Jets at the LHC: a fixed order perspective

Rene Poncelet

In collaboration with Michal Czakon, Alexander Mitov

European Research Council

Established by the European Commission

17.05.2022 Freiburg

Outline

\rightarrow Three jet observables at NNLO QCD

R32 ratios Event-shapes

→ Flavoured jets

Infrared safe definition of jet flavour?→ New proposal for a flavour safe algorithm.

 \rightarrow Wrap-up and outlook

17.05.2022 Freiburg

SM measurements at the LHC

17.05.2022 Freiburg

SM measurements at the LHC

17.05.2022 Freiburg

Jet observables at the LHC

The LHC produces jets abundantly → many phenomenological applications

17.05.2022 Freiburg

Multi-jet observables at the LHC

Multi-jet final states:

- Tests of pQCD at high energy
- Tests of MC modelling of LHC events
- Search for new physics

Study of perturbative QCD:

R32 ratios

$$R_{3/2}(X,\mu_R,\mu_F) = \frac{\mathrm{d}\sigma_3(\mu_R,\mu_F)/\mathrm{d}X}{\mathrm{d}\sigma_2(\mu_R,\mu_F)/\mathrm{d}X} \sim \alpha_s$$

 \rightarrow Extraction of the strong coupling constant

- Transverse Energy-Energy Correlator
- Event shapes

17.05.2022 Freiburg

NNLO QCD prediction beyond $2 \rightarrow 2$

2 → 3 Two-loop amplitudes:

- Advances in amplitude techniques: IBPs, amplitude reconstruction and master integrals
- (Non-) planar 5 point massless amplitudes [Chawdry'19'20'21,Abreu'20'21,Agarwal'21, Badger'21]
 > triggered by efficient MI representation

→ triggered by efficient MI representation [Chicherin'20] Cross-sections → Combination with real radiation

 Various NNLO subtraction schemes available: qT-slicing [Catain'07], N-jettiness slicing [Gaunt'15/Boughezal'15], Antenna [Gehrmann'05-'08], Colorful [DelDuca'05-'15], Projetction [Cacciari'15], Geometric [Herzog'18], Unsubtraction [Aguilera-Verdugo'19], Nested collinear [Caola'17], Sector-improved residue subtraction [Czakon'10-'14,'19]

Three-jet production

- Sector-improved residue subtraction [Czakon'10'14'19]
 - Efficient c++ implementation → STRIPPER
 - Highly automated to deal with enormous amount of channels in three-jet production → O(1k) sectors →O(1M) individual MC integrals
 - Still computationally very challenging! → O(1M CPUh)
- Many-leg, IR stable one-loop amplitudes → OpenLoops [Buccioni'19]
- Double virtual amplitudes in leading-colour approximation [Abreu'21]
 - Sub-leading colour corrections expected to be small
 - Analytical expressions challenging
 - Fast numerical evaluation → very small contribution to computational cost

Doly Approximation made:
$$\mathcal{R}^{(2)}(\mu_R^2) = 2 \operatorname{Re} \left[\mathcal{M}^{\dagger(0)} \mathcal{F}^{(2)} \right] (\mu_R^2) + \left| \mathcal{F}^{(1)} \right|^2 (\mu_R^2) \equiv \mathcal{R}^{(2)}(s_{12}) + \sum_{i=1}^4 c_i \ln^i \left(\frac{\mu_R^2}{s_{12}} \right)$$

 $\mathcal{R}^{(2)}(s_{12}) \approx \mathcal{R}^{(2)l.c.}(s_{12})$

17.05.2022 Freiburg

Three-jet production - R32(pT1)

- LHC @ 13 TeV, NNPDF31
- Require at least three (two) jets:
 p_T(j) > 60 GeV and |y(j)| < 4.4
 - $H_{T,2} = p_T(j_1) + p_T(j_2) > 250 \text{ GeV}$

• Scales:

$$\mu_R = \mu_F = \hat{H}_T = \sum_{\text{partons}} p_T$$

Three-jet production – R32(HT,y*)

17.05.2022 Freiburg

Three-jet production – azimuthal decorrelation

Kinematic constraints on the azimuthal separation between the two leading jets (ϕ_{12})

φ12 sensitive to the jet multiplicity:

2j: $\phi_{12} = \pi$ 3j: $\phi_{12} > \frac{2\pi}{3}$ 4j: unconstrained Study of the ratio: $R_{32}(H_T, y^*, \phi_{\max}) = \frac{\mathrm{d}\sigma_3(H_T, y^*, \phi_{12} < \phi_{\max})}{\mathrm{d}\sigma_2(H_T, y^*)}$

Three-jet production - azimuthal decorrelation

17.05.2022 Freiburg

Outlook: Extraction of the strong coupling constant from multi-jet events at the LHC

→ Transverse Energy-Energy Correlator TEEC

→ Event shapes

17.05.2022 Freiburg

Transverse Energy-Energy Correlator @ LHC

TEEC: Transverse Energy-Energy Correlation

$$\frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} = \frac{1}{N} \sum_{A=1}^{N} \sum_{ij} \frac{E_{\perp,i}^{A} E_{\perp,j}^{A}}{\left(\sum_{k} E_{T,k}^{A}\right)^{2}} \delta(\cos\phi - \cos\phi_{ij})$$

ATLAS measurement of the TEEC and ATEEC:

- @ 8 TeV [ATLAS:1707.02562]
- @ 13 TeV [ATLAS-CONF-2020-025]

TEEC in HT2 bins:

 \rightarrow from 1000 GeV to 3500 GeV and above \rightarrow sensitivity to different energy scales

17.05.2022 Freiburg

Transverse Energy-Energy Correlator @ LHC

Extraction of alphas in different HT bins → test of SM running

$\langle Q \rangle$ [GeV]	$\alpha_{ m s}(m_Z)$ val	lue (MMHT 2014)
Global	0.1195 ± 0.0002 (stat.) ± 0.0006 (syst.)	$^{+0.0084}_{-0.0106}$ (scale) \pm 0.0009 (PDF) \pm 0.0003 (NP)
Inclusive	0.1198 ± 0.0002 (stat.) ± 0.0006 (syst.)	$^{+0.0078}_{-0.0095}$ (scale) \pm 0.0010 (PDF) \pm 0.0002 (NP)
1219	0.1202 ± 0.0003 (stat.) ± 0.0006 (syst.)	$^{+0.0079}_{-0.0098}$ (scale) \pm 0.0010 (PDF) \pm 0.0002 (NP)
1434	0.1184 ± 0.0003 (stat.) ± 0.0007 (syst.)	$^{+0.0078}_{-0.0098}$ (scale) \pm 0.0011 (PDF) \pm 0.0002 (NP)
1647	0.1188 ± 0.0004 (stat.) ± 0.0007 (syst.)	$^{+0.0073}_{-0.0087}$ (scale) \pm 0.0012 (PDF) \pm 0.0001 (NP)
1856	$0.1177 \pm 0.0006 \text{ (stat.)} \pm 0.0008 \text{ (syst.)}$	$^{+0.0072}_{-0.0083}$ (scale) \pm 0.0013 (PDF) \pm 0.0006 (NP)
2064	0.1174 ± 0.0008 (stat.) ± 0.0009 (syst.)	$^{+0.0069}_{-0.0078}$ (scale) ± 0.0013 (PDF) ± 0.0007 (NP)
2300	$0.1185 \pm 0.0009 \text{ (stat.)} \pm 0.0010 \text{ (syst.)}$	$^{+0.0063}_{-0.0067}$ (scale) ± 0.0014 (PDF) ± 0.0005 (NP)
2636	0.1166 ± 0.0016 (stat.) ± 0.0012 (syst.)	$^{+0.0062}_{-0.0066}$ (scale) \pm 0.0015 (PDF) \pm 0.0000 (NP)
2952	0.1141 ± 0.0029 (stat.) ± 0.0013 (syst.)	$^{+0.0062}_{-0.0069}$ (scale) \pm 0.0018 (PDF) \pm 0.0003 (NP)
3383	0.1164 ± 0.0043 (stat.) ± 0.0015 (syst.)	$^{+0.0050}_{-0.0044}$ (scale) \pm 0.0017 (PDF) \pm 0.0001 (NP)
4095	0.1029 ± 0.0163 (stat.) ± 0.0014 (syst.)	$^{+0.0066}_{-0.0012}$ (scale) \pm 0.0010 (PDF) \pm 0.0003 (NP)

FO scale uncertainty limiting factor!

NNLO QCD corrections to TEEC @ LHC

Massive thanks to Manuel Alvarez and Javier Llorente for computing!

13

ATLAS measurement of event shapes @ 13 TeV using multi-jet events (139fb-1) in HT2 bins and high pT jets (> 100 GeV): [ATLAS:2007.12600]

Transverse Thrust:
$$\tau_T = 1 - \frac{\sum_i^{\text{jets}} |\vec{p}_{T,i} \cdot \hat{n}|}{\sum_i^{\text{jets}} |\vec{p}_{T,i}|}$$
Back-to-BackSphericalThrust Minor: $T_m = \frac{\sum_i^{\text{jets}} |\vec{p}_{T,i} \times \hat{n}|}{\sum_i^{\text{jets}} |\vec{p}_{T,i}|}$ Back-to-BackSphericalMore quantities based on eigenvalues of
(transverse) linearised sphericity tensor: $\mathcal{M}_{xyz} = \frac{1}{\sum_i^{\text{jets}} |\vec{p}_i|} \sum_i^{\text{jets}} \frac{1}{|\vec{p}_i|} \begin{pmatrix} p_{x,i}^2 & p_{x,i}p_{y,i} & p_{x,i}p_{z,i} \\ p_{y,i}p_{x,i} & p_{y,i}^2 & p_{y,i}p_{x,i} \\ p_{z,i}p_{x,i} & p_{z,i}p_{y,i} & p_{z,i}^2 \end{pmatrix}$ \mathcal{A}^{TLAS}

17.05.2022 Freiburg

Event shapes at the LHC

Transverse thrust:

Transverse thrust minor:

[ATLAS:2007.12600]

NNLO QCD corrections to event shapes

Example Thrust-Minor:

- Beautiful perturbative convergence
- Significant reduction of perturbative corrections

17.05.2022 Freiburg

Rene Poncelet - Cambridge

Flavoured Jets

17.05.2022 Freiburg

Flavoured jets

- Jets are a tool to connect QCD of quarks&gluons to actually strongly interacting particles, i.e. hadrons.
- They are defined by a suitable algorithm: experimentally and theoretically
- Jet-substructure reveals additional information:
 - Separation of quark and gluon initiated jets
 - Jets of definite flavour:

Experimentally	Displayed vertices of heavy intermediate particles: D/B mesons		
MC Event Simulation	Similar objects due to hadronization and detector simulations		
Partonic computations	 Impose relation between quarks and hadrons (quark model) Massless quarks: emission of soft flavoured pairs → gluons → Implications for IR safety in FO computations beyond NLO 		

- Why are partonic computations for flavoured jets interesting?
 - Higher order perturbation theory (not necessarily available matched to PS)
 - Extraction of SM parameters or PDFs

Fixed order flavoured jets beyond NLO

- If F(n+2) does not treat the flavour pair appropriately:
 → double soft singularity not subtracted
- Implies correlated treatment of kinematics and flavour information

Solution: Modified jet algorithms

Implies correlated treatment of kinematics and flavour information

Standard kT algorithm [Ellis'93]:

Pair distance:

$$d_{ij} = \min(k_{T,i}^2, k_{T,j}^2) R_{ij}^2$$
$$R_{ij}^2 = (\Delta \phi_{ij}^2 + \Delta \eta_{ij}^2) / R^2$$

"Beam" distance for determination condition:

$$d_i = k_{T,i}^2$$

Flavour kT algorithm [Banfi'06]: Pair distance: $d_{ij} = R_{ij}^2 \begin{cases} \max(k_{T,i}, k_{T,j})^{\alpha} \min(k_{T,i}, k_{T,j})^{2-\alpha} & \text{softer of i,j is flavoured} \\ \min(k_{T,i}, k_{T,j})^{\alpha} & \text{else} \end{cases}$ Beam distance: $d_{i,B} = \begin{cases} \max(k_{T,i}, k_{T,B}(y_i))^{\alpha} \min(k_{T,i}, k_{T,B}(y_i))^{2-\alpha} & \text{i is flavoured} \\ \min(k_{T,i}, k_{T,B}(y_i))^{\alpha} & \text{else} \end{cases}$ $d_B(\eta) = \sum_i k_{T,i} (\theta(\eta_i - \eta) + \theta(\eta - \eta_i) e^{\eta_i - \eta} \\ d_{\bar{B}}(\eta) = \sum_i k_{T,i} (\theta(\eta - \eta_i) + \theta(\eta_i - \eta) e^{\eta - \eta_i} \end{cases}$

Problem solved, isn't it?

Real world example: W+c-jet at NNLO QCD with flavour-kT [Czakon'20]

17.05.2022 Freiburg

What about flavour anti-kT?

Anti-kT:
$$d_{ij} = \min(k_{T,i}^{-2}, k_{T,j}^{-2})R_{ij}^2$$
 $d_i = k_{T,i}^{-2}$

The energy ordering in anti-kT prevents correct recombination of flavoured pairs in the double soft limit.

Proposed modification: A soft term designed to modify the distance of flavoured pairs. $d_{ij}^{(F)} = d_{ij} \begin{cases} S_{ij} & \text{i,j is flavoured pair} \\ 1 & \text{else} \end{cases}$ $S_{ij} = 1 - \theta(1-x)\cos\left(\frac{\pi}{2}x\right) \quad \text{with} \quad x = \frac{k_{T,i}^2 + k_{T,j}^2}{2ak_{T,\max}^2}$

Tests of IR safety with parton showers

Dress tree-level di-jet events (definite flavour structure: "qq", "qg" or "gg") with radiation and study jet flavour (q or g) as function of kinematics. In the di-jet limit the flavour needs to correspond to tree level flavours → misidentification rate needs to vanish in dijet back-to-back limit

Flavour anti-kT

17.05.2022 Freiburg

Rene Poncelet - Cambridge

Tests of IR safety with NNLO FO computations

In the limit $x_{cut} \rightarrow 0$:

IR safe jet flavour IR non-safe jet flavour

→ no dependence on x_cut

→ logarithmic divergent

Phenomenology: Z+b-jet

Benchmark process:

Well studied up to $\mathcal{O}(\alpha_s^3)$ [Gauld'20]:

- Defined with flavour-kT algorithm
- Unfolding of experimental data (RooUnfold,bin-by-bin unfolding)
- Matching between four- and fiveflavour schemes (FONLL) [Gauld'21]

$$\mathrm{d}\sigma^{\mathrm{FONLL}} = \mathrm{d}\sigma^{\mathrm{5fs}} + (\mathrm{d}\sigma^{\mathrm{4fs}}_{m_b} - \mathrm{d}\sigma^{\mathrm{4fs}}_{m_b \to 0})$$

 CMS measurement @ 8 TeV [CMS 1611.06507]

Phenomenology: Tunable parameter

17.05.2022 Freiburg

Rene Poncelet - Cambridge

Phenomenology: Tunable parameter II

Preliminary

What happens in the presence of many flavoured partons? \rightarrow NLO PS

Tunable parameter a:

- Small a: Flavour anti-kT results are more similar to standard anti-kT
 → small unfolding factors
- Larger a: Larger modification of clustering

Good FO perturbative convergence + Small difference to standard anti-kT → a~0.1 is a good candidate

17.05.2022 Freiburg

W+c-jet

Idea: Identify final state c-quarks to access s-quark PDFs.

- → Reduction of PDF uncertainties
- \rightarrow Shed light on ss asymmetry
- Non-diagonal CKM and $g \rightarrow c\bar{c}$ reduce s-PDF sensitivity
- Large NLO corrections → higher order corrections?
- Theoretical treatment:
 - Massive c (3-flavour scheme):
 - Resummation of mass logs at high pT \rightarrow PS
 - Higher order predictions?
 - Massless c:
 - c-quark part of the PDFs
 - NNLO QCD available
 - Jet definition?

Vsc > Vdc >> Vbc

W+c-jet with flavour kT at NNLO QCD

NNLO QCD 7 TeV results [2011.01011]:

- Full NNLO corrections for Vcs contribution
- Off-diagonal CKM only LO QCD
- Comparison flv. kT results vs. ATLAS [1402.6263]

Update for 13 TeV measurement:

- Full CKM through NNLO QCD
- Study of different jet-algorithms:
 - Impact of beam-function d_iB in flv kT
 - New anti-kT algorithm
- Study of different flavour tag definitions/setups:
 - Modulus vs. absolute flv tag definition
 - OS minus SS
 - "Inclusive c-jet" rates

17.05.2022 Freiburg

Rene Poncelet - Cambridge

In collaboration with: Czakon, Mitov, Pellen

W+c-jet with flavour anti-kT In collaboration with: Czakon, Mitov, Pellen

Preliminary

Exactly one c-jet requirement:

- Comparison of parameters a: → small dependence < 2%
- Comparison to flv kT: → small dependence @ NNLO < 2%

ONLY large effect in SS contribution

- Exactly one c-jet of SS type: Larger dependence ~15% (roughly size of NNLO scale band)
- BUT: SS contribution ~2-5%
- => OS ~0.2-0.5% dependence

In collaboration with: Czakon, Mitov, Pellen

Flavour tags: OS - SS

Preliminary

Exactly 1 c-jet:

OS-SS:

17.05.2022 Freiburg

Rene Poncelet - Cambridge

Some final remarks

• What is that kT_max parameter?

Some scale to define what soft means. Examples:

- 1. pT of hardest pseudo jet or lepton at a clustering step
- 2. Some fixed dynamical scale, e.g. pT(Z), pT(lep), ...

3. Some fixed hard scale: m_top, m_Z etc.

 \rightarrow The choice impacts the clustering.

- Besides c/b jets: What about gluon/quark jet identification? Conceptually not a problem. Not yet studied in detail. But might introduce some more sensitivity to actual form of S_ij ??
- More complicated examples: pp → W bbar ! LO sensitivity to flv jet algorithm

$$d_{ij}^{(F)} = d_{ij} \begin{cases} S_{ij} & \text{i,j is flavoured pair} \\ 1 & \text{else} \end{cases}$$
$$S_{ij} = 1 - \theta(1-x)\cos\left(\frac{\pi}{2}x\right) \quad \text{with} \quad x = \frac{k_{T,i}^2 + k_{T,j}^2}{2ak_{T,\max}^2}$$

Summary and Outlook

Precision jet observables allow for many pheno applications!

- First NNLO QCD phenomenology results for three jet production R32 ratios, azimuthal decorrelation, event-shapes
- Future application to alphaS extraction

Flavoured jet observables

- New proposed flavour safe version of anti-kT
- Phenomenological applications to Z+b-jet, W+c-jet, top-quark pairs
- Many more applications ahead: open-b's,...

Backup

17.05.2022 Freiburg

b-jets in top-pair production&decay

NNLO QCD corrections [Czakon'20] to:

$$pp \to t (\to b\bar{\ell}\nu)\bar{t} (\to \bar{b}\ell\bar{\nu}) + X$$

Flavour sensitive channels like:

$$pp \to t\bar{t}b\bar{b} \to \bar{\ell}\nu\ell\bar{\nu} \ b\bar{b}b\bar{b}$$

Small numerical impact from extra bbar emissions in pp → bbar [Catani'20] and single-top production [Berger '17'18, Campbell '20] → naive treatment via cut-off procedure

Naive 'cut-off' treatment vs. proposed IR safe flavour anti-kT

17.05.2022 Freiburg