

The HighTEA collaboration

Michal Czakon, Zahari Kassabov, Alexander Mitov, Rene Poncelet and Andrei Popescu

What is HighTEA \bigcirc in a nutshell?

A tool to make state-of-the-art collider phenomenology ...

- ... available to everyone
- ... accessible to everyone
- ... sustainable

A tool to make state-of-the-art collider phenomenology ...

- ... available to everyone*
 - No computing resources needed
 - No access to complicated codes required
- ... accessible to everyone
 - No specific programming skills required
 - No expertise in theory or HEP tools needed
- ... sustainable
 - Only a fraction of Computing cost to conventional computations

Why is this needed?

Fact of Life:

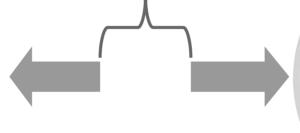
"We are getting most out of collider experiments by comparing measurements to the 'best' available predictions!"

Precise & accurate:

Where do those who do the comparisons get hold of the "best" predictions?

The present situation

"I'm interested in observable X for process Y"


- Run a public general purpose code (like MadGraph[Alwall'14], Sherpa[Gleisberg'08],...)
 - → Implementation of X
 - → Expertise to get 'sensible' results
 - → Computational resources
 - → Basically restricted to NLO QCD (+EW)
- → Ask the authors of paper "(N)NLO QCD corrections for Y" for a prediction of your particular observable.
 - → Inflexible ("But what is about binning Z?")
 - Time consuming

The role of HighTEA

"Prediction
Provider", e.g
us, Madgraph,
NNLOJet [Gehrmann et al '16],
MATRIX [Grazzini'17],

Capability gap,
which require tremendous
efforts on either side

The User, e.g. Experimentalist, BSM, Theorist, Student, ...

The role of HighTEA

"Prediction Provider", e.g. us, Madgraph, NNLOJet, MATRIX,

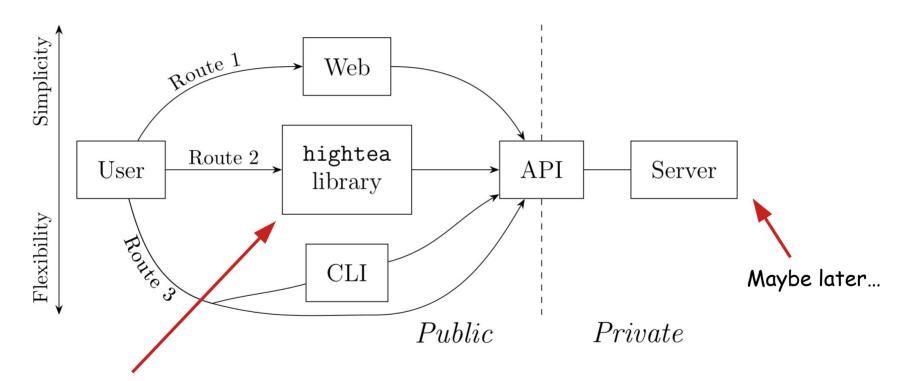
Capability gap, which require tremendous efforts on either side

> The User, e.g. Experimentalist, BSM, Theorist, Student, ...

Think of it as:

"The Madgraph of the next generation" 5

How?


- → Development of a database of precomputed "Theory Events" (Particle level / MC Truth)
 - Currently this means partonic fixed order events
 - > Extensions to included showered/hadronized events is feasible
 - → Equivalent to a full fledged computation

There are attempts in the literature: LHE [Alwall et al '06], Ntuple [BlackHat '08'13],

- → Analysis of the data through an user interface
 - → Easy-to-use
 - → Flexible
 - → Fast

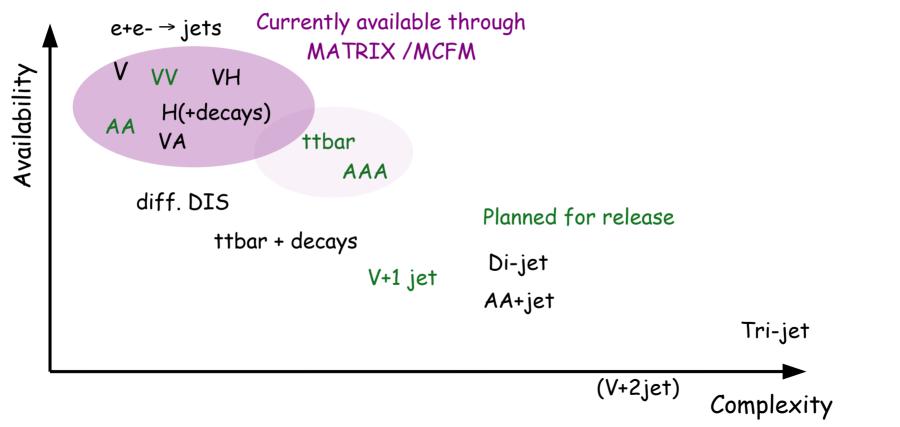
The setup from the user perspective

Demonstration (~20-30 mins)

Current capabilities of the user interface

- Selecting a process
- Asking for histograms for observables of the available processes
 - Some observables are pre-implemented
 - Own observables from some basic 4-momenta
 - Free specification of bins including +-Infinity
- Renormalization/Factorization Scale variation:
 - Change of pre-factors and functional form (any observable)
- PDF (member) variation
- Specify phase space cuts
- If jets are present -> jet radius can be changed too.

Web Tour / Interactive Part



- · Website & Demo page
- HighTEA-examples: Start.ipynb
 - Tutorial
 - ttbar example
 - The Github page & ReadTheDocs

Outlook - We will add more content!

Processes currently implemented in our STRIPPER framework through NNLO QCD

^{*} V processes include leptonic decay mode(s)

Outlook - More functionality/applications

- Functionality:
 - SMPDFs → More efficient PDF error estimations
 - More control over initial state, selection of specific parton fluxes
 - Convergence improvement techniques?! → Improving statistical uncertainties
 - Incorporation of HEPMC/LHE files. (Basically putting Madgraph into HighTEA)
- Applications:
 - FastNLO/PineApple grids could be generated from our database
 - PDF fits using directly NNLO QCD predictions (instead of K-factors)
 - Might be interesting in case of new channels at NNLO, for example: $pp \rightarrow AA (qq \rightarrow AA)$
 - EFT operators!

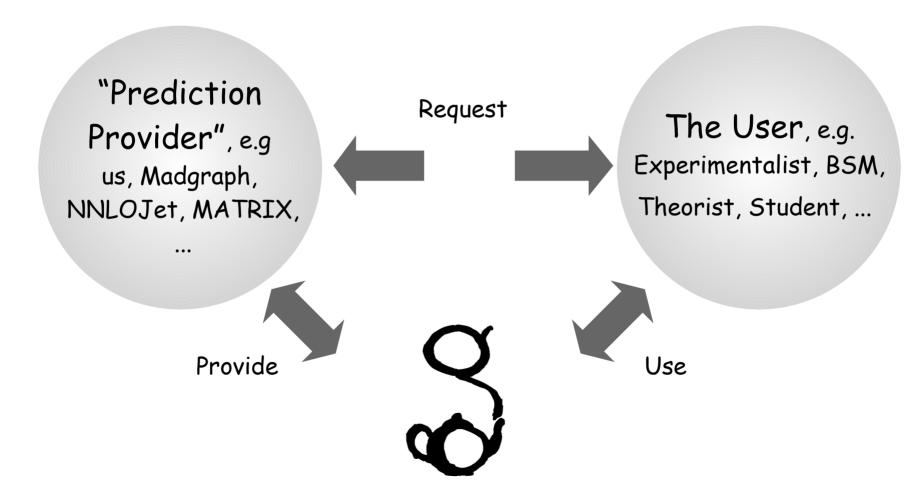
Effective Field Theory

Basic idea: Encode potential heavy new physics in terms of effective operators and Wilson coefficients

Data + SM + EFT → constraints of coefficients and new physics

Full potential requires the 'best' theory for the SM, to minimize the effect of fitting 'higher order SM effects'

Where to get 'best' theory? → The ideal use case for HighTEA

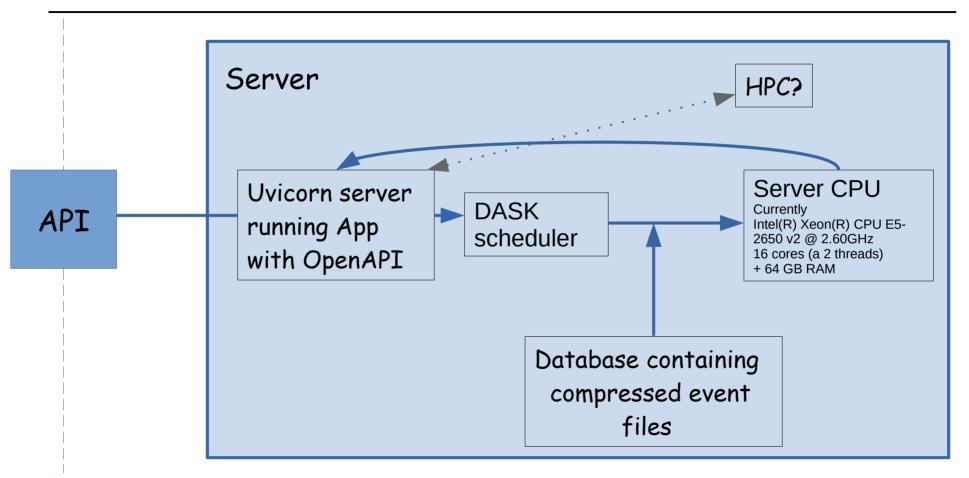

A possible extension: using Madgraph+"EFT provider" to generate data samples for operators/SM interferences!

$$d\sigma = d\sigma^{SM} + \sum_{i} \frac{c_i}{\Lambda} d\sigma^{\mathcal{O}_i} + \sum_{i} \frac{c_i c_j}{\Lambda^2} d\sigma^{\mathcal{O}_i \mathcal{O}_j} + \dots$$

Individual "datasets"

The Vision

Summary


- · HighTEA: High-energy Theory Event Analysis
 - A tool to make state-of-the-art phenomenology available, accessible and sustainable!
- Main functionalities to get NNLO QCD implemented, including:
 - "Arbitrary" observables and binnings
 - PDF/scale variations
 - Phase space restrictions
- Plan for release:
 Examples and Tutorials,
 Providing datasets for NNLO QCD in AA, VV, ttbar, V+jet(not yet publicly available)
- Outlook: Many, many ideas to implement;)

Backup

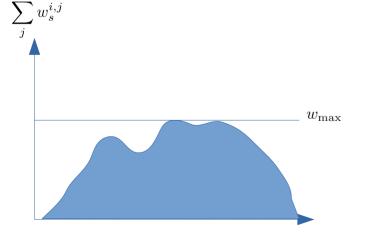
The server

Partially unweighted events

 $d\sigma(P_1, P_2) = \sum \int_0^1 dx_1 dx_2 f_a(x_1, \mu_F^2) f_b(x_2, \mu_F^2) d\hat{\sigma}_{ab}(x_1 P_1, x_2 P_2)$

The hadronic cross section in collinear factorization:

$$d\sigma(P_1, P_2) = \sum_{ab} \iint_0 dx_1 dx_2 f_a(x_1, \mu_F^2) f_b(x_2, \mu_F^2) d\hat{\sigma}_{ab}(x_1 P_1, x_2 P_2)$$


The partonic cross section can be expanded in aS: $\hat{\sigma}_{ab\to X} = \hat{\sigma}_{ab\to X}^{(0)} + \hat{\sigma}_{ab\to X}^{(1)} + \hat{\sigma}_{ab\to X}^{(2)} + \mathcal{O}(\alpha_s^3)$

Using MC method for integration:

Hit-And-Miss Algorithm:

$$\sigma_{\mathrm{tot}} = \frac{1}{n} \sum_{i}^{n} \left(\sum_{j}^{m_i} w_s^{i,j} \right)$$

Beyond LO events might correspond to more than one kinematic: Subtraction events!

Store each sub-event with weight: $w_s^{i,j}/w_{\rm max}$

Reweighting

Factorizing renormalization and factorization scale dependence:

$$w_s^{i,j} = w_{\text{PDF}}(\mu_F, x_1, x_2) w_{\alpha_s}(\mu_R) \left(\sum_{i,j} c_{i,j} \ln(\mu_R^2)^i \ln(\mu_F^2)^j \right)$$

PDF dependence:

$$w_{\text{PDF}}(\mu, x_1, x_2) = \sum_{ab \in \text{channel}} f_a(x_1, \mu) f_b(x_2, \mu)$$

AlphaS dependence:

$$w_{\alpha_s}(\mu) = (\alpha_s(\mu))^m$$

Allows full control over scales and PDF