Combined tt and tW analyses

M. Czakon, A. Mitov, R. Poncelet, D. Stremmer, M. Worek

17.11.22 ATLAS TOPWG

Top-quark pair production

Onshell top-quark picture:

Top-quark pair production

Closer to what actually happens and what we observe in the detector: $pp \rightarrow \ell^+ \ell^- \nu \bar{\nu} b \bar{b}$

Quantum mechanics \rightarrow Interference \rightarrow we can't tell them apart

Removal of tW

Typical idea of top-quark pair analyses:

- Certain phase space regions are dominated by specific topologies
 - → treat the others as background
- This requires to define an *ad hoc* scheme to remove interferences with tW
 - → Diagram removal (DR) or Diagram subtraction (SR)
 → These come with large uncertainties/ambiguities!
 → One of the largest systematic model uncertainties
- Okay, as long as the "background" contributions to a specific observable are small
- Counter examples:
 - Kinematical edges: mlb
 - High pT tails: pT(b-jet) or pT(lep)

17.11.22 ATLAS TOPWG

"Starting point" for discussion

(Not too new) idea:

Combined analysis of tt and tW in (di-leptonic) final states

- Advantages with respect to standard "top-quark pair" analysis:
 - Reduced systematics since no tW removal necessary.
 - A more complete picture of top-quark production including interferences etc...
- Theory perspective: a full NNLO QCD off-shell computation is not yet feasible :(
 - But we can do:

$$NNLO \ QCD_{NWA} + NLO_{off-shell} = \frac{d\sigma_{NWA}^{NNLO \ QCD}}{dX} + \frac{d\delta\sigma_{off-shell}^{NLO \ QCD}}{dX} + \frac{d\delta\sigma_{off-shell}^{NLO \ EW}}{dX} + \frac{d\delta\sigma_{off-shell}^{NLO \ EW}}{dX}$$
$$\frac{d\delta\sigma_{off-shell}^{NLO \ QCD}}{dX} = \frac{d\sigma_{off-shell}^{NLO \ QCD}}{dX} - \frac{d\sigma_{NWA}^{NLO \ QCD}}{dX}$$

17.11.22 ATLAS TOPWG

tt+tW combinations - Experiment

Such a measurement does exist:

Probing the quantum interference between singly and doubly resonant top-quark production in pp collisions at \sqrt{s}=13 TeV with the ATLAS detector, ATLAS 1806.04667

• focus on m_bl where the effect is most dramatic

Example: tW effects in b-jet pT

NLO: Off-shell NLO QCD

DR: Double resonant PS region $|m_t - m(t)| < n\Gamma_t \quad \& \quad |m_t - m(\bar{t})| < n\Gamma_t$ SR: Single resonant PS region $|m_t - m(t)| > n\Gamma_t \quad \& \quad |m_t - m(\bar{t})| < n\Gamma_t$

 $|m_t - m(t)| < n\Gamma_t \quad \& \quad |m_t - m(\bar{t})| > n\Gamma_t$

NR: Non resonant PS region

 $|m_t - m(t)| > n\Gamma_t \quad \& \quad |m_t - m(\bar{t})| > n\Gamma_t$

DR+SR+NR = NLO(Here: n = 15)

Example: tW effects in b-jet pT

Example: 1811.06625 (CMS data with removed tW)

17.11.22 ATLAS TOPWG

Rene Poncelet - Cambridge

Summary

- Basically we ask for measurement of final-state observables (pT(lep),pT(b-jet),....) without subtracting tW and/or non-resonant "backgrounds"
 - → "Help us to help you" :)
- We can provide state-of-the-art fixed-order predictions: NNLO QCD (NWA) + NLO QCD+EW (off-shell)
- Potential goals and deliverables:
 - → Detailed fixed order theory to data comparison of fiducial phase space without relying on DR/DS/etc → improve on one of the largest systematics
 - Improved descriptions of observables with single-top contributions
 - Top-quark mass/width measurement from leptonic distributions
 - Study of unfolding effects from parton-shower/hadronization/soft-physics

Backup

17.11.22 ATLAS TOPWG

1) Determine most likely resonance history (assuming perfect W reconstruction):

I)
$$t = W^+ b$$
 & $\bar{t} = W^- \bar{b}$
II) $t = W^+ b$ & $\bar{t} = W^- \bar{b}$ (if j is present)
III) $t = W^+ b$ & $\bar{t} = W^- \bar{b}j$ (if j is present)
For each compute $Q = |m_t - m(t)| + |m_t - m(\bar{t})|$ and take the history with smallest value
2) Then take determine if this in DR, SR, NR region (plots n = 15)
DR:

$$: \quad |m_t - m(t)| < n\Gamma_t \quad \& \quad |m_t - m(\bar{t})| < n\Gamma_t$$

SR:
$$|m_t - m(t)| > n\Gamma_t$$
 & $|m_t - m(\bar{t})| < n\Gamma_t$
 $|m_t - m(t)| < n\Gamma_t$ & $|m_t - m(\bar{t})| > n\Gamma_t$
NR: $|m_t - m(t)| > n\Gamma_t$ & $|m_t - m(\bar{t})| > n\Gamma_t$

17.11.22 ATLAS TOPWG

Details for examples

1811.06625

- Leptons: pT(l) > 20 GeV and |y(l)| < 2.4
- m(ll) > 20 GeV
- 2 anti-kT R=0.4 jets with pT(j) > 30 GeV and |y(j)| < 2.4, both b-tagged and deltaR(j,l) > 0.4

Theory:

Scales: H_T/4 where H_T = pT(l+)+pT(l-)+pT(b1)+pT(b2)+pT(mis)

Technical advertisement slide

NNLO QCD calculations have been performed with a in-house implementation of the sector-improved residue subtraction scheme.

A novel subtraction scheme for doublereal radiation at NNLO Czakon, 1005.0274 Four-dimensional formulation of the sectorimproved residue subtraction scheme Czakon, Heymes, 1408.2500

Single-jet inclusive rates with exact color at O(aS^4) Czakon, van Hameren, Mitov, Poncelet, 1907.12911

NNLO QCD Top-quark pair production in di-lepton channel with corrections to decays:

Details about Narrow-Width-Approximation & extensive study of experimental fiducial phase spaces and observables: NNLO QCD corrections to leptonic observables in top-quark pair production and decay Czakon, Mitov, Poncelet, 2008.11133

17.11.22 ATLAS TOPWG