Precision QCD phenomenology for multi-scale processes at the Large-Hadron-Collider

Dr. rer. nat. Rene Poncelet

IFJ PAN seminar 25th April 2024

- Precision phenomenology at the Large Hadron Collider
- Theory predictions with higher-order corrections
- → Phenomenology for $2 \rightarrow 3$ processes
- Summary and Outlook

What is the universe made of and where does it come from?

[Credit: NASA]

25.04.24 IFJ PAN

What are the fundamental building blocks of matter?

Standard Model of Particle Physics and beyond

BUT:

 $\begin{aligned} \chi &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i F \mathcal{D} \varphi + h.c. \\ &+ \gamma_i \mathcal{Y}_{ij} \gamma_j \varphi + h.c. \\ &+ |P_{\mu} \varphi|^2 - V(\phi) \end{aligned}$

[Credit: CERN]

[Credit: ATLAS]

- Is the Higgs a fundamental scalar?
- What is dark matter?
- Why is there a matter-anti-matter asymmetry?

[Credit: NASA]

25.04.24 IFJ PAN

LHC Precision era and future experiments

SM measurements at the LHC

25.04.24 IFJ PAN

7

Theory picture of hadron collision events

Factorization "What you see depends on the energy scale" In Quantum Chromodynamics (QCD): Strong coupling $Q \sim \Lambda_{\rm QCD}$ • Realm of confined states non-perturbative physics 00000000 Transition region $Q \gtrsim \Lambda_{\rm QCD}$ Parton-shower Resummation DGLAP / PDF evolution [Credit: SHERPA] $Q \gg \Lambda_{\rm QCD}$ Small coupling → perturbative regime Scattering of individual partons

25.04.24 IFJ PAN

Perturbative QCD

25.04.24 IFJ PAN

Example: Production of three isolated photons

NNLO QCD in three photon production

NNLO QCD corrections to three-photon production at the LHC, Chawdhry, Czakon, Mitov, Poncelet [JHEP 02 (2020) 057]

Corrections to **normalization** and **shape**

→ (Much) improved description of data

Without NNLO QCD corrections the data

is not interpretable
 → loss of information

or

is misleading
 → looks like "New Physics" = data - SM

NNLO QCD coverage

Processes with second-order theory

13

Theory predictions with higher-order corrections

25.04.24 IFJ PAN

Next-to-leading order case

 $\hat{\sigma}_{ab}^{(1)} = \hat{\sigma}_{ab}^{\mathrm{R}} + \hat{\sigma}_{ab}^{\mathrm{V}} + \hat{\sigma}_{ab}^{\mathrm{C}}$

KLN theorem

sum is finite for sufficiently inclusive observables and regularization scheme independent

Each term separately infrared (IR) divergent:

Real corrections:

Phase space integration over unresolved configurations

Virtual corrections:

 $\hat{\sigma}_{ab}^{\mathrm{V}} = \frac{1}{2\hat{s}} \int \mathrm{d}\Phi_n \, 2\mathrm{Re} \left\langle \mathcal{M}_n^{(0)} \left| \mathcal{M}_n^{(1)} \right\rangle \mathrm{F}_n \right.$

Integration over loop-momentum (UV divergences cured by renormalization)

Regularization in Conventional Dimensional Regularization (CDR) $d = 4 - 2\epsilon$

$$\rightarrow \int_{0} \mathrm{d}E \mathrm{d}\theta \frac{1}{E^{1-2\epsilon}(1-\cos\theta)^{1-\epsilon}} f(E,\cos(\theta)) \sim \frac{1}{\epsilon^{2}} + \dots$$
Cancellation against similar divergences in
$$\hat{\sigma}_{ab}^{\mathrm{V}} = \frac{1}{2\hat{s}} \int \mathrm{d}\Phi_{n} \, 2\mathrm{Re} \left\langle \mathcal{M}_{n}^{(0)} \middle| \mathcal{M}_{n}^{(1)} \right\rangle \mathrm{F}_{n}$$

25.04.24 IFJ PAN

How to extract these poles? Slicing and Subtraction

Central idea: Divergences arise from infrared (IR, soft/collinear) limits → Factorization!

Slicin

Succing

$$\hat{\sigma}_{ab}^{R} = \frac{1}{2\hat{s}} \int_{\delta(\Phi) \ge \delta_{c}} d\Phi_{n+1} \left\langle \mathcal{M}_{n+1}^{(0)} \middle| \mathcal{M}_{n+1}^{(0)} \right\rangle F_{n+1} + \frac{1}{2\hat{s}} \int_{\delta(\Phi) < \delta_{c}} d\Phi_{n+1} \left\langle \mathcal{M}_{n+1}^{(0)} \middle| \mathcal{M}_{n+1}^{(0)} \right\rangle F_{n+1} + \frac{1}{2\hat{s}} \int d\Phi_{n} \tilde{M}(\delta_{c}) F_{n} + \mathcal{O}(\delta_{c})$$

$$\therefore + \hat{\sigma}_{ab}^{V} = \text{finite}$$
Subtraction

$$\hat{\sigma}_{ab}^{R} = \frac{1}{2\hat{s}} \int \left(d\Phi_{n+1} \left\langle \mathcal{M}_{n+1}^{(0)} \middle| \mathcal{M}_{n+1}^{(0)} \right\rangle F_{n+1} - d\tilde{\Phi}_{n+1} SF_{n} \right) + \frac{1}{2\hat{s}} \int d\Phi_{n} d\Phi_{1} SF_{n}$$

$$\frac{1}{2\hat{s}} \int d\Phi_{n} d\Phi_{1} SF_{n}$$

$$\frac{1}{2\hat{s}} \int d\Phi_{n} d\Phi_{1} SF_{n}$$

$$\Rightarrow \text{Basis of modern}$$

Phase space factorization → momentum mappings

25.04.24 IFJ PAN

Rene Poncelet – IFJ PAN Krakow

event simulation

Partonic cross section beyond NLO

$$\hat{\sigma}_{ab}^{(2)} = \hat{\sigma}_{ab}^{\text{VV}} + \hat{\sigma}_{ab}^{\text{RV}} + \hat{\sigma}_{ab}^{\text{RR}} + \hat{\sigma}_{ab}^{\text{C2}} + \hat{\sigma}_{ab}^{\text{C1}}$$

$$\textbf{Real-Real} \qquad \hat{\sigma}_{ab}^{\text{RR}} = \frac{1}{2\hat{s}} \int d\Phi_{n+2} \left\langle \mathcal{M}_{n+2}^{(0)} \middle| \mathcal{M}_{n+2}^{(0)} \right\rangle \mathbf{F}_{n+2}$$

$$\textbf{Real-Virtual} \qquad \hat{\sigma}_{ab}^{\text{RV}} = \frac{1}{2\hat{s}} \int d\Phi_{n+1} 2\text{Re} \left\langle \mathcal{M}_{n+1}^{(0)} \middle| \mathcal{M}_{n+1}^{(1)} \right\rangle \mathbf{F}_{n+1}$$

$$\textbf{Virtual-Virtual} \qquad \hat{\sigma}_{ab}^{\text{VV}} = \frac{1}{2\hat{s}} \int d\Phi_n \left(2\text{Re} \left\langle \mathcal{M}_n^{(0)} \middle| \mathcal{M}_n^{(2)} \right\rangle + \left\langle \mathcal{M}_n^{(1)} \middle| \mathcal{M}_n^{(1)} \right\rangle \right) \mathbf{F}_n$$

$$\hat{\sigma}_{ab}^{\text{C2}} = (\text{double convolution}) \mathbf{F}_n \qquad \hat{\sigma}_{ab}^{\text{C1}} = (\text{single convolution}) \mathbf{F}_{n+1}$$

25.04.24 IFJ PAN

Partonic cross section beyond NLO

$\hat{\sigma}_{ab}^{(2)} = \hat{\sigma}_{ab}^{\text{VV}} + \hat{\sigma}_{ab}^{\text{RV}} + \hat{\sigma}_{ab}^{\text{RR}} + \hat{\sigma}_{ab}^{\text{C2}} + \hat{\sigma}_{ab}^{\text{C1}}$

25.04.24 IFJ PAN

Technically substantially more complicated!

Main bottlenecks:

- Real real \rightarrow overlapping singularities Many possible limits \rightarrow good organization principle needed
- Real virtual \rightarrow stable matrix elements
- Virtual virtual → complicated case-by-case analytic treatment

Slicing

- Conceptually simple
- Recycling of lower computations
- Non-local cancellations/power-corrections
 → computationally expensive

Subtraction

- Conceptually more difficult
- Local subtraction \rightarrow efficient
- Better numerical stability
- Choices:
 - Momentum mapping
 - Subtraction terms
 - Numerics vs. analytic

NNLO QCD schemes

```
qT-slicing [Catani'07],
N-jettiness slicing [Gaunt'15/Boughezal'15]
```

Antenna [Gehrmann'05-'08], Colorful [DelDuca'05-'15], **Sector-improved residue subtraction** [Czakon'10-'14'19] Projection [Cacciari'15], Nested collinear [Caola'17], Geometric [Herzog'18], Unsubtraction [Aguilera-Verdugo'19],

25.04.24 IFJ PAN

Rene Poncelet – IFJ PAN Krakow

...

Minimal sector-improved residue subtraction

Single-jet inclusive rates with exact color at $\mathcal{O}(\alpha_s^4)$ Czakon, Hameren, Mitov, Poncelet, JHEP 10 (2019), 262

Refined formulation of the sector-improved residue subtraction

- New phase space parametrisation

 → minimization of subtraction kinematics
 → improved computational efficiency/stability
- Improved sector decomposition
- New 4 dimensional formulation
- First application: inclusive jet production

 → demonstrates that the scheme is complete
 → no approximations

25.04.24 IFJ PAN

The NNLO QCD revolution

NNLO QCD for massless $2 \rightarrow 3$ processes

 $pp \rightarrow \gamma \gamma \gamma$

 $pp \rightarrow \gamma \gamma j$

 $pp \rightarrow \gamma j j$

 $pp \rightarrow jjj$

Chawdhry, Czakon, Mitov, **Poncelet** [1911.00479] Kallweit, Sotnikov, Wiesemann [2010.04681]

Chawdhry, Czakon, Mitov, **Poncelet** [2103.04319] Badger, Czakon, Hartanto, Moodie, Peraro, **Poncelet**, Zoia [2304.06682] Czakon, Mitov, **Poncelet** [2106.05331] + Alvarez, Cantero, Llorente [2301.01086]

25.04.24 IFJ PAN

NNLO QCD for 2→3 processes - inputs

Two-loop amplitudes

(Non-) planar 5 point massless [Chawdry'19'20'21,Abreu'20'21'23,Agarwal'21,Badger'21'23]
 → triggered by efficient MI representation [Chicherin'20]

One-loop amplitudes → OpenLoops [Buccioni'19]

• Many legs and IR stable (soft and collinear limits)

Double-real Born amplitudes → AvHlib[Bury'15]

 IR finite cross-sections → NNLO subtraction schemes qT-slicing [Catani'07], N-jettiness slicing [Gaunt'15/Boughezal'15], Antenna [Gehrmann'05-'08], Colorful [DelDuca'05-'15], Projetction [Cacciari'15], Geometric [Herzog'18], Unsubtraction [Aguilera-Verdugo'19], Nested collinear [Caola'17], Local Analytic [Magnea'18], Sector-improved residue subtraction [Czakon'10-'14,'19]

Phenomenology for $2 \rightarrow 3$ processes

25.04.24 IFJ PAN

Multi-jet observables

Test of pQCD and extraction of strong coupling constant NLO theory unc. (MHO) > experimental unc.

- NNLO QCD needed for precise theory-data comparisons
 → Restricted to two-jet data [Currie'17+later][Czakon'19]
- New NNLO QCD three-jet → access to more observables

• Jet ratios

Next-to-Next-to-Leading Order Study of Three-Jet Production at the LHC Czakon, Mitov, **Poncelet** Phys.Rev.Lett. 127 (2021) 15, 152001

 $R^{i}(\mu_{R}, \mu_{F}, \text{PDF}, \alpha_{S,0}) = \frac{\mathrm{d}\sigma_{3}^{i}(\mu_{R}, \mu_{F}, \text{PDF}, \alpha_{S,0})}{\mathrm{d}\sigma_{2}^{i}(\mu_{R}, \mu_{F}, \text{PDF}, \alpha_{S,0})}$

• Event shapes

NNLO QCD corrections to event shapes at the LHC Alvarez, Cantero, Czakon, Llorente, Mitov, Poncelet JHEP 03 (2023) 129

25.04.24 IFJ PAN

Encoding QCD dynamics in event shapes

Using (global) event information to separate different regimes of QCD event evolution:

Energy-energy correlators

 $\frac{1}{\sigma_2} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\Delta\phi} = \frac{1}{\sigma_2} \sum_{ij} \int \frac{\mathrm{d}\sigma \; x_{\perp,i} x_{\perp,j}}{\mathrm{d}x_{\perp,i} \mathrm{d}x_{\perp,j} \mathrm{d}\cos\Delta\phi_{ij}} \delta(\cos\Delta\phi - \cos\Delta\phi_{ij}) \mathrm{d}x_{\perp,i} \mathrm{d}x_{\perp,j} \mathrm{d}\cos\Delta\phi_{ij} \,,$

Separation of energy scales: $H_{T,2} = p_{T,1} + p_{T,2}$ Ratio to 2-jet: $R^i(\mu_R, \mu_F, \text{PDF}, \alpha_{S,0}) = \frac{d\sigma_3^i(\mu_R, \mu_F, \text{PDF}, \alpha_{S,0})}{d\sigma_2^i(\mu_R, \mu_F, \text{PDF}, \alpha_{S,0})}$

Here: jets as input → experimentally advantageous (better calibrated, smaller non-pert.)

$$\frac{1}{\sigma_2} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\Delta\phi} = \frac{1}{\sigma_2} \sum_{ij} \int \frac{\mathrm{d}\sigma \; x_{\perp,i} x_{\perp,j}}{\mathrm{d}x_{\perp,i} \mathrm{d}x_{\perp,j} \mathrm{d}\cos\Delta\phi_{ij}} \delta(\cos\Delta\phi - \cos\Delta\phi_{ij}) \mathrm{d}x_{\perp,i} \mathrm{d}x_{\perp,j} \mathrm{d}\cos\Delta\phi_{ij},$$

- Insensitive to soft radiation through energy weighting $x_{T,i} = E_{T,i} / \sum E_{T,j}$
- Event topology separation:
 - Central plateau contain isotropic events
 - To the right: self-correlations, collinear and in-plane splitting
 - To the left: back-to-back

[ATLAS 2301.09351]

25.04.24 IFJ PAN

Rene Poncelet – IFJ PAN Krakow

ATLAS

anti- $k_{+}R = 0.4$

 $p_{\tau} > 60 \text{ GeV}$

Particle-level TEEC $\sqrt{s} = 13 \text{ TeV}; 139 \text{ fb}^{-1}$

Double differential TEEC

[ATLAS 2301.09351]

ATLAS

Particle-level TEEC √s = 13 TeV; 139 fb⁻¹ anti- $k_{t} R = 0.4$ $p_{_{T}} > 60 \text{ GeV}$ |η| < 2.4 $\mu_{R,F} = \mathbf{\hat{H}}_{T}$ $\alpha_{\rm s}({\rm m_{z}}) = 0.1180$ NNPDF 3.0 (NNLO) - Data --- LO - NLO - NNLO

25.04.24 IFJ PAN

Rene Poncelet – IFJ PAN Krakow

Running of $\alpha_{\mathbf{S}}$

Prompt photon production

Direct production

- Test of perturbative QCD
- Gluon PDF sensitivity
- Estimates for BSM backgrounds

Fragmentation

- Depends on non-perturbative fragmentation functions
- Separation from "direct" not unique

Why photon plus a jet pair?

- Non-back-to-back Born configurations
 → access to angular correlations between the photon and jets
- Access to different kinematic regimes through distinguishable photon
 → enhance direct, high- or low-z fragmentation
- Background process for BSM: $pp \rightarrow \gamma + Y(\rightarrow jj)$

Photon plus jet pair

Measurement of isolated-photon plus two-jet production in pp collisions at sqrt(s) = 13 TeV with the ATLAS detector [1912.09866]

Requirements on photon	$E_{\rm T}^{\gamma} > 150 \text{ GeV}, \eta^{\gamma} < 2.37 \text{ (excluding } 1.37 < \eta^{\gamma} < 1.56)$		
	$E_{\rm T}^{\rm iso} < 0.0042 \cdot E_{\rm T}^{\gamma} + 4.8 \text{ GeV} (\text{reconstruction level})$		
	$E_{\rm T}^{\rm iso} < 0.0042 \cdot E_{\rm T}^{\gamma} + 10 \text{ GeV} \text{ (particle level)}$		
Requirements on jets	at least two jets using anti- k_t algorithm with $R = 0.4$		
	$p_{\rm T}^{\rm jet} > 100 \; {\rm GeV}, y^{\rm jet} < 2.5, \Delta R^{\gamma-{\rm jet}} > 0.8$		
Phase space	total	fragmentation enriched	direct enriched
		$E_{\mathrm{T}}^{\gamma} < p_{\mathrm{T}}^{\mathrm{jet2}}$	$E_{\mathrm{T}}^{\gamma} > p_{\mathrm{T}}^{\mathrm{jet1}}$
Number of events	755 270	111 666	386 846

Modelled with hybrid isolation

$$E_{\perp}(r) \le E_{\perp \max}(r) = 0.1 E_{\perp}(\gamma) \left(\frac{1 - \cos(r)}{1 - \cos(R_{\max})}\right)^2 \text{ for } r \le R_{\max} = 0.1$$

 $E_{\perp}(r) \le E_{\perp \max} = 0.0042 E_{\perp}(\gamma) + 10 \text{ GeV } \text{ for } r \le R_{\max} = 0.4$

No fragmentation contribution → Purely pQCD through NNLO → focus on "inclusive" and "direct" PS

25.04.24 IFJ PAN

Theory - data comparisons

NNLO QCD

- Describes data well
- Improvements on the shape
- Small corrections
- Small remaining scale dependence

Comment on the SHERPA predictions

- Large NLO scale uncertainties
- The shape is not well described
- Maybe an artefact of multi-jet merging?

25.04.24 IFJ PAN

Inclusive vs. direct vs. fragmentation

Transverse photon energy

Scale choice

Perturbative convergence

NNLO result similar **but** $E_{\perp}(\gamma)$

- Larger (negative) NNLO corrections
- Larger scale dependence (for jet obs.)

Scale choice

Perturbative convergence

NNLO result similar **but** $E_{\perp}(\gamma)$

- Larger (negative) NNLO corrections
- Larger scale dependence (for jet obs.)

 \implies $E_{\perp}(\gamma)$ does not capture relevant scales for $pp \rightarrow \gamma + 2j$

• Better for "direct" enriched phase space $p_T(\gamma) > p_T(j_1)$ $\Rightarrow E_{\perp}(\gamma)$ closer to $H_T = p_T(\gamma) + p_T(j_1) + p_T(j_2)$ NNLO QCD needed for this conclusion

25.04.24 IFJ PAN

Summary & Outlook

Overview $2 \rightarrow 3$ massless cross sections

Overview $2 \rightarrow 3$ massless amplitudes

 $\Rightarrow pp \rightarrow \gamma jj$ first computation with full colour two-loop matrix elements

- Precision phenomenology is stable of LHC physics

 → but requires higher-order corrections!
 → NNLO QCD or even higher orders are needed to keep up with experimental precision
- Completion of massless 2→ 3 processes at hadron colliders through NNLO QCD

$$pp \to \gamma\gamma\gamma \qquad pp \to \gamma\gammaj \qquad pp \to \gamma jj \qquad pp \to jjj$$

- Most important bottlenecks from theory side:
 - → Real radiation contributions

(subtraction, Monte Carlo methods, efficiency, automation,...)

→ Two-loop amplitudes

(including external/internal masses are the current frontier)

Backup

25.04.24 IFJ PAN

Sector-improved residue subtraction

Considering working in CDR:

- \Rightarrow Virtuals are usually done in this regularization: $\hat{\sigma}_{ab}^{VV} = \sum c_i \epsilon^i + \mathcal{O}(\epsilon)$
- → Can we write the real radiation as such expansion?
 - → Difficult integrals, analytical impractical (except very simple observables)!
 - \rightarrow Numerics not possible, integrals are divergent $\rightarrow \epsilon$ -poles!

How to extract these poles? → Sector decomposition!

Divide and conquer the phase space:

 $/ F_{n+2}$

Divide and conquer the phase space

- Each $S_{i,k}$ (NLO), $S_{ij,k}/S_{i,k;j,l}$ (NNLO) has simpler divergences:
 - Soft limits of partons i and j
 - Collinear w.r.t partons k (and l) of partons i and j

$$S_{i,k} = \frac{1}{D_1 d_{i,k}} \quad D_1 = \sum_{ik} \frac{1}{d_{i,k}} \quad d_{i,k} = \frac{E_i}{\sqrt{s}} (1 - \cos \theta_{ik})$$

• Parametrization w.r.t. reference parton makes divergences explicit

$$\hat{\eta}_i = \frac{1}{2}(1 - \cos\theta_{ik}) \in [0, 1]$$
 $\hat{\xi}_i = \frac{u_i^0}{u_{\max}^0} \in [0, 1]$

• Example: Splitting function

$$\sim \frac{1}{s_{ik}} P(z)$$
 $s_{ik} = (p_i + p_k)^2 = 2p_k^0 u_{\max}^0 \xi_i \eta_i$ $\sim \frac{1}{\eta_i \xi_i}$

25.04.24 IFJ PAN

Sector decomposition II – triple collinear factorization

Sector decomposition III

Factorized singular limits in each sector:

$$\frac{1}{2\hat{s}} \int d\Phi_{n+2} \mathcal{S}_{kl,m} \left\langle \mathcal{M}_{n+2}^{(0)} \middle| \mathcal{M}_{n+2}^{(0)} \right\rangle F_{n+2} = \sum_{\text{sub-sec.}} \int d\Phi_n \prod dx_i \underbrace{x_i^{-1-b_i\epsilon}}_{\text{singular}} d\tilde{\mu}(\{x_i\}) \underbrace{\prod x_i^{a_i+1} \left\langle \mathcal{M}_{n+2} \middle| \mathcal{M}_{n+2} \right\rangle}_{\text{regular}} F_{n+2}$$

$$x_i \in \{\eta_1, \xi_1, \eta_2, \xi_2\}$$

Regularization of divergences:

Finite NNLO cross section

Phase space cut and differential observable introduce *mis-binning* : mismatch between kinematics in subtraction terms → leads to increased variance of the integrand → slow Monte Carlo convergence

New phase space parametrization [Czakon'19]:

Minimization of # of different subtraction kinematics in each sector

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space:

Requirements:

$$\{P, r_j, u_k\} \to \left\{\tilde{P}, \tilde{r}_j\right\}$$

- Invertible for fixed u_i : $\{\tilde{P}, \tilde{r}_j, u_k\} \rightarrow \{P, r_j, u_k\}$ Preserve Born invariant mass: $q^2 = \tilde{q}^2, \quad \tilde{q} = \tilde{P} \sum_{i=1}^{n_{fr}} \tilde{r}_j$ Main steps:
- Generate Born configuration
- Generate unresolved partons u_i
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space:

Requirements:

$$\{P, r_j, u_k\} \to \left\{\tilde{P}, \tilde{r}_j\right\}$$

Main steps:

orn invariant mass:
$$P, r_j, u_k
ightarrow rac{P}{Q} \rightarrow \{P, r_j, u_k\}$$

 $q^2 = \tilde{q}^2, \quad \tilde{q} = \tilde{P} - \sum_{j=1}^{n_{fr}} \tilde{r}_j$

- Generate Born configuration
- Generate unresolved partons u_i
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

25.04.24 IFJ PAN

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space:

Requirements:

$$\{P, r_j, u_k\} \to \left\{\tilde{P}, \tilde{r}_j\right\}$$

- Keep direction of reference r fixed
- Invertible for fixed u_i : $\{\tilde{P}, \tilde{r}_j, u_k\} \rightarrow \{P, r_j, u_k\}$ Preserve Born invariant mass: $q^2 = \tilde{q}^2, \quad \tilde{q} = \tilde{P} \sum_{k=1}^{n_{fr}} \tilde{r}_j$ Main steps:
- Generate Born configuration
- Generate unresolved partons u_i
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space:

Requirements:

$$\{P, r_j, u_k\} \to \left\{\tilde{P}, \tilde{r}_j\right\}$$

- Invertible for fixed u_i : $\{\tilde{P}, \tilde{r}_j, u_k\} \rightarrow \{P, r_j, u_k\}$ Preserve Born invariant mass: $q^2 = \tilde{q}^2, \quad \tilde{q} = \tilde{P} \sum_{i=1}^{n_{fr}} \tilde{r}_j$
- Generate Born configuration
- Generate unresolved partons u_i
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

25.04.24 IFJ PAN

t'HV corrections

Observables: Implemented by infrared safe measurement function (MF) F_m

Infrared property in STRIPPER context:

• $\{x_i\} \rightarrow 0 \leftrightarrow \text{single unresolved}$ limit

$$\Rightarrow \mathbf{F}_{n+2} \rightarrow \mathbf{F}_{n+1}$$

• $\{x_i\} \rightarrow 0 \leftrightarrow \text{double unresolved}$ limit

$$\Rightarrow F_{n+2} \to F_n \\ \Rightarrow F_{n+1} \to F_n$$

Tool for new formulation in the 't Hooft Veltman scheme:

Parameterized MF F_{n+1}^{α}

- $F_n^{\alpha} \equiv 0$ for $\alpha \neq 0$ (NLO MF)
- 'arbitrary' F⁰_n
 (NNLO MF)
- $\alpha \neq 0 \Rightarrow DU = 0$ and SU separately finite

Example: $F_{n+1}^{\alpha} = F_{n+1}\Theta_{\alpha}(\{\alpha_i\})$ with $\Theta_{\alpha} = 0$ if some $\alpha_i < \alpha$

$$\sigma_{SU} = \sigma_{SU}^{RR} + \sigma_{SU}^{RV} + \sigma_{SU}^{C1} \quad \text{where} \quad \sigma_{SU}^{c} = \int d\Phi_{n+1} \left(I_{n+1}^{c} F_{n+1} + I_{n}^{c} F_{n} \right)$$

NLO measurement function $(\alpha \neq 0)$:

$$\int d\Phi_{n+1} \left(I_{n+1}^{\mathsf{RR}} + I_{n+1}^{\mathsf{RV}} + I_{n+1}^{\mathsf{C1}} \right) F_{n+1}^{\alpha} = \text{finite in 4 dim.}$$

All divergences cancel in *d*-dimensions:

$$\sum_{c} \int \mathrm{d}\Phi_{n+1} \left[\frac{I_{n+1}^{c,(-2)}}{\epsilon^2} + \frac{I_{n+1}^{c,(-1)}}{\epsilon} \right] F_{n+1}^{\alpha} \equiv \sum_{c} \mathcal{I}^{c} = 0$$

25.04.24 IFJ PAN

t'HV corrections

$$\sigma_{SU} = \sigma_{SU}^{RR} + \sigma_{SU}^{RV} + \sigma_{SU}^{C1} \underbrace{-\mathcal{I}^{RR} - \mathcal{I}^{RV} - \mathcal{I}^{C1}}_{=0}$$

$$\sigma_{SU}^{c} - \mathcal{I}^{c} = \int d\Phi_{n+1} \left\{ \left[\frac{I_{n+1}^{c,(-2)}}{\epsilon^{2}} + \frac{I_{n+1}^{c,(-1)}}{\epsilon} + I_{n+1}^{c,(0)} \right] F_{n+1} + \left[\frac{I_{n}^{c,(-2)}}{\epsilon^{2}} + \frac{I_{n}^{c,(-1)}}{\epsilon} + I_{n}^{c,(0)} \right] F_{n} \right\}$$

$$- \int d\Phi_{n+1} \left[\frac{I_{n+1}^{c,(-2)}}{\epsilon^{2}} + \frac{I_{n+1}^{c,(-1)}}{\epsilon} \right] F_{n+1} \Theta_{\alpha}(\{\alpha_{i}\})$$

$$= \int d\Phi_{n+1} \left[\frac{I_{n+1}^{c,(-2)}F_{n+1} + I_{n}^{c,(-2)}F_{n}}{\epsilon^{2}} + \frac{I_{n+1}^{c,(-1)}F_{n+1} + I_{n}^{c,(-1)}F_{n}}{\epsilon} \right] (1 - \Theta_{\alpha}(\{\alpha_{i}\}))$$

$$+ \int d\Phi_{n+1} \left[I_{n+1}^{c,(0)}F_{n+1} + I_{n}^{c,(0)}F_{n} \right] + \int d\Phi_{n+1} \left[\frac{I_{n}^{c,(-2)}}{\epsilon^{2}} + \frac{I_{n}^{c,(-1)}}{\epsilon} \right] F_{n} \Theta_{\alpha}(\{\alpha_{i}\})$$

 $=: \underbrace{Z^{c}(\alpha)}_{\text{integrable, zero volume for } \alpha \to 0} + \underbrace{C^{c}}_{\text{no divergencies}} + \underbrace{N^{c}(\alpha)}_{\text{only } F_{n} \to \text{DU}}$

25.04.24 IFJ PAN

t'HV corrections

Looks like slicing, but it is slicing *only* for divergences \rightarrow no actual slicing parameter in result

Powerlog-expansion:

$$N^{c}(\alpha) = \sum_{k=0}^{\ell_{\max}} \ln^{k}(\alpha) N_{k}^{c}(\alpha)$$

- all $N_k^c(\alpha)$ regular in α
- start expression independent of $\alpha \Rightarrow$ all logs cancel
- only $N_0^c(0)$ relevant

Putting parts together:

$$\sigma_{SU} - \sum_c \mathit{N}^c_0(0)$$
 and $\sigma_{DU} + \sum_c \mathit{N}^c_0(0)$

are finite in 4 dimension

\downarrow

SU contribution: $\sigma_{SU} - \sum_c N_0^c = \sum_c C^c$ original expression σ_{SU} in 4-dim without poles, no further ϵ pole cancellation

25.04.24 IFJ PAN

C++ framework

- Formulation allows efficient algorithmic implementation → STRIPPER
- High degree of automation:
 - Partonic processes (taking into account all symmetries)
 - Sectors and subtraction terms
 - Interfaces to Matrix-element providers + O(100) hardcoded: AvH, OpenLoops, Recola, NJET, HardCoded

→ In practice: Only two-loop matrix elements required

- **Broad range of applications** through additional facilities:
 - Narrow-Width & Double-Pole Approximation
 - Fragmentation
 - Polarised intermediate massive bosons
 - (Partial) Unweighting → Event generation for **HighTEA**
 - Interfaces: FastNLO, FastJet

25.04.24 IFJ PAN

Two-loop five-point amplitudes

Massless: [Chawdry'19'20'21] (3A+2j,2A+3j) [Abreu'20'21] (3A+2j,5j) [Agarwal'21] (2A+3j) [Badger'21'23] (5j,gggAA,jjjjA)

1 external mass: [Abreu'21] (W+4j) [Badger'21'22] (Hqqgg,W4q,Wajjj) [Hartanto'22] (W4q)

25.04.24 IFJ PAN

Overview

Old school approach:

Automated framework using finite fields to avoid expression swell based on FiniteFlow [Peraro'19]

Projection to scalar integrals

Factorizing decay: $A_6^{(L)} = A_5^{(L)\mu} D_\mu P$ $M_6^{2(L)} = \sum_{\text{spin}} A_6^{(0)^*} A_6^{(L)} = M_5^{(L)\mu\nu} D_{\mu\nu} |P|^2$

Projection on scalar functions (FORM+Mathematica): \rightarrow anti-commuting γ_5 + Larin prescription

 $M_5^{(L)\mu\nu} = \sum_{i=1}^{16} a_i^{(L)} v_i^{\mu\nu}$

 $a_i^{(L),p} = \sum c_{j,i}(\{p\},\epsilon)\mathcal{I}(\{p\},\epsilon)$

25.04.24 IFJ PAN

Rene Poncelet – IFJ PAN Krakow

 $a_i^{(L)} = a_i^{(L),\text{even}} + \text{tr}_5 a_i^{(L),\text{odd}}$

$$a_i^{(L),p} = \sum_i c_{j,i}(\{p\}, \epsilon) \mathcal{I}(\{p\}, \epsilon) \longrightarrow \text{ prohibitively large number of integrals}$$

$$\mathcal{I}_i(\{p\}, \epsilon) \equiv \mathcal{I}(\vec{n_i}, \{p\}, \epsilon) = \int \frac{\mathrm{d}^d k_1}{(2\pi)^d} \frac{\mathrm{d}^d k_2}{(2\pi)^d} \prod_{k=1}^{11} D_k^{-n_{i,k}}(\{p\}, \{k\})$$

Integration-By-Parts identities connect different integrals → system of equations → only a small number of independent "master" integrals

$$0 = \int \frac{\mathrm{d}^d k_1}{(2\pi)^d} \frac{\mathrm{d}^d k_2}{(2\pi)^d} l_\mu \frac{\partial}{\partial l^\mu} \prod_{k=1}^{11} D_k^{-n_{i,k}}(\{p\},\{k\}) \quad \text{with} \quad l \in \{p\} \cap \{k\}$$

LiteRed (+ Finite Fields)

$$a_i^{(L),p} = \sum_i d_{j,i}(\{p\},\epsilon) \operatorname{MI}(\{p\},\epsilon)$$

25.04.24 IFJ PAN

Master integrals & finite remainder

Differential Equations: $d\vec{MI} = dA(\{p\}, \epsilon)\vec{MI}$ [Remiddi, 97]Canonical basis: $d\vec{MI} = \epsilon d\tilde{A}(\{p\})\vec{MI}$ [Henn, 13]

Simple iterative solution

$$MI_{i} = \sum_{w} \epsilon^{w} \tilde{MI}_{i}^{w} \text{ with } \tilde{MI}_{i}^{w} = \sum_{j} c_{i,j} m_{j}$$
Chen-iterated integrals
"Pentagon"-functions
[Chicherin, Sotnikov, 20]
[Chicherin, Sotnikov, Zoia, 21]

Putting everything together (and removing of IR poles):

$$f_i^{(L),p} = a_i^{(L),p} - \text{poles}$$
 $f_i^{(L),p} = \sum_j c_{i,j}(\{p\})m_j + \mathcal{O}(\epsilon)$

25.04.24 IFJ PAN

Reconstruction of Amplitudes

[Badger'21]

New optimizations

- Syzygy's to simplify IBPs
- Exploitation of Q-linear relations
- Denominator Ansaetze
- On-the-fly partial fractioning

amplitude	helicity	original	stage 1	stage 2	stage 3	stage 4
$A^{(2),1}_{34;q}$	-++-+	94/91	74/71	74/0	22/18	22/0
$A^{(2),1}_{34;q}$	-+-++	93/89	90/86	90/0	24/14	18/0
$A^{(2),1/N_c^2}_{34;q}$	-++-+	90/88	73/71	73/0	23/18	22/0
$A^{(2),1/N_c^2}_{34;q}$	-+-++	90/86	86/82	86/0	24/14	19/0
$A^{(2),1/N_c}_{34;l}$	-+-++	89/82	74/67	73/0	27/14	20/0
$A^{(2),1/N_c}_{34;l}$	-++-+	85/81	61/58	60/0	27/18	20/0
$A^{(2),N_c^2}_{34;q}$	-+-++	58/55	54/51	$\overline{53/0}$	20/18	20/0

Massive reduction of complexity

25.04.24 IFJ PAN

Two-loop matrix element stability

- Stable evaluation requires high floating point precision for rational functions
- In rarer cases higher precision "Pentagon" functions necessary
- 2.2 million events needed
 → fast evaluation essential

Quality of leading colour the approximation

HighTEA

25.04.24 IFJ PAN

HighTEA

How to make this more efficient/environment-friendly/ accessible/faster?

HighTEA: High energy Theory Event Analyser [2304.05993]

Michał Czakon,^a Zahari Kassabov,^b Alexander Mitov,^c Rene Poncelet,^c Andrei Popescu^c

^a Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University, D-52056 Aachen, Germany

^bDAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom ^cCavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom *E-mail:* mczakon@physik.rwth-aachen.de, zk261@cam.ac.uk, adm74@cam.ac.uk, poncelet@hep.phy.cam.ac.uk, andrei.popescu@cantab.net

https://www.precision.hep.phy.cam.ac.uk/hightea

high tead for your freshly brewed analysis

25.04.24 IFJ PAN

- Database of precomputed "Theory Events"
 - Field Computation
 - ➤ Currently this means partonic fixed order events
 - Extensions to included showered/resummed/hadronized events is feasible
 - → (Partially) Unweighting to increase efficiency
- Analysis of the data through an user interface
 - ✤ Easy-to-use
 - → Fast

→ Flexible:

- Observables from basic 4-momenta
- Free specification of bins
- Renormalization/Factorization Scale variation
 - PDF (member) variation
 - Specify phase space cuts

Not so new idea: LHE [Alwall et al '06], Ntuple [BlackHat '08'13],

Factorizations

Factorizing renormalization and factorization scale dependence:

$$w_{s}^{i,j} = w_{\text{PDF}}(\mu_{F}, x_{1}, x_{2}) w_{\alpha_{s}}(\mu_{R}) \left(\sum_{i,j} c_{i,j} \ln(\mu_{R}^{2})^{i} \ln(\mu_{F}^{2})^{j} \right)$$

PDF dependence:

$$w_{\text{PDF}}(\mu, x_1, x_2) = \sum_{ab \in \text{channel}} f_a(x_1, \mu) f_b(x_2, \mu)$$

 α_s dependence:

 $w_{\alpha_s}(\mu) = (\alpha_s(\mu))^m$

Allows full control over scales and PDF

25.04.24 IFJ PAN

HighTEA interface

Available Processes

Processes currently implemented in our STRIPPER framework through NNLO QCD

* V processes include leptonic decay mode(s)

25.04.24 IFJ PAN

The Vision

Transverse Thrust @ NNLO QCD

25.04.24 IFJ PAN

Rene Poncelet – IFJ PAN Krakow