# Spin correlation in top-quark pair production in the 'precision'-era of the LHC

Dortmund

Rene Poncelet

based on work with A. Behring, M. Czakon, A. Mitov and A. Papanastasiou.

1st July 2019

Cavendish Laboratory







[arXiv:1903.07570 ATLAS '19]

#### Content:

- Why is this observable interesting and what is the connection to spin-correlations in *tt*?
- What has been measured? What has been observed?
- Theory point of view: fixed-order predictions and their phenomenology.

- So far no physics beyond the Standard Model
- NP might be out of reach of the LHCs energies  $\rightarrow$  search for small deviations from SM predictions
- Top-quarks are an ideal probe:
  - Tightly connected to Higgs and EW physics (indirect constrains)
  - Important background or signature in many BSM scenarios
  - Rich phenomenology
  - Abundant and high quality data
- Many properties of the top-quark can predicted and tested: width, spin, charge, x-sections, ...



#### Introduction: Precision top-quark physics at the LHC



- Top-quark pair production is the main production mode at the LHC
- Tops are produced without polarization  $\rightarrow$  spin-correlation between top and anti-top however sizable effect.
- The spin correlation can be represented through the spin density matrix:

$$|\mathcal{M}(pp 
ightarrow tar{t} 
ightarrow (\ell^+\ell - 
uar{
u}bar{b})|^2 \sim {
m Tr}[
ho Rar{
ho}]$$

$$R \sim \underbrace{\bar{A}\mathbbm{1} \otimes \mathbbm{1}}_{\text{spin-averaged}} + \underbrace{\bar{B}_i^+ \sigma^i \otimes \mathbbm{1} + \bar{B}_i^- \mathbbm{1} \otimes \sigma^i}_{\text{top-quark polarization}} + \underbrace{\bar{C}_{ij} \sigma^i \otimes \sigma^j}_{\text{spin-correlation}}$$

- Translates to similar defined coefficients for the decay-products:
  - Proportional to angular distribution with respect to top-quark directions
  - Spin-analysing power (charged leptons best choice)

#### Introduction: Spin-correlation in leptonic observables

- Direct measurement of top-quark spin density matrix [CMS,PAS TOP-18-006]
  - full spin information
  - systematic difficulties (neutrinos → top-momenta)
- Leptonic observables are sensitive to  $t\bar{t}$ spin-correlations:  $\Delta \Phi_{\ell\ell}$  and  $|\Delta \eta_{\ell\ell}|$
- Measurement of spin-correlation:

 $\mathrm{d}\sigma_{i} = f_{\mathsf{SM}} \,\mathrm{d}\sigma_{i}^{\mathsf{spin}} + (1 - f_{\mathsf{SM}}) \,\mathrm{d}\sigma_{i}^{\mathsf{no-spin}}$ 

- Azimuthal opening angle  $\Delta \Phi_{\ell\ell}$ :
  - Boosted top favor antiparallel leptons
  - Spin correlation counteracts
  - Effect of higher corrections?  $\rightarrow t \bar{t}$  recoils against additional radiation





#### Introduction: Measurement of spin-correlation with $\Delta \Phi_{\ell\ell}$ by ATLAS

#### Measurement in arxiv:1903.07570

- Measurement in fiducial phase space defined by 'particle'-level cuts:
  - Different-flavor opposite-sign leptons with  $p_T > 27(25)$  GeV and  $|\eta| < 2.5$
  - $\geq$  2 jets ( $\geq$  1 b-jets) (anti- $k_T$ , R = 0.4) with  $p_T >$  25 GeV and  $|\eta| <$  2.5
- Usage of MC (NLO QCD + Pythia) to extrapolate to full phase space
- In normalized distribution:
  - Most of the systematic errors cancel
  - Deviation from SM shows up: 3.2  $\sigma$



Inclusive:



#### Introduction: Measurement of spin-correlation with $\Delta \Phi_{\ell\ell}$ by ATLAS

#### Measurement in arxiv:1903.07570

- Measurement in fiducial phase space defined by 'particle'-level cuts:
  - Different-flavor opposite-sign leptons with  $p_T > 27(25)$  GeV and  $|\eta| < 2.5$
  - $\geq$  2 jets ( $\geq$  1 b-jets) (anti- $k_T$ , R = 0.4) with  $p_T >$  25 GeV and  $|\eta| <$  2.5
- Usage of MC (NLO QCD + Pythia) to extrapolate to full phase space
- In normalized distribution:
  - Most of the systematic errors cancel
  - Deviation from SM shows up: 3.2  $\sigma$



Fiducial - normalised:

Inclusive - normalised:



#### Measurement in arxiv:1903.07570

- Measurement in fiducial phase space defined by 'particle'-level cuts:
  - Different-flavor opposite-sign leptons with  $p_T > 27(25)$  GeV and  $|\eta| < 2.5$
  - $\geq$  2 jets ( $\geq$  1 b-jets) (anti- $k_T$ , R = 0.4) with  $p_T >$  25 GeV and  $|\eta| <$  2.5
- Usage of MC (NLO QCD + Pythia) to extrapolate to full phase space
- In normalized distribution:
  - Most of the systematic errors cancel
  - Deviation from SM shows up: 3.2  $\sigma$
- The question: BSM or SM effect?
  - $\rightarrow$  here the SM perspective



Fixed-order QCD predictions for top-quark pair production and decay

#### Narrow-Width-Approximation

- Considering limit  $\Gamma_t/m_t \rightarrow 0$
- Factorization of production and decay
- Reduction of complexity by keeping crucial features of decay like spin-correlations
- Expected error of  $\mathcal{O}(\Gamma_t/m_t)$

#### **Off-shell calculations**

- Considering the complete process:  $pp \rightarrow \ell^+ \ell^- \nu \bar{\nu} b \bar{b} + X$
- Technically challenging due to high multiplicity, difficult phase space
- Off-shell and non-resonant effects important in certain phase space regions



#### Fixed-order predictions: Narrow-Width-Approximation

• top-quark have a short life time, decay before hadronization.  $\Gamma_t \ll m_t$ 

$$\frac{1}{(p^2 - m_t^2)^2 + m_t^2 \Gamma_t^2} \xrightarrow{\Gamma_t/m_t \to 0} \frac{\pi \delta(p^2 - m_t^2)}{m_t \Gamma_t}$$

• for on-shell top-quarks:

$$p + m_t = \sum_{\lambda} u_{\lambda}(p) \bar{u}_{\lambda}(p)$$

- factorization of production and decay, non/single-resonant diagrams are suppressed
- polarized matrix elements required





- Extension of the STRIPPER framework [Czakon et al 10'-19'] used for differential  $t\bar{t}$
- Predictions for inclusive and fiducial phase spaces
- Many applications in work:
  - leptonic distributions
  - top-quark (differential) cross sections in fiducial phase space
  - top-quark mass extraction
  - ...
- Study of top-quark spin-correlation

#### Fixed-order predictions: Spin-correlation @ NNLO QCD



Fiducial phase space

# $\begin{array}{c} \mathbf{F}(\mathbf{d}_{1},\mathbf{d}_{2},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},\mathbf{d}_{3},$

#### Inclusive phase space





#### arxiv:1901.05407 [Behring,Czakon,Mitov,Papanastasiou,Poncelet '19]

- Radiation effects vs. spin correlation
- Scale dependence
- Parametric dependence/ fiducial phase space @ NLO
  - PDF (<1% in norm.)
  - $m_t$  (small < 1%)
- Check of NLO EW and off-shell effects (small in fiducial region)



- Radiation effects vs. spin correlation
- Scale dependence
- Parametric dependence/ fiducial phase space @ NLO
  - PDF (<1% in norm.)
  - $m_t$  (small < 1%)
- Check of NLO EW and off-shell effects (small in fiducial region)



- Radiation effects vs. spin correlation
- Scale dependence
- Parametric dependence/ fiducial phase space @ NLO
  - PDF (<1% in norm.)
  - $m_t$  (small < 1%)
- Check of NLO EW and off-shell effects (small in fiducial region)



- Radiation effects vs. spin correlation
- Scale dependence
- Parametric dependence/ fiducial phase space @ NLO
  - PDF (<1% in norm.)
  - *m<sub>t</sub>* (small < 1%)
- Check of NLO EW and off-shell effects (small in fiducial region)







Summary:

- NNLO QCD effect not sufficient to resolve tension for inclusive measurement
- Bernreuther et al prediction suggest large NLO EW effect, but expanded ratios have been used

### Fixed-order predictions: Expanded ratios

Normalized distribution:  $\frac{1}{\sigma} \frac{d\sigma}{dX}$ 

• Perturbative expansion:

$$\sigma = \sigma^{0} + \alpha_{S}\sigma^{1} + \alpha_{S}^{2}\sigma^{2} + \dots$$
$$\frac{\mathrm{d}\sigma}{\mathrm{d}X} = \frac{\mathrm{d}\sigma^{0}}{\mathrm{d}X} + \alpha_{S}\frac{\mathrm{d}\sigma^{1}}{\mathrm{d}X} + \alpha_{S}^{2}\frac{\mathrm{d}\sigma^{2}}{\mathrm{d}X} + \dots$$

• Normalized distribution at NNLO:

F

$$R = \frac{1}{\sigma^0 + \alpha_S \sigma^1 + \alpha_S^2 \sigma^2} \left( \frac{\mathrm{d}\sigma^0}{\mathrm{d}X} + \alpha_S \frac{\mathrm{d}\sigma^1}{\mathrm{d}X} + \alpha_S^2 \frac{\mathrm{d}\sigma^2}{\mathrm{d}X} \right) + \mathcal{O}\left(\alpha_S^3\right)$$

• Expanded ratio:

$$\begin{split} R^{\text{NNLO,exp}} &= R^0 + \alpha_S R^1 + \alpha_S^2 R^2 \ , \\ R^0 &= \frac{1}{\sigma^0} \frac{\mathrm{d}\sigma^0}{\mathrm{d}X} \ , \\ R^1 &= \frac{1}{\sigma^0} \frac{\mathrm{d}\sigma^1}{\mathrm{d}X} - \frac{\sigma^1}{\sigma^0} \frac{1}{\sigma^0} \frac{\mathrm{d}\sigma^0}{\mathrm{d}X} \ , \\ R^2 &= \frac{1}{\sigma^0} \frac{\mathrm{d}\sigma^2}{\mathrm{d}X} - \frac{\sigma^1}{\sigma^0} \frac{1}{\sigma^0} \frac{\mathrm{d}\sigma^1}{\mathrm{d}X} + \left( \left( \frac{\sigma^1}{\sigma^0} \right)^2 - \frac{\sigma^2}{\sigma^0} \right) \frac{1}{\sigma^0} \frac{\mathrm{d}\sigma^0}{\mathrm{d}X} \end{split}$$

#### Fixed-order predictions: Expanded ratios



- Not an EW-effect (which is actually tiny)
- Everything consistent within scale dependence (7-point variation)
- NNLO QCD resolves this expansion 'ambiguity'

- The best available prediction lowers but does not resolve discrepancy between data and theory
- Predictions for the fiducial phase space are in much better agreement with data  $\rightarrow$  extrapolation with NNLO prediction?



#### Fiducial phase space



#### Inclusive phase space

#### Summary

- Measurement of spin-correlation through leptonic distribution shows so far largest deviation in top-sector
- Full NLO MC and fixed order NNLO QCD fail to describe extrapolated measurement:
  - small NNLO/NLO K-factor in inclusive phase space
  - much better description of data in fiducial phase space trough NNLO QCD (larger K-factor)
  - NLO-EW small effect in 'direction' of data but not sufficient
- Theorists remark: pQCD works! (lesson from expanded ratios)

### Outlook

- Predictions for various leptonic distribution and application:
  - Top-quark differential distributions in fiducial phase space
  - Spin-density matrix
  - Top-quark mass measurement from leptonic distributions

# Backup

### **State-of-the-art:** $t\bar{t}$ cross sections @ NNLO QCD

#### Total cross section

- NNLO QCD + NNLL soft gluon resummation
- Uncertainties of a few percent
- Remarkable agreement with measurements at 7, 8 and 13 TeV

#### Differential

- Modification of shape for  $p_T$  and  $m_{t\bar{t}}$
- Reduction of scale dependence
- Multi-dimensional distributions
- choice of dynamical scale is crucial
   → extensive study of perturbative
   convergence

#### arxiv:1303.6254 [Czakon,Fiedler,Mitov '13]



#### arxiv:1606.03350 [Czakon, Heymes, Mitov '16]



- Renormalization/Factorization scale dependence  $\rightarrow$  major source of theory uncertainty
- What is a sensible scale choice? → possible metric: principle of fasted convergence
- Total cross section:  $\mu = m_t/2$
- Differential cross sections? Probing a vast energy regime ⇒ dynamical scales
- *H*<sub>T</sub>/4 established for most observables (except *m*<sub>T</sub>/2 for *p*<sub>T,t</sub> distributions)

arxiv:1606.03350 [Czakon,Heymes,Mitov '16]



#### State-of-the-art: Resummation for differential observables

- Advances in resummation for differential observables
- Threshold (low p<sub>T</sub>) and small-mass (high p<sub>T</sub> 'boosted tops') logarithms
- Stabilizes results w.r.t. scale choice form
- Results support  $H_T/4$  as the 'best' scale since  $H_T/4$  seems to capture most of the resummation features





arxiv:1803.07623 [Czakon, Ferroglia, Heymes, Mitov, Pecjak, Scott, Wang, Yang '18]

## State-of-the-art: NLO-EW corrections

- Studied in additive and multiplicative approach
- Consistent treatment of Photon PDF  $\rightarrow$  LUXqed sets
- Size of corrections are observable dependent:  $p_{T,avt}$ : up to -25% at high  $p_T$  (Sudakov logarithms),

> NNLO QCD scale dependence for  $p_{T, \textit{avt}} > 500$  GeV

 $y_t, y_{t\bar{t}}$ : small effect (< NNLO QCD scale dependence)

• multiplicative approach results in smaller scale dependence

```
Combination with NNLL' resummation \rightarrow most complete SM description available
```

arxiv:1705.04105 [Czakon, Heymes, Mitov, Pagani, Tsinikos, Zaro '17]



#### **Production and decay:** NLO for off-shell $t\bar{t}$

- NLO corrections to full  $pp \rightarrow \ell^+ \ell^- \nu \bar{\nu} b \bar{b} + X$ [5FS: Bevilacqua et al, Denner et al, Heinrich et al, 4FS: Frederix, Cascioli et al]
- Off-shell & non-resonant effects depend strongly on observable
- $\bullet \ \rightarrow \ NWA \ approximation \ valid \ for \\ many \ observables$
- Higher order corrections to decay are important!
- Kinematical thresholds and edges are sensitive to off-shell effects ⇒ NWA does not give a valid description



#### **Production and decay:** NLO + PS for off-shell $t\bar{t}$





- $\bullet\,$  Matching fixed order calculation to PS
- Technical subtlety: resonance-aware matching. Implementation in POWHEG framework
- Detailed comparison of:
  - "*tt*": NWA, NLO production only (industry standard)
  - " $t\bar{t}\otimes$  decay": NWA, NLO production & decay , approximate LO finite width effects

[Campbell,Ellis,Nason,Re '14]

*"bb*4ℓ": full off-shell

[Jezo, Nason '15] [Jezo, Lindert, Nason, Oleari, Pozzorini '16]

- Upshot:
  - " $t\bar{t} \otimes$  decay" closer to " $b\bar{b}4\ell$ " than " $t\bar{t}$ " (in terms of shape and normalization)
  - NLO corrections to decay are crucial for NWA to be reliable to work