Towards 2 \rightarrow 3 NNLO QCD calculations

RADCOR 2019, Avignon

Rene Poncelet

in collaboration with M. Czakon and A. Mitov.

10th September 2019

Cavendish Laboratory

Introduction

Tremendous progress in NNLO QCD calculation in the past decade

State-of-the-art:

- All (Standard Model) $2 \rightarrow 2$ processes calculated
- Many competing subtraction schemes: Antenna, qT/N-jettiness, Torino, sector-improved residue, Colourful, Projetction-to-Born, Geometric, Unsubtraction, . . .
- Phenomenology: SM precision measurements and parameter estimation, PDF determination, . . .
- →Valuable input for the LHC physics program!

Not quite comparable to the 'NLO revolution' yet, lack of automated

- 1. Real radiation contributions \rightarrow subtraction schemes
- 2. Two-loop matrix elements

2

Sector-improved residue subtraction

STRIPPER framework: Advances and Application

STRIPPER: Minimal sector-improved residue subtraction

Refined formulation of the sector-improved residue subtraction

[Czakon '10 '11][Czakon, Heymes '14][Czakon, van Hameren, Mitov, Poncelet '19]

- New phase space parameterization:
 - Starts from Born kinematics → additional radiation accommodated by rescaling and boosts
 - Generates minimal set of subtraction kinematics in each sector
 - Only one (!) double unresolved kinematic (= Born kinematic)
- Minimal set of sectors
- New 4-dimensional formulation:
 - New method to determine necessary counter terms
 - Numerical pole cancellation for each Born phase space point

Sector decomposition:

First NNLO QCD calculation of top-quark production including decays

[Behring, Czakon, Mitov, Papanastasiou, Poncelet '19]

- ullet Narrow-Width-Approximation: Combination of NNLO QCD in $tar{t}$ production and decay
- Phenomenological application: Top-quark pair spin correlations Background: ATLAS observed large deviations from NLO predictions [arXiv:1903.07570 ATLAS '19]

Predictions for fiducial phase space region:

First NNLO QCD calculation of top-quark production including decays

[Behring, Czakon, Mitov, Papanastasiou, Poncelet '19]

- ullet Narrow-Width-Approximation: Combination of NNLO QCD in $tar{t}$ production and decay
- Phenomenological application: Top-quark pair spin correlations Background: ATLAS observed large deviations from NLO predictions [arXiv:1903.07570 ATLAS '19]

Predictions for inclusive phase space region:

A lesson in perturbative calculations: Normalized distribution $\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}X}$

• Perturbative expansion:

$$\sigma = \sigma^0 + \alpha_S \sigma^1 + \alpha_S^2 \sigma^2 + \dots$$

$$\frac{d\sigma}{dX} = \frac{d\sigma^0}{dX} + \alpha_S \frac{d\sigma^1}{dX} + \alpha_S^2 \frac{d\sigma^2}{dX} + \dots$$

Normalized distribution at NNLO:

$$\textit{R} = \frac{1}{\sigma^0 + \alpha_S \sigma^1 + \alpha_S^2 \sigma^2} \left(\frac{\mathrm{d}\sigma^0}{\mathrm{d}\textit{X}} + \alpha_S \frac{\mathrm{d}\sigma^1}{\mathrm{d}\textit{X}} + \alpha_S^2 \frac{\mathrm{d}\sigma^2}{\mathrm{d}\textit{X}} \right) + \mathcal{O} \left(\alpha_S^3 \right)$$

Expanded ratio:

$$\begin{split} R^{\text{NNLO,exp}} &= R^0 + \alpha_S R^1 + \alpha_S^2 R^2 \ , \\ R^0 &= \frac{1}{\sigma^0} \frac{\mathrm{d}\sigma^0}{\mathrm{d}X} \ , \\ R^1 &= \frac{1}{\sigma^0} \frac{\mathrm{d}\sigma^1}{\mathrm{d}X} - \frac{\sigma^1}{\sigma^0} \frac{1}{\sigma^0} \frac{\mathrm{d}\sigma^0}{\mathrm{d}X} \ , \\ R^2 &= \frac{1}{\sigma^0} \frac{\mathrm{d}\sigma^2}{\mathrm{d}X} - \frac{\sigma^1}{\sigma^0} \frac{1}{\sigma^0} \frac{\mathrm{d}\sigma^1}{\mathrm{d}X} + \left(\left(\frac{\sigma^1}{\sigma^0} \right)^2 - \frac{\sigma^2}{\sigma^0} \right) \frac{1}{\sigma^0} \frac{\mathrm{d}\sigma^0}{\mathrm{d}X} \end{split}$$

A lesson in perturbative calculations: Normalized distribution $\frac{1}{\sigma} \frac{d\sigma}{dX}$

- Not an EW-effect (which is actually small)
- Everything consistent within scale dependence (7-point variation)
- NNLO QCD resolves this expansion 'ambiguity'

STRIPPER: Single-inclusive jet cross sections

First complete NNLO QCD calculation for inclusive jet production

[Czakon,van Hameren,Mitov,Poncelet]

Many publications and studies by the NNLOJET collaboration:

[Currie, Gehrmann-De Ridder, Gehrmann, Glover, Huss, Pires '16-19]

- Antenna subtraction formalism
- Leading color approximation for channels with quarks (expected to be a good approximation)
- Extensive analysis of renormalization scale setting and dependence:
 - Cancellation between different n-jet samples!
 - Distinguish 'jet'- and 'event'-type scales:
 - Inclusive jet observables: $\mu = p_T$ for each jet
- Very good description of LHC data for various observables: inclusive jets, various di-jet observables.

Technically very challenging process.

Contains the full set of NNLO IR singularities!

STRIPPER: Single-inclusive jet cross sections

- First full NNLO QCD calculation at 13 TeV
- Quite slow convergence: 350k CPU hours → optimization potential!
- Comparison to NNLOJET: sub-leading color effects within MC errors, thus indeed small
- K-factors public

STRIPPER: Single-inclusive jet cross sections

- First full NNLO QCD calculation at 13 TeV
- Quite slow convergence:
 350k CPU hours →
 optimization potential!
- Comparison to NNLOJET: sub-leading color effects within MC errors, thus indeed small
- K-factors public

STRIPPER: Subtraction beyond $2 \rightarrow 2$

- Jet-production: full set of subtraction terms in action
- Fully automated generation of subtraction terms
- Straight-forward user interface:
 - Generation of required contributions
 - Combination of equivalent contributions → minimize computational setup
 - Easy extensible interfaces to OpenLoops(2) [Buccioni et al. '19] and Recola [Denner et al. '16-17]
- First 2 → 3 calculations

The framework gets ready for the future

Five-point amplitudes in the IBP approach

First application: $\ensuremath{\textit{pp}} \rightarrow \gamma \gamma \gamma$ at NNLO QCD

5-point 2-loop: IBP identities and reduction

Topologies for massless 5-point amplitudes

- 2 non-/3 planar topologies
- 113 Masters in B1
 75 Masters in B2
 61 Masters in C1
 28 Masters in C2

- Reduction of planar topologies up to numerator power -5 available: [Chawdhry,Lim,Mitov '18]
 - Memory and CPU intensive venture
 - \bullet 'divide and conquer': solve IBPs for one master at a time \to easy to parallelize and reduced memory consumption
- Non-planar topologies: work ongoing, but is constraint by available CPU hours

5-point 2-loop: First application: $q\bar{q} \rightarrow \gamma\gamma\gamma$

- ullet Diagram generation with DiaGen [Czakon, private code] $ightarrow \sim 1000$ diagrams
- Decomposition of matrix element $\langle \mathcal{M}^{(0)} | \mathcal{M}^{(2)} \rangle$:

$$egin{aligned} q_i^6 \left(N_c^3 \mathcal{M}^{(2,N_c^3)} + N_c \mathcal{M}^{(2,N_c)} + N_c^{-1} \mathcal{M}^{(2,N_c^{-1})} + n_l (N_c^2 - 1) \mathcal{M}^{(2,n_l)}
ight) \ + q_i^4 (N_c^2 - 1) ilde{n}_l \mathcal{M}^{(2, ilde{n}_l)} \quad ext{with} \quad ilde{n}_l = \sum_i q_i^2 \end{aligned}$$

• Interesting: vanishing contribution from diagrams of type:

• Color decomposition in the leading color approximation

$$\begin{split} \left\langle \mathcal{M}^{(0)} \middle| \mathcal{M}^{(2)} \right\rangle_{\text{l-c}} &= q_i^6 \bigg(N_c^3 \mathcal{M}^{(2,N_c^3)} + n_l (N_c^2 - 1) \mathcal{M}^{(2,n_l)} \bigg) \\ &+ \underbrace{q_i^4 (N_c^2 - 1) \tilde{n}_l \mathcal{M}^{(2,\tilde{n}_l)}}_{\text{non-planar contribution}} \end{split}$$

5-point 2-loop: First application: $q\bar{q} \rightarrow \gamma\gamma\gamma$

- Master integrals expressed through planar 'pentagon-function'-basis [Gehrmann,Henn,Presti '18]
- Quite large set of functions due to numerous momenta permutations
- Computationally most intensive part: insertion of IBPs and Masters and simplification of the rational coefficients!
- Usage of rational reconstruction software FiniteFlow [Peraro '19] to sum up coefficients
- · Cancellation of UV and IR poles checked analytically
- Rational c++ implementation of coefficients
- Usage of 'pentagon-function' implementation by [Gehrmann, Henn, Presti '18]
- ullet \sim 1h per phase space point

$2 \rightarrow 3$ NNLO QCD phenomenology

- First 2 \rightarrow 3 application $pp \rightarrow \gamma \gamma \gamma$
- Detailed differential measurements by ATLAS available on HepData [1712.07291 ATLAS]
- Clear discrepancies between NLO QCD and data

Setup:

- \bullet E_T (= p_T) cut for the three photons: $E_{T,\gamma_1}>$ 27 GeV, $E_{T,\gamma_2}>$ 22 GeV, $E_{T,\gamma_3}>$ 15 GeV
- $\bullet~$ Rapidity: All photons have $|\eta_{\gamma}| < 2.37$ (+exclusion of $1.37 < |\eta_{\gamma}| < 1.56)$
- ullet Separation of photons: The angular distance between each two photons ΔR is required to be > 0.45
- Invariant mass: $m_{\gamma\gamma\gamma} > 50 \text{ GeV}$
- Photon isolation: Using the Frixione [Frixione '98] isolation as indicated for the MadGraph@NLO setup. This means $R_0=0.4$, $E_T^{SO}>10$ GeV and $\chi(R)=(1-\cos(\Delta R))/(1-\cos(\Delta R_0))$.
- PDF set: NNPDF31_nnlo_as_0118
- Scales:

$$\begin{split} \mu_0 &= m_{\perp,\gamma\gamma\gamma} = \sqrt{\rho_\gamma^2 + (\rho_{\gamma,T})^2} \quad \text{with} \quad p_\gamma = \sum_{i=1}^3 p_{\gamma_i} \ , \\ \mu_0 &= H_T/4 = \frac{1}{4} \sum p_{\gamma_i,T} \end{split}$$

- ullet Large K-factors o improved description of data
- Without scale independent part of the finite remainder

- \bullet Large K-factors \to improved description of data
- Without scale independent part of the finite remainder

- \bullet Large K-factors \to improved description of data
- Without scale independent part of the finite remainder

Phenomenology: Perturbative convergence

- Similar large K-factors in di-photon production
 [Catani, Cieri, de Florian, Ferrera, Grazzini 11] [Campbell, Ellis , Li, Williams 16]
- Difference: $gg \rightarrow \gamma \gamma \gamma$ contribution does vanish

Conclusions and Outlook

STRIPPER: More applications!

- Top-quark plus decay at NNLO QCD → spin-correlations future: top-quark mass measurements from leptonic distributions
- First complete computation of inclusive jet production
- First 2 \rightarrow 3 process: $pp \rightarrow \gamma \gamma \gamma$

Advances for 5-point amplitudes:

- Application of IBP reductions for $pp o \gamma \gamma \gamma$
- Finite remainder constructed and ready for use
- Certainly not the end of the story, many more amplitudes feasible with same techniques (5 partons, 4 partons + photon, 3 partons + 2 photons)