Isolated photon production in association with a jet pair through next-to-next-to-leading order in QCD

Rene Poncelet in collaboration with Simon Badger, Michał Czakon, Bayu Hartanto, Ryan Moodie, Tiziano Peraro and Simone Zoia

LEVERHULME TRUST _____

26.5.23 ATLAS PDF Forum

Photon production @ colliders

26.5.23 ATLAS PDF Forum

Prompt photon production

Direct production

- Test of perturbative QCD
- Gluon PDF sensitivity
- Estimates for BSM backgrounds

Fragmentation

- Depends on non-perturbative fragmentation functions
- Separation from "direct" not unique

LHC Experimental/theory status

26.5.23 ATLAS PDF Forum

Why photon plus a jet pair?

- Non-back-to-back Born configurations
 → access to angular correlations between the photon and jets
- Access to different kinematic regimes through distinguishable photon
 → enhance direct, high- or low-z fragmentation
- Background process for BSM: $pp \rightarrow \gamma + Y(\rightarrow jj)$

Photon isolation

Hard cone

• Experimental hard cone:

 $E_{\perp}(r) \le E_{\perp \max} = 0.0042 E_{\perp}(\gamma) + 10 \text{ GeV} \text{ for } r \le R_{\max} = 0.4$

• Theory perspective:

Not collinear safe in perturbative QCD due to $q \rightarrow q \gamma$ splittings

→ Non-vanishing fragmentation contribution (NNLO QCD with frag. [2201.06982][2205.01516])

Credit: Marius Hoefer (talk@SM@LHC22)

Photon isolation

Smooth cone

• by Frixione [hep-ph/9801442]

$$E_{\perp}(r) \le E_{\perp \max}(r) = 0.1 E_{\perp}(\gamma) \left(\frac{1 - \cos(r)}{1 - \cos(R_{\max})}\right)^2 \text{ for } r \le R_{\max} = 0.1$$

- → Theoretically convenient
- → Removes fragmentation contribution
- → Experimentally limited by detector resolution

Hybrid cone

- [1611.07226][2205.01516]
 - Combines smooth & hard cone
 - Fair approx. to hard cone [2205.01516]

Credit: Marius Hoefer (talk@SM@LHC22)

Fragmentation contribution

- ATLAS photon requirements (same as for $pp \rightarrow \gamma + 2j$)
- Comparison between:
 - "default" NNLO with fragmentation
 - "hybrid" NNLO with hybrid isolation
- Fragmentation contr.
 - ~5% at small $E_T(\gamma)$
 - ~<1% at high $E_T(\gamma)$

[2205.01516]

Photon plus jet pair

Measurement of isolated-photon plus two-jet production in pp collisions at sqrt(s) = 13 TeV with the ATLAS detector [1912.09866]

Requirements on photon	$E_{\rm T}^{\gamma} > 150 \text{ GeV}, \eta^{\gamma} < 2.37 \text{ (excluding } 1.37 < \eta^{\gamma} < 1.56)$					
	$E_{\rm T}^{\rm iso} < 0.0042 \cdot E_{\rm T}^{\gamma} + 4.8 \text{ GeV} (\text{reconstruction level})$					
	$E_{\rm T}^{\rm iso} < 0.0042 \cdot E_{\rm T}^{\gamma} + 10 \text{ GeV} \text{ (particle level)}$					
Requirements on jets	Acquirements on jets at least two jets using anti- k_t algorithm with $R = 0.4$					
	$p_{\rm T}^{\rm jet} > 100 \; {\rm GeV}, y^{\rm jet} < 2.5, \Delta R^{\gamma-{\rm jet}} > 0.8$					
Phase space	total	fragmentation enriched	direct enriched			
		$E_{\mathrm{T}}^{\gamma} < p_{\mathrm{T}}^{\mathrm{jet2}}$	$E_{\mathrm{T}}^{\gamma} > p_{\mathrm{T}}^{\mathrm{jet1}}$			
Number of events	755 270	111 666	386 846			

Modelled with hybrid isolation

$$E_{\perp}(r) \leq E_{\perp \max}(r) = 0.1 E_{\perp}(\gamma) \left(\frac{1 - \cos(r)}{1 - \cos(R_{\max})}\right)^2 \text{ for } r \leq R_{\max} = 0.1$$

 $E_{\perp}(r) \leq E_{\perp \max} = 0.0042 E_{\perp}(\gamma) + 10 \text{ GeV } \text{ for } r \leq R_{\max} = 0.4$

No fragmentation contribution → Purely pQCD through NNLO → focus on "inclusive" and "direct" PS

26.5.23 ATLAS PDF Forum

Perturbative QCD

Observables

- 1. $E_{\perp}(\gamma)$: photon transverse energy,
- 2. p_T^{jet} : jet transverse momentum,
- 3. y^{jet} : jet pseudorapidity,
- 4. $|\Delta y^{\gamma-\text{jet}}|$: absolute value of the pseudorapidity difference between the photon and the jet
- 5. $|\Delta \phi^{\gamma-\text{jet}}|$: azimuthal-angle difference between the photon and the jet,
- 6. $|\Delta y^{j_1-j_2}|$: absolute value of the pseudorapidity difference between the leading and sub-leading jet,
- 7. $|\Delta \phi^{j_1-j_2}|$: azimuthal-angle difference between the leading and sub-leading jet,
- 8. $m(j_1j_2)$: invariant mass of the leading and sub-leading jet,
- 9. $m(\gamma j_1 j_2)$: invariant mass of the photon, leading and sub-leading jet.

Binned for 1st and 2nd leading jet

Angular correlations

26.5.23 ATLAS PDF Forum

Theory - data comparisons

NNLO QCD

- Describes data well
- Improvements on the shape
- Small corrections
- Small remaining scale dependence

Comment on the SHERPA predictions

- Large NLO scale uncertainties
- The shape is not well described
- Maybe an artefact of multi-jet merging?

26.5.23 ATLAS PDF Forum

Inclusive vs. direct vs. fragmentation

Direct-enriched

Fragmentation

Transverse photon energy

26.5.23 ATLAS PDF Forum

Inclusive vs. direct vs. fragmentation

Inclusive

Direct-enriched

26.5.23 ATLAS PDF Forum

Scale choice

Perturbative convergence

NNLO result similar **but** $E_{\perp}(\gamma)$

- Larger (negative) NNLO corrections
- Larger scale dependence (for jet obs.)

Scale choice

Perturbative convergence

NNLO result similar **but** $E_{\perp}(\gamma)$

- Larger (negative) NNLO corrections
- Larger scale dependence (for jet obs)

Scale choice

 $\implies E_{\perp}(\gamma)$ does not capture relevant scales for $pp \rightarrow \gamma + 2j$

• Better for "direct" enriched phase space $p_T(\gamma) > p_T(j_1)$ $\Rightarrow E_{\perp}(\gamma)$ closer to $H_T = p_T(\gamma) + p_T(j_1) + p_T(j_2)$

26.5.23 ATLAS PDF Forum

Missing effects

Electro-weak corrections

- EW Sudakov logs at high $E_{\perp}(\gamma)$
- ~O(-10%) above 1 TeV
- Further improvement of theory/data

Fragmentation

- More relevant at small $E_{\perp}(\gamma)$
- For $pp \to \gamma + X$: $\sigma(\text{hybrid}) > \sigma(\text{frag.})$
- Inclusion might cure slightly high normalisation

Missing effects

Electro-weak corrections

- EW Sudakov logs at high $E_{\perp}(\gamma)$
- ~O(-10%) above 1 TeV
- Further improvement of theory/data

Fragmentation

- More relevant at small $E_{\perp}(\gamma)$
- For $pp \to \gamma + X$: $\sigma(\text{hybrid}) > \sigma(\text{frag.})$
- Inclusion might cure slightly high normalisation

Overview $2 \rightarrow 3$ massless computations

Overview $2 \rightarrow 3$ massless amplitudes

 $\Rightarrow pp \rightarrow \gamma jj$ first computation with full colour two-loop matrix elements

Virtual amplitudes

Sample diagrams

Colour structures

Decomposition:

$$\mathcal{M}^{(L)}(1_{\bar{q}}, 2_q, 3_g, 4_g, 5_\gamma) = \sqrt{2} e g_s^2 n^L \left\{ (t^{a_3} t^{a_4})_{i_2}^{\ \bar{i}_1} \mathcal{A}^{(L)}_{34}(1_{\bar{q}}, 2_q, 3_g, 4_g, 5_\gamma) + (t^{a_4} t^{a_3})_{i_2}^{\ \bar{i}_1} \mathcal{A}^{(L)}_{43}(1_{\bar{q}}, 2_q, 3_g, 4_g, 5_\gamma) + \delta_{i_2}^{\ \bar{i}_1} \delta^{a_3 a_4} \mathcal{A}^{(L)}_{\delta}(1_{\bar{q}}, 2_q, 4_g, 3_g, 5_\gamma) \right\}$$

Independent partial amplitudes → different gauge couplings & Nc/nf

$$\begin{aligned} \mathcal{A}_{34}^{(2)} &= \mathcal{Q}_q N_c^2 A_{34;q}^{(2),N_c^2} + \mathcal{Q}_q A_{34;q}^{(2),1} + \mathcal{Q}_q \frac{1}{N_c^2} A_{34;q}^{(1),1/N_c^2} + \mathcal{Q}_q N_c n_f A_{34;q}^{(2),N_c n_f} + \mathcal{Q}_q \frac{n_f}{N_c} A_{34;q}^{(2),n_f/N_c} \\ &+ \mathcal{Q}_q n_f^2 A_{34;q}^{(2),n_f^2} + \left(\sum_l \mathcal{Q}_l\right) N_c A_{34;l}^{(2),N_c} + \left(\sum_l \mathcal{Q}_l\right) \frac{1}{N_c} A_{34;l}^{(2),1/N_c} + \left(\sum_l \mathcal{Q}_l\right) n_f A_{34;l}^{(2),n_f}, \end{aligned}$$

26.5.23 ATLAS PDF Forum

Rene Poncelet - Cambridge

[2304.06682]

Reconstruction of Amplitudes

Workflow [Badger,Bronnum-Hansen,Hartanto,Moodie,Peraro,Krys,Zoia]

Laporta algorithm[Laporta(2000)]

Mature technology + new optimizations

- Syzygy's to simplify IBPs
- Exploitation of Q-linear relations
- Denominator Ansaetze
- On-the-fly partial fractioning

amplitude	helicity	original	stage 1	stage 2	stage 3	stage 4
$A^{(2),1}_{34;q}$	-++-+	94/91	74/71	74/0	22/18	22/0
$A_{34;q}^{(2),1}$	-+-++	93/89	90/86	90/0	24/14	18/0
$A_{34;q}^{(2),1/N_c^2}$	-++-+	90/88	73/71	73/0	23/18	22/0
$A^{(2),1/N_c^2}_{34;q}$	-+-++	90/86	86/82	86/0	24/14	19/0
$A^{(2),1/N_c}_{34;l}$	-+-++	89/82	74/67	73/0	27/14	20/0
$A_{34;l}^{(2),1/N_c}$	-++-+	85/81	61/58	60/0	27/18	20/0
$A_{34;q}^{(2),N_c^2}$	-+-++	58/55	54/51	53/0	20/16	20/0

Massive reduction of complexity

26.5.23 ATLAS PDF Forum

Two-loop matrix element stability

- Stable evaluation requires high floating point precision for rational functions
- In rarer cases higher precision "Pentagon" functions necessary
- 2.2 million events needed \rightarrow fast evaluation essential

Number of correct digits

Quality of leading colour the approximation

Summary & Outlook

Summary

- Good description of pp→ γ j j ATLAS data using NNLO pQCD
 → Issues with ATLAS MC setup: multi-jet merging?
- Completion of all massless 2→ 3 processes at NNLO QCD
- First cross section with full-colour double virtual corrections
 → validated the expected quality of leading-colour approx. O(1%) of the cross section

Outlook

- Inclusion of fragmentation contributions
 → extension of hadron fragmentation to photon fragmentation
- Electro-weak corrections
- Completion of all full-colour two-loop matrix elements in the massless $2 \rightarrow 3$ case