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Outline

● Introduction
● Multi-jet observables/event shapes at hadron colliders
● The strong coupling constant
● NNLO QCD with STRIPPER
● Summary and conclusion
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Precision era of the LHC
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Precision era of the LHC
● Collider data constrains the various 

interactions in the Standard Model.
● At the LHC QCD is part of any process!

1) The limiting factor in many analyses is QCD 
and associated uncertainties.
→ Radiative corrections indispensable

2) How well we do know QCD? Coupling 
constant, running, PDFs, ...

● The production of high energy jets allow to 
probe pQCD at high energies directly

1) Testing the predicted dynamics
2) Extract the coupling constant
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Jet measurements at the LHC
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Phenomenology with jet observables

Direct BSM:
dijet mass

[1705.02628] [1703.09127]

PDF determination:
Single inclusive,
Multi-differential dijet 

Tests of pQCD,     extraction:
 R32 ratios, event-shapes

[1805.04691]

Data drivenPrecision theory required!
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Jet-production processes have relatively large theory 
uncertainty compared to experimental uncertainties.
● NNLO QCD needed for precise theory-data comparisons
● Restricted precision QCD studies to incl. or di-jet data
● New NNLO QCD three-jet computations give access to 

many more observables!

● (From my view point) there are basically two groups:
● Three-to-two-jet ratios

● Event shapes (based on particles or jets)

Multi-jet observables (more than 2 ...)

Next-to-Next-to-Leading Order Study of Three-Jet Production at the LHC
Czakon, Mitov, Poncelet [2106.05331]
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Encoding QCD dynamics in event shapes

Using (global) event information to separate different regimes of 
QCD event evolution
● Thrust & Thrust-Minor

● (Transverse) Linearised Sphericity Tensor

● Energy-energy correlators
● N-Jettiness
● Generalised event shapes → Earth-Mover Distance
● Many observables used in jet-substructure
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Resummation
Example: 1-Thrust at LEP

Anisotropic di-jet topology:
Sensitivity to resummation,
non-perturbative effects

Isotropic multi-jets:
Sensitive to hard
matrix elements

[0711.4711]

Phenomenology of event shapes at hadron colliders,
Banfi, Salam, Zanderighi [1001.4082]Nice overview: 
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Resummation & jets
Example: 1-Thrust at LEP

[0711.4711]

For the result presented we define event shapes in terms of jets
✔ Suppression of non perturbative effects
✔ Higher experimental resolution
✘ But also introduce non-global logarithms
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Resummation of non-global logarithms
Example: 1-Thrust at LEP

[0711.4711]

The usage of jet-algorithms implies vetoed phase space regions
→ leading to non-cancellation of soft-radiation
→ logarithmic enhancements: non-gobal logarithms
→ Resummation tricky but active field of research
→ For complicated observables → PS simulations

Resummation of nonglobal QCD observables
Dasgupta, Salam [0104277]
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NNLO QCD three jets meets ATLAS data
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NNLO QCD event shapes
NNLO QCD corrections to event shapes at the LHC
Alvarez, Cantero,  Czakon, Llorente, Mitov, Poncelet 2301.01086

Thrust & Thrust-Minor
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The transverse energy-energy correlator

[ATLAS 2301.09351]

● Insensitive to soft radiation through energy weighting
● Central plateau contain isotropic events
● To the right: self-correlations, collinear and in-plane splittings
● To the left: back-to-back
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Double differential TEEC
[ATLAS 2301.09351]
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Systematic Uncertainties TEEC 
Experimental uncertainties Theory uncertainties

Scale dependence is the dominating uncertainty → NNLO QCD required to match exp.
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Extraction of the strong coupling constant
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Sensitivity to the strong coupling constant

● R32 ratio:

● Using the strong coupling’s running:

● Absorb running in the perturbative expansion → linear dependence

● In practise using LHAPDF running and perform fit to Taylor expansion around                        :

dependence mostly linear
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Strong coupling dependence (differential)
For visualisation: TEEC

scale unc. ~2% 

Thrust &
Thrust-Minor
scale unc. ~3-5%



22.3.23 INFN Torino Rene Poncelet - Cambridge 20

Alphas from TEEC (ATLAS)

[ATLAS-CONF-2020-025]

NLO QCD NNLO QCD

[ATLAS 2301.09351]
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Comparison against other measurements

● NNLO QCD extraction from multi-jets → 
will contribute to the PDG average for the 
first time.

● Significant improvement to 8 TeV result
mainly driven by NNLO QCD corrections

● Individual precision comparable to other 
measurements which include DIS and top 
or jets-data.
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Using the running of alphaS to probe NP

Indirect constraints to NP through modified running:

[Llorente, Nachman 1807.00894]

ATLAS
TEEC @ 7 TeV
data
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Or ‘new’ SM dynamics
● Residual PDF effects → very high Q2 ?
● EW corrections?
● Maybe effect from LC approximation 

in two-loop ME?

● Experimental systematics?
● Resummation?

Either case interesting!
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NNLO QCD cross sections with the
Sector-improved residue subtraction
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Hadronic cross section
Hadronic X-section:

Perturbative expansion of partonic cross section:

Parton distribution functions

The NNLO bit:

Double real radiation Real/Virtual correction Double virtual corrections
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NNLO QCD prediction beyond 2 → 2
2 → 3 Two-loop amplitudes:
● (Non-) planar 5 point massless ‘pheno ready’

[Chawdry’19’20’21,Abreu’20’21,Agarwal’21,Badger’21]
→ triggered by efficient MI representation [Chicherin’20]

● 5 point with one external mass [Abreu’20,Syrrakos’20,Canko’20,Badger’21’22,Chicherin’22]
● For three jet we use the implementation from [Abreu’20’21] checked against NJET

Combination with double real radiation
● Various NNLO subtraction schemes are available:

qT-slicing [Catain’07], N-jettiness slicing [Gaunt‘15/Boughezal‘15], Antenna 
[Gehrmann’05-’08], Colorful [DelDuca‘05-’15], Projetction [Cacciari‘15], Geometric 
[Herzog‘18], Unsubtraction [Aguilera-Verdugo’19], Nested collinear [Caola’17],
Local Analytic [Magnea’18], Sector-improved residue subtraction [Czakon’10-’14,’19]

Many leg, IR stable one-loop amplitudes → OpenLoops [Buccioni’19]
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Partonic cross section beyond LO
Perturbative expansion of partonic cross section:

Contributions with different multiplicities and # convolutions:

Each term separately IR divergent. But sum is:
→ finite
→ regularization scheme independent
Considering CDR (                     ):
→ Laurent expansion: 
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Sector decomposition I
Considering working in CDR:
→ Virtuals are usually done in this regularization
→ Real radiation:

→ Very difficult integrals, analytical impractical (except very simple cases)!
→ Numerics not possible, integrals are divergent: ε-poles!

How to extract these poles? → Sector decomposition!

Divide and conquer the phase space:
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Sector decomposition II
Divide and conquer the phase space:
→ Each                    has simpler divergences.
    appearing as  
     Soft and collinear (w.r.t parton k,l) of partons i and j 
→ Parametrization w.r.t. reference parton:

→ Subdivide to factorize divergences

      → double soft factorization:

      → triple collinear factorization
[Czakon’10,Caola’17]
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Sector decomposition III

Factorized singular limits in each sector:

Regularization of divergences:
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Finite NNLO cross section

sector decomposition and master formula

re-arrangement of terms → 4-dim. formulation [Czakon’14, Czakon’19] 

separately finite: ε poles cancel
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Improved phase space generation
Phase space cut and differential observable introduce
   mis-binning : mismatch between kinematics in subtraction terms

→ leads to increased variance of the integrand
→ slow Monte Carlo convergence

New phase space parametrization [Czakon’19]:
      Minimization of # of different subtraction kinematics in each sector 
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Improved phase space generation
New phase space parametrization:
      Minimization of # of different subtraction kinematics in each sector 

Mapping from n+2 to n particle phase space: 

Requirements:
● Keep direction of reference r fixed
● Invertible for fixed      :
● Preserve Born invariant mass:
Main steps:
● Generate Born configuration
● Generate unresolved partons
● Rescale reference momentum
● Boost non-reference momenta of the Born configuration
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Further technical developments
● Narrow-width-approximation and Double-Pole-Approximation for resonant particles:

● Top-quark pairs + decays [Czakon’19’20]
● Polarised vector-bosons [Poncelet’21,Pellen’21’22]

● Automated interfaces to OpenLoops, Recola and Njet
● Implementation of state-of-the-art twoloop matrix-elements:

● 2→ 2(1) : pp → VV, pp→ Vj, pp → H (j), e+e- → jets, DIS
● 2 → 3: pp → 3γ, pp → 2γ + j, pp → 3j

● Fragmentation of massless partons into hadrons
● First application to pp → tt +X → l+l- v v~ B + X (NWA) [Czakon’21’22]

● Countless small improvements in terms of organization and efficiency
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Closing the loop

The technical developments
have been crucial for 
applications like event 
shapes @ NNLO (O(10 M) 
CPUh). Without not feasible!
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Summary & Outlook
● Three jet NNLO QCD predictions allow for precision pheno with multi-jet final states
● First predictions for R32 ratios and event shapes
● Extraction of the strong coupling constant from event shapes by ATLAS → will contribute to PDG ave.
● Relatively costly enterprise

→ effective NNLO QCD cross section tools needed
→ optimized STRIPPER subtraction scheme

Outlook
● Many more observables are accessible: azimuthal decorrelation, earth-mover distance based event 

shapes, ...
● Still improvements to be made on subtractions schemes:

● Better MC integration techniques → ML community has developed a plethora of tools
● Technical aspects like form of selector function and phase space mappings

“three factors of 2 are also a order of magnitude” → difference between “doable” and “not doable”!
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Backup
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More event-shapes I
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More event-shapes II
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Event shapes as MC tuning tool
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