Jets at the LHC: a fixed order perspective

Rene Poncelet In collaboration with Michal Czakon and Alexander Mitov

Based on: 2106.05331, 2105.06940, 2103.04319, 2011.01011 and 1907.12911

European Research Council

Established by the European Commission

25.10.2021 University of Sussex

Outline

 \rightarrow Jet measurements at the LHC

\rightarrow Three jet observables at NNLO QCD

R32 ratios Event-shapes

\rightarrow Flavoured jets

Infrared safe definition of jet flavour? → New proposal for a flavour safe algorithm.

\rightarrow Wrap-up and outlook

25.10.2021 University of Sussex

Jet measurements at the LHC

25.10.2021 University of Sussex

SM measurements at the LHC

25.10.2021 University of Sussex

SM measurements at the LHC

25.10.2021 University of Sussex

Jet observables at the LHC

The LHC produces jets abundantly \rightarrow many phenomenological applications

Tests of ρ QCD, α_s extraction: R32 ratios, event-shapes

PDF determination: Single inclusive, Multi-differential dijet BSM searches: dijet mass

25.10.2021 University of Sussex

Precision predictions

Soft physics: MPI, color reconnection,

Fragmentation/hadronisation

25.10.2021 University of Sussex

...

Example: PDF fits with jets

25.10.2021 University of Sussex

Idea (quite old actually [Giele'94]):

Combine single inclusive and dijet triple differential measurements by ATLAS and CMS to constrain the large gluon-x

Here by a collaboration of NNLOJet and NNPDF [Khalek'20]:

- Reduced uncertainty in large-x gluon PDF
- NNLO QCD corrections crucial to obtain consistent results between data sets
- NLO EW[Dittmaier'12] or full NLO corrections [Frederix'17,Reyer'19]

Control over theory uncertainties

Three jet production @ NNLO QCD

25.10.2021 University of Sussex

Three jet production

Advances in perturbative QCD allow to tackle the most complicated 2→3 process

Bottlenecks:

- Double virtual amplitudes: recently published in leading colour approximation [Abreu'21]
- Handling of real radiation:
 - Sector-improved residue subtraction [Czakon'10'14'19] conceptually capable
 - Computationally very challenging! \rightarrow O(1M CPUh)

Only Approximation made: $\mathcal{R}^{(2)}(\mu_R^2) = 2 \operatorname{Re} \left[\mathcal{M}^{\dagger(0)} \mathcal{F}^{(2)} \right] (\mu_R^2) + |\mathcal{F}^{(1)}|^2 (\mu_R^2) \equiv \mathcal{R}^{(2)}(s_{12}) + \sum_{i=1}^4 c_i \ln^i \left(\frac{\mu_R^2}{s_{12}} \right)$ $\rightarrow \text{taken from [Abreu'21]}$ $\mathcal{R}^{(2)}(s_{12}) \approx \mathcal{R}^{(2)l.c.}(s_{12})$

Three jet production - R32(pT1)

Three jet production - R32(HT)

Scale dependence correlated in ratio

 \rightarrow reduction of scale dependence

 \rightarrow flat k-factor

→ scale bands in ratio barely overlap

25.10.2021 University of Sussex

Three jet production – R32(HT,y*)

Double differential w.r.t. $y^* = |y(j_1) - y(j_2)|/2$ Different central scale choice: $\hat{H}_T/2$

25.10.2021 University of Sussex

Three jet production – azimuthal decorrelation

Kinematic constraints on the azimuthal separation between the two leading jets (φ12)

 φ 12 sensitive to the jet multiplicity:

2j: φ12 = π 3j: φ12 > 2/3π

4j: unconstrained

Study of the ratio

R32(HT,y*, ϕ Max) = (d σ 3(ϕ < ϕ Max)/dHT/dy*)/(d σ 2/dHT/dy*)

With y* = |y1-y2|/2

Rene Poncelet - Cambridge

11

Three jet production – R32(HT,y*,φMax)

25.10.2021 University of Sussex

Event shapes regimes

Typically event shapes measure departure from N hard jet case

ALEPH data

NNLC

NI C

10

 $Q = M_{z}$

 $\alpha_{c} (M_{7}) = 0.1189$

Anisotropic, 2-prong like Sensitivity to resummation

Example: 1-Thrust at LEP

Isotropic, multi-jet

Sensitive to hard matrix elements

25.10.2021 University of Sussex

Event shapes at the LHC

25.10.2021 University of Sussex

Technical aspects (~10mins)

25.10.2021 University of Sussex

NNLO QCD prediction beyond $2 \rightarrow 2$

- $2 \rightarrow 3$ Two-loop amplitudes:
- (Non-) planar 5 point massless 'pheno ready' [Chawdry'19'20'21,Abreu'20'21,Agarwal'21,Badger'21] fast progress in the last year → triggered by efficient MI representation [Chicherin'20]
- 5 point with one external mass [Abreu'20,Syrrakos'20,Canko'20,Badger'21]

Many leg, IR stable one-loop amplitudes \rightarrow OpenLoops [Buccioni'19]

Cross sections \rightarrow Combination with real radiation

• Various NNLO subtraction schemes are available: qT-slicing [Catain'07], N-jettiness slicing [Gaunt'15/Boughezal'15], Antenna [Gehrmann'05-'08], Colorful [DelDuca'05-'15], Projetction [Cacciari'15], Geometric [Herzog'18], Unsubtraction [Aguilera-Verdugo'19], Nested collinear [Caola'17], Sector-improved residue subtraction [Czakon'10-'14,'19]

Hadronic cross section

Considering CDR ($d = 4 - 2\epsilon$):

25.10.2021 University of Sussex

Sector decomposition I

- Considering working in CDR:
- \rightarrow Virtuals are usually done in this regularization
- \rightarrow Real radiation:
 - \rightarrow Very difficult integrals, analytical impractical (except very simple cases)!
 - \rightarrow Numerics not possible, integrals are divergent: ϵ -poles!

How to extract these poles? \rightarrow Sector decomposition!

Divide and conquer the phase space:

Sector decomposition II

Five-point amplitudes - Overview

The all massless case:

• $pp \rightarrow jjj$

- Euclidean results: insights in rational structure of amplitudes [Abreu'19]
- Physical phase space [Abreu'21]:
 - based on 'pentagon-functions' by Chicherin and Sotnikov [Chicherin'20]
 - efficient evaluation times (~1sec) \rightarrow 'pheno-ready'
- $pp \rightarrow \gamma \gamma \gamma$
 - First, squared matrix elements with 'pentagon-functions' by [Gehrmann'18]. Very slow, however usable for pheno application [Chawdhry'19].
 - Helicity amplitudes with new 'pentagon-functions' [Abreu'20,Chawdhry'20]
- $pp \rightarrow \gamma \gamma j$
 - Squared matrix element in planar limit [Agarwal'21]
 - Helicity amplitudes in planar limit [Chawdhry'21]
 - Both in full glory [Agarwal'21] + gg induced [Badger'21]
- $pp \rightarrow \gamma jj$ \leftarrow untouched territory so far...

25.10.2021 University of Sussex Rene Poncelet - Cambridge

Planar five-point amplitudes

 $q\bar{q} \to \gamma\gamma\gamma$

- 3 independent helicities
- QED x QCD \rightarrow leading color \neq planar

$$q\bar{q}
ightarrow g\gamma\gamma \quad qg
ightarrow q\gamma\gamma$$

• Kinemotics: $\{s_{ij}\} = \{s_{12}, s_{23}, s_{34}, s_{45}, s_{51}\}$ $\operatorname{tr}_5 = 4i\epsilon(p_1, p_2, p_3, p_4)$

25.10.2021 University of Sussex

Our framework

Automated framework using finite fields to avoid expression swell based on Firefly [Klappert'19'20]

25.10.2021 University of Sussex

Projection

Projection to helicity amplitudes based on [Chen '19]

Spin structure of $q\bar{q} \rightarrow \gamma\gamma\gamma$ and $q\bar{q} \rightarrow g\gamma\gamma$: $\mathcal{M}^{\bar{h}} = \epsilon_{3,h_3}^{*\mu} \epsilon_{4,h_4}^{*\nu} \epsilon_{5,h_5}^{*\rho} \bar{v}(h_2) \Gamma_{\mu\nu\rho} u(h_1)$

Explicit representation of polarization vectors in terms of momenta (d=4):

$\epsilon_{i,h}^{\mu} = \frac{1}{\sqrt{2}} (\epsilon_{i,X}^{\mu} + hi\epsilon_{i,Y}^{\mu}) \qquad \begin{array}{l} \text{Ansotz:} & \text{Constraints:} \\ \epsilon_{i,X}^{\mu} = c_{i,1}^{X} p_{1}^{\mu} + c_{i,2}^{X} p_{2}^{\mu} + c_{i,3}^{X} p_{i}^{\mu} \\ \Rightarrow \epsilon_{i,Y}^{\mu} = \mathcal{N}_{i,Y} \epsilon_{\nu\rho\sigma}^{\mu} q^{\nu} p_{i}^{\rho} \epsilon_{i,X}^{\sigma} \end{array} \qquad \begin{array}{l} \epsilon_{i,X} \cdot q = 0, \quad \epsilon_{i,X} \cdot p_{i} = 0 \\ \epsilon_{i,X} \cdot p_{i} = 0 \end{array}$

Spinors expressed through trace:

$$\mathcal{M} = \bar{v}(p_2, h_2)\Gamma u(p_1, h_1) = \operatorname{Tr}\left\{ \left(u \otimes \bar{v} \right) \Gamma \right\} \qquad (u \otimes \bar{v})_{\alpha\beta} = \frac{\bar{u}Nv}{\bar{u}Nv} (u \otimes \bar{v})_{\alpha\beta} = \frac{1}{\mathcal{N}} [(u \otimes \bar{u})N(v \otimes \bar{v})]_{\alpha\beta}$$

Application to Feynman diagrams \rightarrow scalar expression: $\mathcal{M} = \sum c(\{s_{ij}\}, tr_5, d)I(\{s_{ij}\}, d)$ Note: bare amplitudes are scheme-dependent, finite remainders are not25.10.2021 University of SussexRene Poncelet - Cambridge

22

Amplitudes! Assemble!

Analytically derived IBP tables [Chawdhry'18]: $I(\{s_{ij}\}, d) = \sum \tilde{c}(\{s_{ij}\}, d) \mathrm{UT}(\{s_{ij}\}, d)$

 $UT(\{s_{ij}\}, d) = \sum \left(\vec{c_i} \cdot \vec{t_i}\right) \epsilon^i$ All bits known analytically, but adding them up is cumbersome... Using the increasingly adapted finite field approach (using Firefly):

- \rightarrow evaluating all components in finite field points
- \rightarrow doing the sums
- \rightarrow reconstruct the finite remainder amplitude:

$$\mathcal{R}^{(\ell),i,c} = \sum_{e} r_e^{(\ell),i,c} t_e$$

: Combinations of transcendental functions

 $r^{(\ell),i,c}$: rational in s_{ij} and linear in tr_5

 \rightarrow Exploiting Q-linear relations among rationals:

tot./ # ind. $q\bar{q} \rightarrow g\gamma\gamma$ $\mathcal{R}^{+---,(2),Q_q^2,N_c^2}$ 96 / 33 $\mathcal{R}^{+---,(2),Q_q^2,n_f}$ 48 / 22 $\mathcal{R}^{+---,(2),Q^2_{q'},n_f}$ 6/2 $\mathcal{R}^{+-+-,(2),Q_q^2,N_c^2}$ 7266 / 66 $\mathcal{R}^{+-+-,(2),Q_q^2,n_f}$ 504 / 27 $\mathcal{R}^{+-+-,(2),Q^2_{q'},n_f}$ 58 / 8 $\mathcal{R}^{+--+-,(2),Q_q^2,N_c^2}$ 7252 / 101 $\mathcal{R}^{+--+,(2),Q_q^2,n_f}$ 736 / 59 $\mathcal{R}^{+--+,(2),Q^2_{q'},n_f}$ 58 / 8

i=0

Master Integrals:

(pentagon-functions)

 t_e

Flavoured jets

25.10.2021 University of Sussex

Example: W+c-jet

Vsc > Vdc >> Vbc

→ Sensitivity to strange PDF Use measurement for:

- \rightarrow Reduction of PDF uncertainties
- \rightarrow Shed light on ssbar asymmetry

Idea is simple:

Identify final state c-quarks to access s-quark PDFs.

But:

- Non-diagonal CKM contributions reduce sensitivity
- Theoretical treatment for PDF fits:
 - Large NLO corrections: $g \rightarrow c$ cbar
 - Massive c:
 - Resummation of mass logs at high pT
 - Higher order predictions?
 - Massless c:
 - Appropriate for high pT
 - NNLO QCD available
 - Jet definition?

25.10.2021 University of Sussex

W+c-jet: IR safe jet flavour

25.10.2021 University of Sussex

Solution: Modified jet algorithms

Standard kT algorithm [Ellis'93]:

Pair distance: $d_{ij} = \min(k_{T,i}^2, k_{T,j}^2)R_{ij}^2$ $R_{ij}^2 = (\Delta \phi_{ij}^2 + \Delta \eta_{ij}^2)/R^2$

Beam distance: $d_i = k_{T,i}^2$

Flavour kT algorithm [Banfi'06]:

Pair distance:

$$d_{ij} = R_{ij}^2 \begin{cases} \max(k_{T,i}, k_{T,j})^{\alpha} \min(k_{T,i}, k_{T,j})^{2-\alpha} & \text{softer of i,j is flavoured} \\ \min(k_{T,i}, k_{T,j})^{\alpha} & \text{else} \end{cases}$$

Beam distance:

$$d_{i,B} = \begin{cases} \max(k_{T,i}, k_{T,B}(y_i))^{\alpha} \min(k_{T,i}, k_{T,B}(y_i))^{2-\alpha} & \text{i is flavoured} \\ \min(k_{T,i}, k_{T,B}(y_i))^{\alpha} & \text{else} \end{cases}$$

$$d_B(\eta) = \sum_i k_{T,i}(\theta(\eta_i - \eta) + \theta(\eta - \eta_i)e^{\eta_i - \eta})$$
$$d_{\bar{B}}(\eta) = \sum_i k_{T,i}(\theta(\eta - \eta_i) + \theta(\eta_i - \eta)e^{\eta - \eta_i})$$

25.10.2021 University of Sussex

Rene Poncelet - Cambridge

Numerical check in 2jet events: Misidentification rate as a function of y3kt

Problem solved, isn't it?

W+c-jet at NNLO QCD with flavour-kT [Czakon'20]

25.10.2021 University of Sussex

Rene Poncelet - Cambridge

[Salam'09]

What about flavour anti-kT?

Anti-kT:
$$d_{ij} = \min(k_{T,i}^{-2}, k_{T,j}^{-2})R_{ij}^2$$
 $d_i = k_{T,i}^{-2}$

The energy ordering in anti-kT prevents correct recombination of flavoured pairs in the double soft limit.

Proposed modification:

A soft term designed to modify the distance of flavoured pairs.

$$d_{i,j}^{(F)} = d_{i,j} \begin{cases} \mathcal{S}_{ij} & \text{i,j is flavoured pair} \\ 1 & \text{else} \end{cases}$$
$$\mathcal{S}_{ij} = 1 - \theta(1-x)\cos\left(\frac{\pi}{2}x\right) \quad \text{with} \quad x = \frac{k_{T,i}^2 + k_{T,j}^2}{2ak_{T,\max}^2}$$

25.10.2021 University of Sussex

IR safety of flavoured Anti-kT

Phenomenology: Z+b-jet

Well studied up to $\mathcal{O}\!\left(\alpha_s^3
ight)$ [Gauld'20]:

- Defined with flavour-kT algorithm
- Unfolding of experimental data (RooUnfold,bin-by-bin unfolding)
- Matching between four- and five-flavour schemes (FONLL) [Gauld'21]

$$\mathrm{d}\sigma^{\mathrm{FONLL}} = \mathrm{d}\sigma^{\mathrm{5fs}} + (\mathrm{d}\sigma^{\mathrm{4fs}}_{m_b} - \mathrm{d}\sigma^{\mathrm{4fs}}_{m_b \to 0})$$

Phenomenology: Tunable parameter

Benchmark process: $pp \rightarrow Z(ll) + b$ -jet

Tunable parameter a:

- Limit $a \rightarrow 0 \iff 0 \iff 0 \iff 0 \iff 0 \iff 0 \iff 0$
- Large a <=> large modification of cluster sequence

Flavour kT:

Flavour anti-kT: a = 0.1

Flavour anti-kT: a = 0.01

Phenomenology: Tunable parameter II

What happens in the presence of many flavoured partons? \rightarrow NLO PS

Tunable parameter a:

- Flavour anti-kT results are similar to standard anti-kT → small unfolding factors
- Flavour-kT has larger difference

Combine with perturbative convergence: \rightarrow a~0.1 is a good candidate

25.10.2021 University of Sussex

b-jets in top-pair production&decay

NNLO QCD corrections [Czakon'20] to: $pp \rightarrow t(\rightarrow b\bar{\ell}\nu)\bar{t}(\rightarrow \bar{b}\ell\bar{\nu}) + X$

Flavour sensitive channels like: $pp \to t\bar{t}b\bar{b} \to \bar{\ell}\nu\ell\bar{\nu} \; b\bar{b}b\bar{b}$

Small numerical impact from extra bbar emissions in pp → bbar [Catani'20] and single-top production [Berger '17'18, Campbell '20] → naive treatment via cut-off procedure

Naive 'cut-off' treatment vs. proposed IR safe flavour anti-kT

25.10.2021 University of Sussex

Summary & Outlook

25.10.2021 University of Sussex

Summary and Outlook

Summary and Outlook

Thank you for your attention!

25.10.2021 University of Sussex

Backup

25.10.2021 University of Sussex

Three photon production

- First NNLO QCD 2 \rightarrow 3 cross sections: [Chawdhry'19],[Kallweit'20]
- Simplest among the 2 \rightarrow 3 massless cases: colour singlet
- Planar Two-loop virtuals: $2 \operatorname{Re}(\mathcal{M}^{(0)^{\dagger}}\mathcal{F}^{(2)})$ with 'original' pentagon functions [Henn'18] \rightarrow Fast helicity amplitudes: [Abreu'20],[Chawdhry'20]

- Large NNLO/NLO K-factors
- Similar behaviour as $\ pp \to \gamma\gamma$
- NNLO QCD corrections essential for theory/data comparison
- Contribution of 2-loop amps small $\approx 1\%$

25.10.2021 University of Sussex

Three photon production

25.10.2021 University of Sussex

Diphoton plus jet production

- Photon pair production @ LHC is of particular interest:
 - Main background to cleanest Higgs decay channel
- Inclusive diphoton show large NNLO QCD corrections
 - Perturbative convergence @ N3LO?
 First steps: [Chen's talk at RADCOR+Loopfest2021]
 - → Diphoton plus jet @ NNLO QCD ($p_T(\gamma\gamma) \rightarrow 0$ limit)
- $p_T(\gamma\gamma)$ spectrum itself interesting for Higgs $\rightarrow \gamma\gamma$:
 - → Higgs p_T measurements resolve local Higgs couplings → BSM searches
 - -> Angular diphoton observables \rightarrow spin measurements

25.10.2021 University of Sussex

Diphoton plus jet - setup

[Chawdry'21]: Inspired by Higgs $\rightarrow \gamma\gamma$ measurement phase spaces

- Smooth photon isolation criteria: $E_T = 10 \text{ GeV}, R_{\gamma} = 0.4, \Delta R(\gamma, \gamma) > 0.4$
- $p_T(\gamma_1) > 30 \text{ GeV}, p_T(\gamma_2) > 18 \text{ GeV and } |y(\gamma)| < 2.4$
- $m(\gamma\gamma) > 90$ GeV and $p_T(\gamma\gamma) > 20$ GeV, below resummation important
- No further restrictions on jets (IR safety from $p_T(\gamma\gamma)$ cut)

Technicalities:

- LHC 13 TeV, PDF: NNPDF31, Scale: $\mu_R^2 = \mu_F^2 = \frac{1}{4}m_T^2(\gamma\gamma) = \frac{1}{4}(m(\gamma\gamma)^2 + p_T(\gamma\gamma)^2)$
- 5 massless flavours and top-quarks (in all one-loop amps)
- Approximation of two-loop amps: 2 Re(M^{(0)[†]} F⁽²⁾) + F^{(1)[†]} F⁽¹⁾ without top-quark loops and 2 Re(M^{(0)[†]} F⁽²⁾) in leading colour limit [Chawdhry'21] → Update to full colour planned [Agarwal'21]

25.10.2021 University of Sussex

Diphoton plus jet – pT spectrum

- Beautiful perturbative convergence
- Scale dependence: NLO: ~10% NNLO: ~1-2%
- Low p_T region:
 - ? Resummation for $p_T(\gamma\gamma)/m(\gamma\gamma) \ll 1$
 - Strong effect from the loop induced!

25.10.2021 University of Sussex

Diphoton plus jet – Angular observables

Note: Normalization affected by low p_T behaviour

25.10.2021 University of Sussex

Diphoton plus jet – two-loop contribution

- Two-loop contribution (green line) <~1%,
- Loop induced contribution:
 - → sizeable effects for low p_T , vanishes for high p_T
 - → flat effect in 'bulk' observables
 - Dominant source of scale dependence
 - → NLO QCD correction (formally N3LO) relevant, missing piece: $gg \rightarrow g\gamma\gamma$ two-loop [Badger'21]

25.10.2021 University of Sussex

Three jet production – transverse jet momenta

- $p_T(j_2)$:
 - → suffers from slow MC convergence, larger binning
 - \rightarrow shows reasonable perturbative convergence
- $p_T(j_3)$:
 - \rightarrow fast MC convergence
 - \rightarrow flat k-factor

Caveat:

- \rightarrow Scale choice based on full event
- \rightarrow reasonable for $p_T(j_1)$ and $p_T(j_2)$
- $\rightarrow p_T(j_3) \ll p_T(j_1) + p_T(j_2)$
 - \rightarrow potentially large hierarchy?
- \rightarrow investigation with 'jet-based' scale useful

Sector decomposition II

Divide and conquer the phase space:

- → Each $S_{ij,k}/S_{i,k;j,l}$ has simpler divergences. Soft and collinear (w.r.t parton k,l) of partons i and j
- \rightarrow Parametrization w.r.t. reference parton:

$$\hat{\eta}_i = \frac{1}{2}(1 - \cos\theta_{ir}) \in [0, 1]$$
 $\hat{\xi}_i = \frac{u_i^0}{u_{\max}^0} \in [0, 1]$

 \rightarrow Subdivide to factorize divergences

 \rightarrow double soft factorization:

 $\theta(u_1^0 - u_2^0) + \theta(u_2^0 - u_1^0)$

 \rightarrow triple collinear factorization

Czakon'10,Caola'17

25.10.2021 University of Sussex

Phase space cut and differential observable introduce *mis-binning* : mismatch between kinematics in subtraction terms → leads to increased variance of the integrand → slow Monte Carlo convergence

New phase space parametrization [Czakon'19]: Minimization of # of different subtraction kinematics in each sector

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space: $\{P, r_j, u_k\} \rightarrow \{\tilde{P}, \tilde{r}_j\}$

Requirements:

- Keep direction of reference r fixed
- Invertible for fixed $u_i: \left\{\tilde{P}, \tilde{r}_j, u_k\right\} \rightarrow \{P, r_j, u_k\}$ Preserve Born invariant mass: $q^2 = \tilde{q}^2, \ \tilde{q} = \tilde{P} \sum_{k=1}^{n_{fr}} \tilde{r}_j$

Main steps:

- Generate Born configuration
- Generate unresolved partons u_i
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

25.10.2021 University of Sussex

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space: $\{P, r_j, u_k\} \rightarrow \{\tilde{P}, \tilde{r}_j\}$

Requirements:

- Keep direction of reference r fixed
- Invertible for fixed $u_i: \left\{\tilde{P}, \tilde{r}_j, u_k\right\} \rightarrow \{P, r_j, u_k\}$ Preserve Born invariant mass: $q^2 = \tilde{q}^2, \ \tilde{q} = \tilde{P} \sum_{k=1}^{n_{fr}} \tilde{r}_j$

Main steps:

- Generate Born configuration
- Generate unresolved partons u_i
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

25.10.2021 University of Sussex

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space: $\{P, r_j, u_k\} \rightarrow \{\tilde{P}, \tilde{r}_j\}$

Requirements:

- Keep direction of reference r fixed
- Invertible for fixed $u_i: \left\{\tilde{P}, \tilde{r}_j, u_k\right\} \rightarrow \{P, r_j, u_k\}$ Preserve Born invariant mass: $q^2 = \tilde{q}^2, \ \tilde{q} = \tilde{P} \sum_{k=1}^{n_{fr}} \tilde{r}_j$

Main steps:

- Generate Born configuration
- Generate unresolved partons u_i
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

25.10.2021 University of Sussex

r = x

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space: $\{P, r_j, u_k\} \rightarrow \{\tilde{P}, \tilde{r}_j\}$

Requirements:

- Keep direction of reference r fixed
- Invertible for fixed $u_i: \left\{\tilde{P}, \tilde{r}_j, u_k\right\} \rightarrow \{P, r_j, u_k\}$ Preserve Born invariant mass: $q^2 = \tilde{q}^2, \ \tilde{q} = \tilde{P} \sum_{k=1}^{n_{fr}} \tilde{r}_j$

Main steps:

- Generate Born configuration
- Generate unresolved partons u_i
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

25.10.2021 University of Sussex

