Precision phenomenology with multi-jet final states at the LHC

Dr. rer. nat. Rene Poncelet	From Oct 2023	Assistant Professor (Adjunkt) IFJ PAN, Krakow
	2021 - 2023	Leverhulme Early Career Fellow Cavendish Laboratory, Cambridge
LEVERHULME TRUST Isaac Newton Trust	2018 - 2021	Research Associate (PostDoc) Cavendish Laboratory, Cambridge
	2015 - 2018	PhD RWTH Aachen University, Aachen
UNIVERSITY OF CAMBRIDGE	2010 - 2015	Bachelor/Master of Science Physics Georg-August University, Göttingen

22.9.23 Milano-Bicocca

- Introduction
- NNLO QCD predictions for multi-jet observables and event shapes
- HighTEA
- Sector-improved residue subtraction scheme
- Wider research context

What is the universe made of and where does it come from?

Credit: NASA

22.9.23 Milano-Bicocca

What are the fundamental building blocks of matter?

Standard Model of Particle Physics and beyond

BUT:

$$\begin{split} \chi &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i \not F \mathcal{N} \not \mu + h.c. \\ &+ \not X_i \mathcal{Y}_{ij} \mathcal{X}_{j} \not p + h.c. \\ &+ | \mathcal{D}_{\mu} \not p |^2 - V(\phi) \end{split}$$

Credit: CERN

Credit: ATLAS

- Is the Higgs a fundamental scalar?
- What is dark matter?
- Why is there a matter-anti-matter asymmetry?

Credit: NASA

22.9.23 Milano-Bicocca

LHC Precision era and future experiments

22.9.23 Milano-Bicocca

LHC Precision era and future experiments

22.9.23 Milano-Bicocca

Precision through higher orders

Next-to-next-to-leading order QCD needed to match experimental precision! → In some cases even next-to-next-to-next-to-leading order!

The NNLO QCD revolution

NNLO QCD for $2 \rightarrow 3$ processes

22.9.23 Milano-Bicocca

NNLO QCD for $2 \rightarrow 3$ processes - inputs

Two-loop amplitudes

- (Non-) planar 5 point massless [Chawdry'19'20'21, Abreu'20'21'23, Agarwal'21, Badger'21'23]
 → triggered by efficient MI representation [Chicherin'20]
- 5 point with one external mass [Abreu'20,Syrrakos'20,Canko'20,Badger'21'22,Chicherin'22]
- For three-jets → LC [Abreu'20'21] (checked against NJET [Badger'12'21])

One-loop amplitudes → OpenLoops [Buccioni'19]

• Many legs and IR stable (soft and collinear limits)

Double-real Born amplitudes → AvHlib[Bury'15]

 IR finite cross-sections → NNLO subtraction schemes qT-slicing [Catani'07], N-jettiness slicing [Gaunt'15/Boughezal'15], Antenna [Gehrmann'05-'08], Colorful [DelDuca'05-'15], Projetction [Cacciari'15], Geometric [Herzog'18], Unsubtraction [Aguilera-Verdugo'19], Nested collinear [Caola'17], Local Analytic [Magnea'18], Sector-improved residue subtraction [Czakon'10-'14,'19]

Precision tests of QCD at the LHC

• At the LHC QCD is part of any process!

- 1) The limiting factor in many analyses is QCD and associated uncertainties.
 → Radiative corrections indispensable
- 2) How well we do know QCD? Coupling constant, running, PDFs, ...
- The production of high energy jets allow to probe pQCD at high energies directly

$$\mathcal{L}_{\text{QCD}} = \bar{q}_i (\gamma^{\mu} \mathcal{D}_{\mu} - m_i) q_i - \frac{1}{4} F^{\mu\nu}_a F^a_{\mu\nu}$$

1) Testing the predicted dynamics

2) Extract the coupling constant

22.9.23 Milano-Bicocca

Multi-jet observables

NLO theory unc. > experimental unc.

• NNLO QCD needed for precise theory-data comparisons

→ Restricted to two-jet data [Currie'17+later][Czakon'19]

- New NNLO QCD three-jet → access to more observables
 - Jet ratios

Next-to-Next-to-Leading Order Study of Three-Jet Production at the LHC Czakon, Mitov, **Poncelet** [2106.05331]

$$R^{i}(\mu_{R}, \mu_{F}, \text{PDF}, \alpha_{S,0}) = \frac{\mathrm{d}\sigma_{3}^{i}(\mu_{R}, \mu_{F}, \text{PDF}, \alpha_{S,0})}{\mathrm{d}\sigma_{2}^{i}(\mu_{R}, \mu_{F}, \text{PDF}, \alpha_{S,0})}$$

• Event shapes

NNLO QCD corrections to event shapes at the LHC Alvarez, Cantero, Czakon, Llorente, Mitov, Poncelet [2301.01086]

22.9.23 Milano-Bicocca

Encoding QCD dynamics in event shapes

Using (global) event information to separate different regimes of QCD event evolution:

- Thrust & Thrust-Minor $T_{\perp} = \frac{\sum_{i} |\vec{p}_{T,i} \cdot \hat{n}_{\perp}|}{\sum_{i} |\vec{p}_{T,i}|}$, and $T_{m} = \frac{\sum_{i} |\vec{p}_{T,i} \times \hat{n}_{\perp}|}{\sum_{i} |\vec{p}_{T,i}|}$.
- Energy-energy correlators

$$\frac{1}{\sigma_2} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\Delta\phi} = \frac{1}{\sigma_2} \sum_{ij} \int \frac{\mathrm{d}\sigma \, x_{\perp,i} x_{\perp,j}}{\mathrm{d}x_{\perp,i} \mathrm{d}x_{\perp,j} \mathrm{d}\cos\Delta\phi_{ij}} \delta(\cos\Delta\phi - \cos\Delta\phi_{ij}) \mathrm{d}x_{\perp,i} \mathrm{d}x_{\perp,j} \mathrm{d}\cos\Delta\phi_{ij} \,,$$

 more computed: aplanarity, sphericity, C and D variables
 Separation of operations: H = n = 1 m

Separation of energy scales: $H_{T,2} = p_{T,1} + p_{T,2}$

Ratio to 2-jet:
$$R^i(\mu_R, \mu_F, \text{PDF}, \alpha_{S,0}) = \frac{\mathrm{d}\sigma_3^i(\mu_R, \mu_F, \text{PDF}, \alpha_{S,0})}{\mathrm{d}\sigma_2^i(\mu_R, \mu_F, \text{PDF}, \alpha_{S,0})}$$

Here: use jets as input → experimentally advantageous (better calibrated, smaller non-pert.)

Transverse Thrust @ NNLO QCD

22.9.23 Milano-Bicocca

$$\frac{1}{\sigma_2} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\Delta\phi} = \frac{1}{\sigma_2} \sum_{ij} \int \frac{\mathrm{d}\sigma \; x_{\perp,i} x_{\perp,j}}{\mathrm{d}x_{\perp,i} \mathrm{d}x_{\perp,j} \mathrm{d}\cos\Delta\phi_{ij}} \delta(\cos\Delta\phi - \cos\Delta\phi_{ij}) \mathrm{d}x_{\perp,i} \mathrm{d}x_{\perp,j} \mathrm{d}\cos\Delta\phi_{ij},$$

- Insensitive to soft radiation through energy weighting $x_{T,i} = E_{T,i} / \sum E_{T,j}$
- Event topology separation:
 - Central plateau contain isotropic events
 - To the right: self-correlations, collinear and in-plane splitting
 - To the left: back-to-back

[ATLAS 2301.09351]

22.9.23 Milano-Bicocca

ATLAS

Particle-level TEEC

√s = 13 TeV; 139 fb⁻¹

anti- $k_{+}R = 0.4$

 $p_{\tau} > 60 \text{ GeV}$

Systematic Uncertainties TEEC

Scale dependence is the dominating uncertainty \rightarrow NNLO QCD required to match exp.

Double differential TEEC

[ATLAS 2301.09351]

ATLAS

Particle-level TEEC √s = 13 TeV; 139 fb⁻¹ anti- $k_{t} R = 0.4$ $p_{\tau} > 60 \text{ GeV}$ $|\eta| < 2.4$ $\mu_{R,F} = \mathbf{\hat{H}}_{T}$ $\alpha_{\rm s}({\rm m_{z}}) = 0.1180$ NNPDF 3.0 (NNLO) - Data --- LO - NLO - NNLO

Strong coupling dependence

22.9.23 Milano-Bicocca

$\alpha_{\mathbf{S}}$ from TEEC @ NNLO by ATLAS

- NNLO QCD extraction from multi-jets → will contribute to PDG for the first time
- Significant improvement to 8 TeV
 → driven by NNLO QCD corrections
- Individual precision large but comparable to top or jets-data.
- However: extraction at high energy scales

Running of $\alpha_{\mathbf{S}}$

22.9.23 Milano-Bicocca

Using the running of $\alpha_{\mathbf{S}}$ to probe NP

[Llorente, Nachman 1807.00894]

Indirect constraints to NP through modified running:

$$\alpha_{s}(Q) = \frac{1}{\beta_{0} \log z} \left[1 - \frac{\beta_{1}}{\beta_{0}^{2}} \frac{\log(\log z)}{\log z} \right]; \quad z = \frac{Q^{2}}{\Lambda_{QCD}^{2}} \qquad \beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$

$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New termion limits using NLOJet++ & ATLAS data

$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$

$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$

$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$

22.9.23 Milano-Bicocca

Rene Poncelet

 $\beta_0 = \frac{1}{4\pi} \left(11 - \frac{2}{3}n_f - \frac{4}{3}n_X T_X \right)$

 \rightarrow much improved bounds

... or 'new' SM dynamics

Possible SM explanations

- Residual PDF effects \rightarrow high x,Q²?
- EW corrections?
- Maybe effect from LC approximation in two-loop ME?

$$\mathcal{R}^{(2)}(\mu_R^2) = 2 \operatorname{Re} \left[\mathcal{M}^{\dagger(0)} \mathcal{F}^{(2)} \right] (\mu_R^2) + \left| \mathcal{F}^{(1)} \right|^2 (\mu_R^2)$$
$$\equiv \mathcal{R}^{(2)}(s_{12}) + \sum_{i=1}^4 c_i \ln^i \left(\frac{\mu_R^2}{s_{12}} \right)$$
$$\mathcal{R}^{(2)}(s_{12}) \approx \mathcal{R}^{(2)l.c.}(s_{12})$$

- Experimental systematics?
- Resummation?

Either case interesting!

22.9.23 Milano-Bicocca

How to make this more efficient/environment-friendly/ accessible/faster?

HighTEA: **High energy Theory Event Analyser** [2304.05993]

Michał Czakon,^a Zahari Kassabov,^b Alexander Mitov,^c Rene Poncelet,^c Andrei Popescu^c

^a Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University, D-52056 Aachen, Germany

^bDAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom ^cCavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom *E-mail:* mczakon@physik.rwth-aachen.de, zk261@cam.ac.uk, adm74@cam.ac.uk, poncelet@hep.phy.cam.ac.uk, andrei.popescu@cantab.net

https://www.precision.hep.phy.cam.ac.uk/hightea

high tead for your freshly brewed analysis

22.9.23 Milano-Bicocca

- Database of precomputed "Theory Events"
 - Equivalent to a full fledged computation
 - ➤ Currently this means partonic fixed order events
 - Extensions to included showered/resummed/hadronized events is feasible
 - → (Partially) Unweighting to increase efficiency
- Analysis of the data through an user interface
 - ✤ Easy-to-use
 - → Fast

→ Flexible:

- Observables from basic 4-momenta
- Free specification of bins
- Renormalization/Factorization Scale variation
 - PDF (member) variation
 - Specify phase space cuts

Not so new idea: LHE [Alwall et al '06], Ntuple [BlackHat '08'13],

Factorizations

Factorizing renormalization and factorization scale dependence:

$$w_{s}^{i,j} = w_{\text{PDF}}(\mu_{F}, x_{1}, x_{2}) w_{\alpha_{s}}(\mu_{R}) \left(\sum_{i,j} c_{i,j} \ln(\mu_{R}^{2})^{i} \ln(\mu_{F}^{2})^{j} \right)$$

PDF dependence:

$$w_{\text{PDF}}(\mu, x_1, x_2) = \sum_{ab \in \text{channel}} f_a(x_1, \mu) f_b(x_2, \mu)$$

 α_s dependence:

 $w_{\alpha_s}(\mu) = (\alpha_s(\mu))^m$

Allows full control over scales and PDF

22.9.23 Milano-Bicocca

HighTEA interface

Available Processes

Processes currently implemented in our STRIPPER framework through NNLO QCD

* V processes include leptonic decay mode(s)

The Vision

Hadronic cross section

Partonic cross section beyond LO

Perturbative expansion of partonic cross section: $\hat{\sigma}_{ab\to X} = \hat{\sigma}_{ab\to X}^{(0)} + \hat{\sigma}_{ab\to X}^{(1)} + \hat{\sigma}_{ab\to X}^{(2)} + \mathcal{O}(\alpha_s^3)$

Contributions with different multiplicities and # convolutions:

$$\hat{\sigma}_{ab}^{(2)} = \frac{\hat{\sigma}_{ab}^{\mathrm{RR}} + \hat{\sigma}_{ab}^{\mathrm{RV}} + \hat{\sigma}_{ab}^{\mathrm{VV}} + \hat{\sigma}_{ab}^{\mathrm{C2}} + \hat{\sigma}_{ab}^{\mathrm{C1}}}{\checkmark}$$

Each term separately IR divergent. But sum is:

→ finite

- \rightarrow regularization scheme independent
- Considering CDR ($d = 4 2\epsilon$):
- → Laurent expansion:

$$\hat{\sigma}_{ab}^C = \sum_{i=-4}^0 c_i \epsilon^i + \mathcal{O}(\epsilon)$$

$$\hat{\sigma}_{ab}^{\mathrm{RR}} = \frac{1}{2\hat{s}} \int \mathrm{d}\Phi_{n+2} \left\langle \mathcal{M}_{n+2}^{(0)} \middle| \mathcal{M}_{n+2}^{(0)} \right\rangle \mathbf{F}_{n+2}$$

$$\hat{\sigma}_{ab}^{\mathrm{RV}} = \frac{1}{2\hat{s}} \int \mathrm{d}\Phi_{n+1} \, 2\mathrm{Re} \left\langle \mathcal{M}_{n+1}^{(0)} \Big| \mathcal{M}_{n+1}^{(1)} \right\rangle \mathrm{F}_{n+1}$$

$$\hat{\sigma}_{ab}^{\text{VV}} = \frac{1}{2\hat{s}} \int \mathrm{d}\Phi_n \left(2\text{Re} \left\langle \mathcal{M}_n^{(0)} \middle| \mathcal{M}_n^{(2)} \right\rangle + \left\langle \mathcal{M}_n^{(1)} \middle| \mathcal{M}_n^{(1)} \right\rangle \right) \mathbf{F}_n$$

$$\hat{\sigma}_{ab}^{C1} = (\text{single convolution}) F_{n+1}$$

$$\hat{\sigma}_{ab}^{C2} = (\text{double convolution}) F_n$$

22.9.23 Milano-Bicocca

Sector decomposition I

- Considering working in CDR:
- \rightarrow Virtuals are usually done in this regularization
- → Real radiation:
 - → Very difficult integrals, analytical impractical (except very simple cases)!
 - \rightarrow Numerics not possible, integrals are divergent: ϵ -poles!

How to extract these poles? → Sector decomposition!

Divide and conquer the phase space:

Sector decomposition II

Divide and conquer the phase space:

- → Each $S_{ij,k}/S_{i,k;j,l}$ has simpler divergences. appearing as $1/s_{ijk}$ $1/s_{ik}/s_{jl}$ Soft and collinear (w.r.t parton k,l) of partons i and j
- → Parametrization w.r.t. reference parton:

$$\hat{\eta}_i = \frac{1}{2}(1 - \cos\theta_{ir}) \in [0, 1]$$
 $\hat{\xi}_i = \frac{u_i^0}{u_{\max}^0} \in [0, 1]$

II

22.9.23 Milano-Bicocca

 $\xi_2 > \xi_1$

 $\eta_1 > \eta_2$

 $\eta_2 \rightarrow \eta_2 \eta_1$

 $\xi_1 > \xi_2$ $\xi_2 \to \xi_2 \xi_{2\max} \xi$

 $\eta_1 > \eta_2$

 $\eta_2 \rightarrow \eta_2 \eta_1$

Sector decomposition III

Factorized singular limits in each sector:

$$\frac{1}{2\hat{s}} \int \mathrm{d}\Phi_{n+2} \,\mathcal{S}_{kl,m} \left\langle \mathcal{M}_{n+2}^{(0)} \middle| \mathcal{M}_{n+2}^{(0)} \right\rangle \mathbf{F}_{n+2} = \sum_{\text{sub-sec.}} \int \mathrm{d}\Phi_n \prod \mathrm{d}x_i \underbrace{x_i^{-1-b_i\epsilon}}_{\text{singular}} \mathrm{d}\tilde{\mu}(\{x_i\}) \underbrace{\prod x_i^{a_i+1} \left\langle \mathcal{M}_{n+2} \middle| \mathcal{M}_{n+2} \right\rangle}_{\text{regular}} \mathbf{F}_{n+2}$$

Regularization of divergences:

$$x^{-1-b\epsilon} = \underbrace{\frac{-1}{b\epsilon}}_{\text{pole term}} + \underbrace{[x^{-1-b\epsilon}]_{+}}_{\text{reg. + sub.}} \qquad \qquad \int_{0}^{1} \mathrm{d}x \, [x^{-1-b\epsilon}]_{+} \, f(x) = \int_{0}^{1} \frac{f(x) - f(0)}{x^{1+b\epsilon}}$$

Finite NNLO cross section

22.9.23 Milano-Bicocca

C++ framework

- Formulation allows efficient algorithmic implementation
- High degree of automation:
 - Partonic processes (taking into account all symmetries)
 - Sectors and subtraction terms
 - Interfaces to Matrix-element providers: AvH, OpenLoops, Recola, NJET, HardCoded
 → Only two-loop matrix elements required
- **Broad range of applications** through additional facilities:
 - Narrow-Width & Double-Pole Approximation
 - Fragmentation
 - Polarised intermediate massive bosons
 - (Partial) Unweighting → Event generation for **HighTEA**
 - Interfaces: FastNLO, FastJet

22.9.23 Milano-Bicocca

The NNLO QCD revolution

Research context

Research network

22.9.23 Milano-Bicocca

Experimental collaborations

NNLO QCD computations

- Top-quark pair production and leptonic decays
 [1901.05407] [2008.11133]
 + b-quark fragmentation: [2102.08267] [2210.06078]
- Vector + jets

W + charm-jet [2011.01011] [2212.00467] Z + b-jet [2205.11879]

- Polarised vector-bosons
 W W [2102.13583]
 W+jet [2109.14336] [2204.12394]
- Inclusive jets [1907.12911]
- "2 → 3" processes

 $pp \rightarrow \gamma\gamma\gamma$ [1911.00479] $pp \rightarrow \gamma\gammaj$ [2105.06940] $pp \rightarrow jjj$ [2106.05331] [2301.01086] $pp \rightarrow \gamma jj$ [2304.06682] $pp \rightarrow W + 2 b-jets$ [2205.01687] [2209.03280]

Exp. collaborations

DESY CMS top-quark group (*Behnke, Aldalya Martin*) → [CMS-PAS-TOP-20-006]

Top spin-correlations in ATLAS (*Howard*) → [1903.07570]

W+charm CMS measurement (*Hernandez*) → [2308.02285]

Approved COST network COMETA

ATLAS multi-jet group at CERN (*Llorente, Roloff, LeBlanc*) $\Rightarrow \alpha_S$ from TEEC [2301.09351] \Rightarrow More to appear

Future directions

Modern MC integration/sampling

- Interdisciplinary work with *Steffen Schumann* (Göttingen) & *David Yallup* (Kalvi Institute Cambridge)
- 1) "Nested sampling" → phase space explorations
 2) "Normalising flows" → phase space sampler using Neural Networks

NNLO with massive bosons: V + 2-jet, VV + 1-jet

• A lot to do: amplitudes + cross sections → rich phenomenology!

N3LO QCD for $2 \rightarrow 2$ processes

 First with slicing methods then towards local N3LO subtraction schemes (> Sebastian Sapeta (Cracow))

Summary

Backup

(Partially) Unweighting

The hadronic cross section in collinear factorization:

Hit-And-Miss Algorithm:

$$d\sigma(P_1, P_2) = \sum_{ab} \iint_0^1 dx_1 dx_2 f_a(x_1, \mu_F^2) f_b(x_2, \mu_F^2) d\hat{\sigma}_{ab}(x_1 P_1, x_2 P_2)$$
$$\hat{\sigma}_{ab \to X} = \hat{\sigma}_{ab \to X}^{(0)} + \hat{\sigma}_{ab \to X}^{(1)} + \hat{\sigma}_{ab \to X}^{(2)} + \mathcal{O}(\alpha_s^3)$$

`

Using MC method for integration:

 $w_{\rm max}$

$$\sigma_{\rm tot} = \frac{1}{n} \sum_{i}^{n} \left(\sum_{j}^{m_i} w_s^{i,j} \right)$$

1

Beyond LO events might correspond to more than one kinematic: Subtraction events!

Store each sub-event with weight:

Accept each event i with probability: $\left(\sum_{i}^{m_{i}} w_{s}^{i,j}\right) / w_{\max}$ $w_s^{i,j} / \left(\sum^{m_i} w_s^{i,j} \right)$

```
22.9.23 Milano-Bicocca
```

The server

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space:

Requirements:

$$\{P, r_j, u_k\} \rightarrow \left\{\tilde{P}, \tilde{r}_j\right\}$$

- Invertible for fixed : $u_i \quad \left\{ \tilde{P}, \tilde{r}_j, u_k \right\} \rightarrow \left\{ P, r_j, u_k \right\}$ Preserve Born invariant mass: $q^2 = \tilde{q}^2, \quad \tilde{q} = \tilde{P} \sum_{i=1}^{n_{fr}} \tilde{r}_j$

Main steps:

- Generate Born configuration
- Generate unresolved partons U_i
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space:

Requirements:

$$\{P, r_j, u_k\} \rightarrow \left\{\tilde{P}, \tilde{r}_j\right\}$$

Main steps:

- Generate Born configuration
- Generate unresolved partons u_i
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space:

Requirements:

$$\{P, r_j, u_k\} \rightarrow \left\{\tilde{P}, \tilde{r}_j\right\}$$

- Keep direction of reference r fixed
- Invertible for fixed : $u_i \quad \left\{ \tilde{P}, \tilde{r}_j, u_k \right\} \rightarrow \left\{ P, r_j, u_k \right\}$ Preserve Born invariant mass: $q^2 = \tilde{q}^2, \quad \tilde{q} = \tilde{P} \sum_{i=1}^{n_{fr}} \tilde{r}_j$
- Main steps:
- Generate Born configuration
- Generate unresolved partons U_{i}
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space:

Requirements:

$$\{P, r_j, u_k\} \rightarrow \left\{\tilde{P}, \tilde{r}_j\right\}$$

- Keep direction of reference r fixed
- Reep direction of reference index Invertible for fixed : $u_i \quad \left\{ \tilde{P}, \tilde{r}_j, u_k \right\} \rightarrow \left\{ P, r_j, u_k \right\}$ Preserve Born invariant mass: $q^2 = \tilde{q}^2, \quad \tilde{q} = \tilde{P} \sum_{i=1}^{n_{fr}} \tilde{r}_j$
- Main steps:
- Generate Born configuration
- Generate unresolved partons U_i
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration