}^{\mathrm{C1}}$$

Each term separately IR divergent. But sum is:

→ finite

- \rightarrow regularization scheme independent
- Considering CDR ($d = 4 2\epsilon$):

→ Laurent expansion:

$$\hat{\sigma}_{ab}^C = \sum_{i=-4}^0 c_i \epsilon^i + \mathcal{O}(\epsilon)$$

$$\hat{\sigma}_{ab}^{\mathrm{RR}} = \frac{1}{2\hat{s}} \int \mathrm{d}\Phi_{n+2} \left\langle \mathcal{M}_{n+2}^{(0)} \middle| \mathcal{M}_{n+2}^{(0)} \right\rangle \mathcal{F}_{n+2}$$

$$\hat{\sigma}_{ab}^{\mathrm{RV}} = \frac{1}{2\hat{s}} \int \mathrm{d}\Phi_{n+1} \, 2\mathrm{Re} \left\langle \mathcal{M}_{n+1}^{(0)} \left| \mathcal{M}_{n+1}^{(1)} \right\rangle \mathrm{F}_{n+1} \right.$$

$$\hat{\sigma}_{ab}^{\text{VV}} = \frac{1}{2\hat{s}} \int \mathrm{d}\Phi_n \left(2\text{Re} \left\langle \mathcal{M}_n^{(0)} \middle| \mathcal{M}_n^{(2)} \right\rangle + \left\langle \mathcal{M}_n^{(1)} \middle| \mathcal{M}_n^{(1)} \right\rangle \right) \mathbf{F}_n$$

$$\hat{\sigma}_{ab}^{C1} = (\text{single convolution}) F_{n+1}$$

$$\hat{\sigma}_{ab}^{C2} = (\text{double convolution}) \mathbf{F}_n$$

5.11.24 APCTP - Pohang

Sector decomposition I

- Considering working in CDR:
- \rightarrow Virtuals are usually done in this regularization
- → Real radiation:
 - → Very difficult integrals, analytical impractical (except very simple cases)!
 - \rightarrow Numerics not possible, integrals are divergent: ϵ -poles!

How to extract these poles? → Sector decomposition!

Divide and conquer the phase space:

Sector decomposition II

Divide and conquer the phase space:

- → Each $S_{ij,k}/S_{i,k;j,l}$ has simpler divergences. appearing as $1/s_{ijk}$ $1/s_{ik}/s_{jl}$ Soft and collinear (w.r.t parton k,l) of partons i and j
- → Parametrization w.r.t. reference parton:

$$\hat{\eta}_i = \frac{1}{2}(1 - \cos\theta_{ir}) \in [0, 1]$$
 $\hat{\xi}_i = \frac{u_i^0}{u_{\max}^0} \in [0, 1]$

II

5.11.24 APCTP - Pohang

 $\xi_2 > \xi_1$

 $\eta_1 > \eta_2$

 $\eta_2 \rightarrow \eta_2 \eta_1$

 $\xi_1 > \xi_2$ $\xi_2 \rightarrow \xi_2 \xi_{2\max} \xi$

 $\eta_1 > \eta_2$

 $\eta_2 \rightarrow \eta_2 \eta_1$

Sector decomposition III

Factorized singular limits in each sector:

$$\frac{1}{2\hat{s}} \int \mathrm{d}\Phi_{n+2} \,\mathcal{S}_{kl,m} \left\langle \mathcal{M}_{n+2}^{(0)} \middle| \mathcal{M}_{n+2}^{(0)} \right\rangle \mathbf{F}_{n+2} = \sum_{\text{sub-sec.}} \int \mathrm{d}\Phi_n \prod \mathrm{d}x_i \underbrace{x_i^{-1-b_i\epsilon}}_{\text{singular}} \mathrm{d}\tilde{\mu}(\{x_i\}) \underbrace{\prod x_i^{a_i+1} \left\langle \mathcal{M}_{n+2} \middle| \mathcal{M}_{n+2} \right\rangle}_{\text{regular}} \mathbf{F}_{n+2}$$

Regularization of divergences:

$$x^{-1-b\epsilon} = \underbrace{\frac{-1}{b\epsilon}}_{\text{pole term}} + \underbrace{[x^{-1-b\epsilon}]_{+}}_{\text{reg. + sub.}} \qquad \qquad \int_{0}^{1} \mathrm{d}x \, [x^{-1-b\epsilon}]_{+} \, f(x) = \int_{0}^{1} \frac{f(x) - f(0)}{x^{1+b\epsilon}}$$

Finite NNLO cross section

5.11.24 APCTP - Pohang

C++ framework

- Formulation allows efficient algorithmic implementation
- High degree of automation:
 - Partonic processes (taking into account all symmetries)
 - Sectors and subtraction terms
 - Interfaces to Matrix-element providers: AvH, OpenLoops, Recola, NJET, HardCoded
 → Only two-loop matrix elements required
- **Broad range of applications** through additional facilities:
 - Narrow-Width & Double-Pole Approximation
 - Fragmentation
 - Polarised intermediate massive bosons
 - (Partial) Unweighting → Event generation for **HighTEA**
 - Interfaces: FastNLO, FastJet

5.11.24 APCTP - Pohang

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space:

Requirements:

$$\{P, r_j, u_k\} \rightarrow \left\{\tilde{P}, \tilde{r}_j\right\}$$

• Keep direction of reference r fixed

- Invertible for fixed : $u_i \quad \left\{ \tilde{P}, \tilde{r}_j, u_k \right\} \rightarrow \left\{ P, r_j, u_k \right\}$ Preserve Born invariant mass: $q^2 = \tilde{q}^2, \quad \tilde{q} = \tilde{P} \sum_{i=1}^{n_{fr}} \tilde{r}_j$

Main steps:

- Generate Born configuration
- Generate unresolved partons U_i
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space:

Requirements:

$$\{P, r_j, u_k\} \rightarrow \left\{\tilde{P}, \tilde{r}_j\right\}$$

- Main steps:
- Generate Born configuration
- Generate unresolved partons U_i
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space:

Requirements:

$$\{P, r_j, u_k\} \rightarrow \left\{\tilde{P}, \tilde{r}_j\right\}$$

- Keep direction of reference r fixed
- Invertible for fixed : $u_i \quad \left\{ \tilde{P}, \tilde{r}_j, u_k \right\} \rightarrow \left\{ P, r_j, u_k \right\}$ Preserve Born invariant mass: $q^2 = \tilde{q}^2, \quad \tilde{q} = \tilde{P} \sum_{i=1}^{n_{fr}} \tilde{r}_j$
- Main steps:
- Generate Born configuration
- Generate unresolved partons U_i
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space:

Requirements:

$$\{P, r_j, u_k\} \to \left\{\tilde{P}, \tilde{r}_j\right\}$$

- Keep direction of reference r fixed
- Reep direction of reference index Invertible for fixed : $u_i \quad \left\{ \tilde{P}, \tilde{r}_j, u_k \right\} \rightarrow \left\{ P, r_j, u_k \right\}$ Preserve Born invariant mass: $q^2 = \tilde{q}^2, \quad \tilde{q} = \tilde{P} \sum_{i=1}^{n_{fr}} \tilde{r}_j$
- Main steps:
- Generate Born configuration
- Generate unresolved partons U_i
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

Systematic Uncertainties TEEC

Scale dependence is the dominating uncertainty \rightarrow NNLO QCD required to match exp.

Strong coupling dependence

5.11.24 APCTP - Pohang

$\alpha_{\mathbf{S}}$ from TEEC @ NNLO by ATLAS

- NNLO QCD extraction from multi-jets → will contribute to PDG for the first time
- Significant improvement to 8 TeV
 → driven by NNLO QCD corrections
- Individual precision large but comparable to top or jets-data.
- However: extraction at high energy scales

Using the running of $\alpha_{\mathbf{S}}$ to probe NP

[Llorente, Nachman 1807.00894]

Indirect constraints to NP through modified running:

$$\alpha_{s}(Q) = \frac{1}{\beta_{0} \log z} \left[1 - \frac{\beta_{1}}{\beta_{0}^{2}} \frac{\log(\log z)}{\log z} \right]; \quad z = \frac{Q^{2}}{\Lambda_{QCD}^{2}}$$

$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New formion limits using NLOJet++ & ATLAS data
$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New formion limits using NLOJet++ & ATLAS data
$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New formion limits using NLOJet++ & ATLAS data
$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New formion limits using NLOJet++ & ATLAS data
$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New formion limits using NLOJet++ & ATLAS data
$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New formion limits using NLOJet++ & ATLAS data
$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New formion limits using NLOJet++ & ATLAS data
$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New formion limits using NLOJet++ & ATLAS data
$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New formion limits using NLOJet++ & ATLAS data
$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New formion limits using NLOJet++ & ATLAS data
$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New formion limits using NLOJet++ & ATLAS data
$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New formion limits using NLOJet++ & ATLAS data
$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New formion limits using NLOJet++ & ATLAS data
$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New formion limits using NLOJet++ & ATLAS data
$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n$$

5.11.24 APCTP - Pohang

Rene Poncelet – IFJ PAN

 $\beta_0 = \frac{1}{4\pi} \left(11 - \frac{2}{3}n_f - \frac{4}{3}n_X T_X \right)$

... or 'new' SM dynamics

Possible SM explanations

- Residual PDF effects \rightarrow high x,Q²?
- EW corrections?
- Maybe effect from LC approximation in two-loop ME?

$$\mathcal{R}^{(2)}(\mu_R^2) = 2 \operatorname{Re} \left[\mathcal{M}^{\dagger(0)} \mathcal{F}^{(2)} \right] (\mu_R^2) + \left| \mathcal{F}^{(1)} \right|^2 (\mu_R^2)$$
$$\equiv \mathcal{R}^{(2)}(s_{12}) + \sum_{i=1}^4 c_i \ln^i \left(\frac{\mu_R^2}{s_{12}} \right)$$
$$\mathcal{R}^{(2)}(s_{12}) \approx \mathcal{R}^{(2)l.c.}(s_{12})$$

- Experimental systematics?
- Resummation?

Either case interesting!

5.11.24 APCTP - Pohang

Photon isolation

Hard cone

• Experimental hard cone:

 $E_{\perp}(r) \le E_{\perp \max} = 0.0042 E_{\perp}(\gamma) + 10 \text{ GeV} \text{ for } r \le R_{\max} = 0.4$

• Theory perspective:

Not collinear safe in perturbative QCD due to $q \rightarrow q \gamma$ splittings

→ Non-vanishing fragmentation contribution (NNLO QCD with frag. [2201.06982][2205.01516])

Credit: Marius Hoefer (talk@SM@LHC22)

Photon isolation

Smooth cone

• by Frixione [hep-ph/9801442]

$$E_{\perp}(r) \le E_{\perp \max}(r) = 0.1 E_{\perp}(\gamma) \left(\frac{1 - \cos(r)}{1 - \cos(R_{\max})}\right)^2 \text{ for } r \le R_{\max} = 0.1$$

- → Theoretically convenient
- → Removes fragmentation contribution
- \rightarrow Experimentally limited by detector resolution

Hybrid cone

- [1611.07226][2205.01516]
 - Combines smooth & hard cone
 - Fair approx. to hard cone [2205.01516]

Credit: Marius Hoefer (talk@SM@LHC22)

Fragmentation contribution

- ATLAS photon requirements (same as for $pp \rightarrow \gamma + 2j$)
- Comparison between:
 - "default" NNLO with fragmentation
 - "hybrid" NNLO with hybrid isolation
- Fragmentation contr.
 - ~5% at small $E_T(\gamma)$
 - ~<1% at high $E_T(\gamma)$

[2205.01516]

Missing effects

Electro-weak corrections

- EW Sudakov logs at high $E_{\perp}(\gamma)$
- ~O(-10%) above 1 TeV
- Further improvement of theory/data

Fragmentation

- More relevant at small $E_{\perp}(\gamma)$
- For $pp \to \gamma + X$: $\sigma(\text{hybrid}) > \sigma(\text{frag.})$
- Inclusion might cure slightly high normalisation

Missing effects

Electro-weak corrections

- EW Sudakov logs at high $E_{\perp}(\gamma)$
- ~O(-10%) above 1 TeV
- Further improvement of theory/data

Fragmentation

- More relevant at small $E_{\perp}(\gamma)$
- For $pp \to \gamma + X$: $\sigma(\text{hybrid}) > \sigma(\text{frag.})$
- Inclusion might cure slightly high normalisation

