Precision phenomenology with multi-jet final states at the LHC

Rene Poncelet

LEVERHULME TRUST _____

20.3.23 IFJ PAN Cracow

- Multi-jet observables/event shapes at hadron colliders
- Extraction of the strong coupling constant
- Wider context of my research

Precision era of the LHC

20.3.23 IFJ PAN Cracow

Precision era of the LHC

- **Standard Model of Elementary Particles**
 - Collider data constrains the various interactions in the Standard Model.
 - At the LHC QCD is part of any process!
 - 1) The limiting factor in many analyses is QCD and associated uncertainties. \rightarrow Radiative corrections indispensable
 - 2) How well we do know QCD? Coupling constant, running, PDFs, ...
 - The production of high energy jets allow to probe pQCD at high energies directly

$$\mathcal{L}_{\text{QCD}} = \bar{q}_i (\gamma^{\mu} \mathcal{D}_{\mu} - m_i) q_i - \frac{1}{4} F^{\mu\nu}_a F^a_{\mu\nu}$$

1) Testing the predicted dynamics 2) Extract the coupling constant

Phenomenology with jet observables

Multi-jet: R32 ratios, event-shapes Tests of pQCD, α_S extraction

Single inclusive/two-jet PDF + α_S extraction

Direct BSM

Multi-jet observables

Uncertainties in theory large compared to experiment

- NNLO QCD needed for precise theory-data comparisons
 → Restricted precision QCD studies to two-jet data
- New NNLO QCD three-jet computations give access to many more observables:
 - Jet ratios, for example R32:

Next-to-Next-to-Leading Order Study of Three-Jet Production at the LHC Czakon, Mitov, Poncelet [2106.05331]

 $R^{i}(\mu_{R}, \mu_{F}, \text{PDF}, \alpha_{S,0}) = \frac{\mathrm{d}\sigma_{3}^{i}(\mu_{R}, \mu_{F}, \text{PDF}, \alpha_{S,0})}{\mathrm{d}\sigma_{2}^{i}(\mu_{R}, \mu_{F}, \text{PDF}, \alpha_{S,0})}$

• Event shapes (based on particles or jets)

NNLO QCD corrections to event shapes at the LHC Alvarez, Cantero, Czakon, Llorente, Mitov, Poncelet 2301.01086

20.3.23 IFJ PAN Cracow

NNLO QCD prediction beyond $2 \rightarrow 2$

$2 \Rightarrow 3$ Two-loop amplitudes

- (Non-) planar 5 point massless [Chawdry'19'20'21,Abreu'20'21,Agarwal'21,Badger'21]
 → triggered by efficient MI representation [Chicherin'20]
- For three-jets → [Abreu'20'21] (checked against NJET [Badger'12'21])
- 5 point with one external mass [Abreu'20,Syrrakos'20,Canko'20,Badger'21'22,Chicherin'22]

One-loop amplitudes → OpenLoops [Buccioni'19]

• Many legs and IR stable (soft and collinear limits)

Double-real Born amplitudes → AvHlib[Bury'15]

 IR finite cross-sections → NNLO subtraction schemes qT-slicing [Catani'07], N-jettiness slicing [Gaunt'15/Boughezal'15], Antenna [Gehrmann'05-'08], Colorful [DelDuca'05-'15], Projetction [Cacciari'15], Geometric [Herzog'18], Unsubtraction [Aguilera-Verdugo'19], Nested collinear [Caola'17], Local Analytic [Magnea'18], Sector-improved residue subtraction [Czakon'10-'14,'19]

Encoding QCD dynamics in event shapes

20.3.23 IFJ PAN Cracow

Using (global) event information to separate different regimes of QCD event evolution:

• Thrust & Thrust-Minor

$$T_{\perp} = \frac{\sum_{i} |\vec{p}_{T,i} \cdot \hat{n}_{\perp}|}{\sum_{i} |\vec{p}_{T,i}|}$$
, and $T_{m} = \frac{\sum_{i} |\vec{p}_{T,i} \times \hat{n}_{\perp}|}{\sum_{i} |\vec{p}_{T,i}|}$.

• (Transverse) Linearised Sphericity Tensor

$$\mathcal{M}_{xyz} = \frac{1}{\sum_{i} |\vec{p_i}|} \sum_{i} \frac{1}{|\vec{p_i}|} \begin{pmatrix} p_{x,i}^2 & p_{x,i}p_{y,i} & p_{x,i}p_{z,i} \\ p_{y,i}p_{x,i} & p_{y,i}^2 & p_{y,i}p_{z,i} \\ p_{z,i}p_{x,i} & p_{z,i}p_{y,i} & p_{z,i}^2 \end{pmatrix}$$

- Energy-energy correlators
- N-Jettiness
- Generalised event shapes → Earth-Mover Distance
 Here: use jets as input → experimentally advantageous (better calibrated, smaller non-pert.)
 Rene Poncelet - Cambridge

Transverse Thrust @ NNLO QCD

20.3.23 IFJ PAN Cracow

The transverse energy-energy correlator

$$\frac{1}{\sigma_2} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\Delta\phi} = \frac{1}{\sigma_2} \sum_{ij} \int \frac{\mathrm{d}\sigma \; x_{\perp,i} x_{\perp,j}}{\mathrm{d}x_{\perp,i} \mathrm{d}x_{\perp,j} \mathrm{d}\cos\Delta\phi_{ij}} \delta(\cos\Delta\phi - \cos\Delta\phi_{ij}) \mathrm{d}x_{\perp,i} \mathrm{d}x_{\perp,j} \mathrm{d}\cos\Delta\phi_{ij} \,,$$

- Insensitive to soft radiation through energy weighting
- Event topology separation:
 - Central plateau contain isotropic events
 - To the right: self-correlations, collinear and in-plane splitting
 - To the left: back-to-back

[ATLAS 2301.09351]

ATLAS

Particle-level TEEC

√s = 13 TeV; 139 fb⁻¹

anti-k, R = 0.4

 $p_{\tau} > 60 \text{ GeV}$

Double differential TEEC

[ATLAS 2301.09351]

ATLAS

Particle-level TEEC √s = 13 TeV; 139 fb⁻¹ anti- $k_{t} R = 0.4$ $p_{\tau} > 60 \text{ GeV}$ $|\eta| < 2.4$ $\mu_{R,F} = \hat{H}_{T}$ $\alpha_{\rm s}({\rm m_{z}}) = 0.1180$ NNPDF 3.0 (NNLO) - Data --- LO - NLO - NNLO

Systematic Uncertainties TEEC

Experimental uncertainties

Theory uncertainties

Scale dependence is the dominating uncertainty → NNLO QCD required to match exp.

Sensitivity to the strong coupling constant

- **R32 ratio:** $R^i(\mu_R, \mu_F, \text{PDF}, \alpha_{S,0}) = \frac{\mathrm{d}\sigma_3^i(\mu_R, \mu_F, \text{PDF}, \alpha_{S,0})}{\mathrm{d}\sigma_2^i(\mu_R, \mu_F, \text{PDF}, \alpha_{S,0})}$
- Using the strong coupling's running: $\alpha_S(\mu_R, \alpha_{S,0}) = \alpha_{S,0} \left(1 \alpha_{S,0} b_0 \ln\left(\frac{\mu_R^2}{m_\pi^2}\right) + \mathcal{O}(\alpha_{S,0}^2) \right)$
- Absorb running in the perturbative expansion \rightarrow linear dependence

$$R^{\text{NNLO}}(\mu, \alpha_{S,0}) = \frac{\mathrm{d}\sigma_3^{\text{NNLO}}(\mu, \alpha_{S,0})}{\mathrm{d}\sigma_2^{\text{NNLO}}(\mu, \alpha_{S,0})}$$
$$= \frac{\alpha_{S,0}^3 \left(\mathrm{d}\tilde{\sigma}_3^{(0)}(\mu) + \alpha_{S,0} \mathrm{d}\tilde{\sigma}_3^{(1)}(\mu) + \alpha_{S,0}^2 \mathrm{d}\tilde{\sigma}_3^{(2)}(\mu) + \mathcal{O}(\alpha_{S,0}^{3}) \right)}{\alpha_{S,0}^2 \left(\mathrm{d}\tilde{\sigma}_2^{(0)}(\mu) + \alpha_{S,0} \mathrm{d}\tilde{\sigma}_2^{(1)}(\mu) + \alpha_{S,0}^2 \mathrm{d}\tilde{\sigma}_2^{(2)}(\mu) + \mathcal{O}(\alpha_{S,0}^{3}) \right)}$$

• In practice using LHAPDF running and perform fit to Taylor expansion around $\alpha_s = 0.118$:

$$R^{\text{NNLO,fit}}(\mu, \alpha_{S,0}) = c_0 + c_1(\alpha_{S,0} - 0.118) + c_2(\alpha_{S,0} - 0.118)^2 + c_3(\alpha_{S,0} - 0.118)^3$$

mostly linear dependence

20.3.23 IFJ PAN Cracow

Strong coupling dependence

Visualisation of α_S dependence

$$\tilde{c}_1 = \frac{c_1}{R^{\text{NNLO}}(\alpha_{S,0} = 0.118)}$$

For comparison: scale dependence (dominant theory uncertainty)

- TEEC ($H_{T,2} > 1 \text{ TeV}$) : ~2% Thrust : ~3-5 % C(1%) sensitivity

20.3.23 IFJ PAN Cracow

α_S from TEEC @ NNLO by ATLAS

[ATLAS 2301.09351]

- NNLO QCD extraction from multi-jets → will contribute to the PDG average for the first time.
- Significant improvement to 8 TeV result mainly driven by NNLO QCD corrections
- Individual precision comparable to other measurements which include DIS and top or jets-data.

Running of α_S

Using the running of α_S to probe NP

[Llorente, Nachman 1807.00894]

Indirect constraints to NP through modified running:

ndirect constraints to NP through modified running:

$$\alpha_{s}(Q) = \frac{1}{\beta_{0} \log z} \left[1 - \frac{\beta_{1}}{\beta_{0}^{2}} \frac{\log(\log z)}{\log z} \right]; \quad z = \frac{Q^{2}}{\Lambda_{QCD}^{2}}$$

$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New termion limits using NLOJet++ & ATLAS data

$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New termion limits using NLOJet++ & ATLAS data

$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New termion limits using NLOJet++ & ATLAS data

$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New termion limits using NLOJet++ & ATLAS data

$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New termion limits using NLOJet++ & ATLAS data

$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New termion limits using NLOJet++ & ATLAS data

$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New termion limits using NLOJet++ & ATLAS data

$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New termion limits using NLOJet++ & ATLAS data

$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New termion limits using NLOJet++ & ATLAS data

$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New termion limits using NLOJet++ & ATLAS data

$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New termion limits using NLOJet++ & ATLAS data

$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New termion limits using NLOJet++ & ATLAS data

$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{3}n_{f} - 20n_{X}T_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New termion limits using NLOJet++ & ATLAS data

$$\beta_{1} = \frac{1}{(4\pi)^{2}} \left[102 - \frac{38}{5}n_{f} - 20n_{X} \left(1 + \frac{C_{X}}{5} \right) \right]$$
New termion limits using NLOJet++ & AT

20.3.23 IFJ PAN Cracow

Rene Poncelet - Cambridge

 $\beta_0 = \frac{1}{4\pi} \left(11 - \frac{2}{3}n_f - \frac{4}{3}n_X T_X \right)$

 \rightarrow much improved bounds

... or 'new' SM dynamics

Possible SM explanations

- Residual PDF effects \rightarrow very high Q²?
- EW corrections?
- Maybe effect from LC approximation in two-loop ME?

$$\mathcal{R}^{(2)}(\mu_R^2) = 2 \operatorname{Re} \left[\mathcal{M}^{\dagger(0)} \mathcal{F}^{(2)} \right] (\mu_R^2) + \left| \mathcal{F}^{(1)} \right|^2 (\mu_R^2)$$
$$\equiv \mathcal{R}^{(2)}(s_{12}) + \sum_{i=1}^4 c_i \ln^i \left(\frac{\mu_R^2}{s_{12}} \right)$$
$$\mathcal{R}^{(2)}(s_{12}) \approx \mathcal{R}^{(2)l.c.}(s_{12})$$

- Experimental systematics?
- Resummation?

Either case interesting!

20.3.23 IFJ PAN Cracow

The wider context

NNLO QCD computations

• Top-quark pair production and leptonic decays [1901.05407] [2008.11133] + b-quark fragmentation: [2102.08267] [2210.06078]

• Vector + jets

W + charm-jet [2011.01011] [2212.00467] Z + b-jet [2205.11879]

- **Polarised vector-bosons** WW [2102.13583] W+jet [2109.14336] [2204.12394]
- Inclusive jets [1907.12911]
- "2 → 3" processes Three-photons [1911.00479] Diphoton+jet [2105.06940] Three jets [2106.05331] [2301.01086] W + 2 b-jets [2205.01687] [2209.03280]

Collaboration network

Main Collaborators:

- Michal Czakon (Aachen)
- Alexander Mitov (Cambridge)

Phenomenology:

• Mathieu Pellen (Freiburg)

Amplitudes:

- Herschel Chawdhry (Oxford)
- Bayu Hartanto (Cambridge), Simon Badger's group (Turin)
- Andreas van Hameren (Cracow)

LHC

Phenomenology

Phenomenology

LHC

NNLO QCD computations

- Top-quark pair production and leptonic decays
 [1901.05407] [2008.11133]
 + b-quark fragmentation: [2102.08267] [2210.06078]
- Vector + jets

W + charm-jet [2011.01011] [2212.00467] Z + b-jet [2205.11879]

- **Polarised vector-bosons** WW [2102.13583] W+jet [2109.14336] [2204.12394]
- Inclusive jets [1907.12911]
- "2 → 3" processes
 Three-photons [1911.00479]
 Diphoton+jet [2105.06940]
 Three jets [2106.05331] [2301.01086]
 W + 2 b-jets [2205.01687] [2209.03280]

Exp. collaborations

DESY CMS top-quark group (Behnke, Aldalya Martin) → [CMS-PAS-TOP-20-006]

Top spin-correlations in ATLAS (Howard) \rightarrow 1903.07570

W+charm CMS measurement (Herandez) → to-appear-soon

Proposed COST network COMETA

ATLAS multi-jet group at CERN (Llorente, Roloff, LeBlanc) $\Rightarrow \alpha_S$ from TEEC 2301.09351 \Rightarrow More to appear

Amplitudes

Two-loop amplitudes

• pp → t t~

Polarised / Spin-Density-Matrix [1712.08075]

- **pp** → **γγγ (planar)** Squared matrix element [1911.00479]
 Helicity amplitudes [2012.13553]
- **pp → γγj (planar)** Helicity amplitudes [2103.04319]
- **pp → Wbb~ (planar)** Squared matrix element/SDM [2205.01687]
- Non-planar five-point amplitudes
 → work-in-progress

Collaboration network

Main Collaborators:

- Michal Czakon (Aachen)
- Alexander Mitov (Cambridge)
- Herschel Chawdhry (Oxford)
- Bayu Hartanto (Cambridge), Simon Badger's group (Turin)

Spectrum of techniques:

- → Tensor-reduction with projectors
- → Analytical IBP tables (IDSolver, IBPeasy)
- → Numerical DEQ for master integrals
- → Finite Field reconstructions (FiniteFlow and FireFly)

Perturbative fragmentation @ NNLO QCD

- Proof-of-principle: [2102.08267]
- First fit of b-fragmentation functions: [2210.06078]

HighTEA

- Cloud service: "NNLO QCD ntuples" + user-friendly analysis
 → re-weighting + re-binning
- Prototype online, publication soon [230y.xxxx] https://www.precision.hep.phy.cam.ac.uk/hightea/

Collaboration network

Michal Czakon (Aachen) Alexander Mitov (Cambridge) Terry Generet (Aachen)

Michal Czakon (Aachen) Alexander Mitov (Cambridge) Zahari Kassabov (Cambridge)

Future directions

Modern MC integration/sampling

- Improving performance of MC integration
- 1) "Nested sampling" → phase space explorations
 2) "Normalising flows" → phase space sampler

NNLO with massive bosons: B + 2-jet, BB + 1-jet

• A lot to do: amplitudes + cross sections But rich phenomenology!

Subtraction + Slicing: N3LO for $2 \rightarrow 2$ processes

• Ultimate precision for Drell-Yan, di-photon production, ...

Collaboration network

Steffen Schumann (Göttingen) David Yallup (Cambridge)

Michal Czakon (Aachen) Alexander Mitov (Cambridge) Bayu Hartanto (Cambridge)

Michal Czakon (Aachen) Alexander Mitov (Cambridge) Terry Generet (Aachen)

20.3.23 IFJ PAN Cracow

Summary & Outlook

Summary

- Three jet NNLO QCD predictions allow for precision phenomenology with multi-jet final states
- First predictions for R32 ratios and event shapes
- Extraction of the strong coupling constant from event shapes by ATLAS → will contribute to PDG ave.
- Relatively costly enterprise
 → effective NNLO QCD cross section tools needed
 → optimized STRIPPER subtraction scheme

Outlook

- Many more observables are accessible: azimuthal decorrelation, earth-mover distance, ...
- Still improvements to be made on subtractions schemes:
 - Better MC integration techniques → ML community has developed a plethora of tools
 - Technical aspects like form of selector function and phase space mappings
 "3 factors of 2 are also a order of magnitude" → difference between "doable" and "not doable"!

Backup

20.3.23 IFJ PAN Cracow

Hadronic cross section

Partonic cross section beyond LO

Perturbative expansion of partonic cross section:

$$\hat{\sigma}_{ab\to X} = \hat{\sigma}_{ab\to X}^{(0)} + \hat{\sigma}_{ab\to X}^{(1)} + \hat{\sigma}_{ab\to X}^{(2)} + \mathcal{O}(\alpha_s^3)$$

Contributions with different multiplicities and # convolutions:

$$\hat{\sigma}_{ab}^{(2)} = \hat{\sigma}_{ab}^{\mathrm{RR}} + \hat{\sigma}_{ab}^{\mathrm{RV}} + \hat{\sigma}_{ab}^{\mathrm{VV}} + \hat{\sigma}_{ab}^{\mathrm{C2}} + \hat{\sigma}_{ab}^{\mathrm{C1}}$$

Each term separately IR divergent. But sum is:

→ finite

- \rightarrow regularization scheme independent
- Considering CDR ($d = 4 2\epsilon$):

→ Laurent expansion:

$$\hat{\sigma}_{ab}^C = \sum_{i=-4}^{0} c_i \epsilon^i + \mathcal{O}(\epsilon)$$

$$\hat{\sigma}_{ab}^{\mathrm{RR}} = \frac{1}{2\hat{s}} \int \mathrm{d}\Phi_{n+2} \left\langle \mathcal{M}_{n+2}^{(0)} \middle| \mathcal{M}_{n+2}^{(0)} \right\rangle \mathcal{F}_{n+2}$$

$$\hat{\sigma}_{ab}^{\text{RV}} = \frac{1}{2\hat{s}} \int d\Phi_{n+1} 2\text{Re} \left\langle \mathcal{M}_{n+1}^{(0)} \middle| \mathcal{M}_{n+1}^{(1)} \right\rangle F_{n+1}$$

$$\hat{\sigma}_{ab}^{\text{VV}} = \frac{1}{2\hat{s}} \int \mathrm{d}\Phi_n \left(2\text{Re} \left\langle \mathcal{M}_n^{(0)} \middle| \mathcal{M}_n^{(2)} \right\rangle + \left\langle \mathcal{M}_n^{(1)} \middle| \mathcal{M}_n^{(1)} \right\rangle \right) \mathbf{F}_n$$

$$\hat{\sigma}_{ab}^{C1} = (\text{single convolution}) F_{n+1}$$

$$\hat{\sigma}_{ab}^{C2} = (\text{double convolution}) \mathbf{F}_{n}$$

20.3.23 IFJ PAN Cracow

Sector decomposition I

- Considering working in CDR:
- \rightarrow Virtuals are usually done in this regularization
- \rightarrow Real radiation:
 - → Very difficult integrals, analytical impractical (except very simple cases)!
 - \rightarrow Numerics not possible, integrals are divergent: ϵ -poles!

How to extract these poles? → Sector decomposition!

Divide and conquer the phase space:

$$1 = \sum_{i,j} \left[\sum_{k} \mathcal{S}_{ij,k} + \sum_{k,l} \mathcal{S}_{i,k;j,l} \right]$$

$$\hat{\sigma}_{ab}^{\mathrm{RR}} = \frac{1}{2\hat{s}} \int \mathrm{d}\Phi_{n+2} \sum_{i,j} \left[\sum_{k} \mathcal{S}_{ij,k} + \sum_{k,l} \mathcal{S}_{i,k;j,l} \right] \left\langle \mathcal{M}_{n+2}^{(0)} \middle| \mathcal{M}_{n+2}^{(0)} \right\rangle \mathcal{F}_{n+2}$$

Sector decomposition II

Divide and conquer the phase space:

- → Each $S_{ij,k}/S_{i,k;j,l}$ has simpler divergences. appearing as $1/s_{ijk}$ $1/s_{ik}/s_{jl}$ Soft and collinear (w.r.t parton k,l) of partons i and j
- → Parametrization w.r.t. reference parton:

 $\hat{\eta}_i = \frac{1}{2}(1 - \cos\theta_{ir}) \in [0, 1]$ $\hat{\xi}_i = \frac{u_i^0}{u_{\max}^0} \in [0, 1]$

II

20.3.23 IFJ PAN Cracow

 $\xi_2 > \xi_1$

 $\eta_1 > \eta_2$

 $\eta_2 \to \eta_2 \eta_1$

 $\xi_1 > \xi_2$

 $\xi_2 \to \xi_2 \xi_{2\max} \xi_2$

 $\eta_1 > \eta_2$

 $\eta_2 \rightarrow \eta_2 \eta_1$

Sector decomposition III

Factorized singular limits in each sector:

$$\frac{1}{2\hat{s}} \int \mathrm{d}\Phi_{n+2} \,\mathcal{S}_{kl,m} \left\langle \mathcal{M}_{n+2}^{(0)} \middle| \mathcal{M}_{n+2}^{(0)} \right\rangle \mathbf{F}_{n+2} = \sum_{\text{sub-sec.}} \int \mathrm{d}\Phi_n \prod \mathrm{d}x_i \underbrace{x_i^{-1-b_i\epsilon}}_{\text{singular}} \mathrm{d}\tilde{\mu}(\{x_i\}) \underbrace{\prod x_i^{a_i+1} \left\langle \mathcal{M}_{n+2} \middle| \mathcal{M}_{n+2} \right\rangle}_{\text{regular}} \mathbf{F}_{n+2}$$

Regularization of divergences:

$$x^{-1-b\epsilon} = \underbrace{\frac{-1}{b\epsilon}}_{\text{pole term}} + \underbrace{[x^{-1-b\epsilon}]_{+}}_{\text{reg. + sub.}} \qquad \qquad \int_{0}^{1} \mathrm{d}x \, [x^{-1-b\epsilon}]_{+} \, f(x) = \int_{0}^{1} \frac{f(x) - f(0)}{x^{1+b\epsilon}}$$

Finite NNLO cross section

20.3.23 IFJ PAN Cracow

More event-shapes I

20.3.23 IFJ PAN Cracow

More event-shapes II

20.3.23 IFJ PAN Cracow

Event shapes as MC tuning tool

