State-of-the-art precision calculations for top quark production and decay

LHCP2019 Puebla/Mexico

Rene Poncelet

in collaboration with Arnd Behring, Michal Czakon, Alexander Mitov and Andrew Papanastasiou based on arxiv:1901.05407 [Behring,Czakon,Mitov,Papanastasiou,RP '19] 16th May 2019

Cavendish Laboratory

- Heaviest known particle \rightarrow special place in the SM
- Many connections to other fields: Higgs, BSM, EW precision
- Many opportunities to study QCD/SM in high precision
- Abundantly produced at the LHC
 - \rightarrow top-quark factory
 - \rightarrow high quality and precision data
- High perturbative accuracy needed to describe and squeeze out most of the data available

State-of-the-art: Total and differential $t\bar{t}$ cross sections

Total cross section

- NNLO QCD + NNLL soft gluon resummation
- Uncertainties of a few percent
- Remarkable agreement with measurements at 7, 8 and 13 TeV

Differential

- Reduction of scale dependence \rightarrow dynamical scales
- NLO EW corrections
- NNLL' resummation for differential observables (threshold-, small-mass-logs)

3

Elephant in the room:

Top-quarks are not stable and are measured utilising the decay products

- Decay products are measured in fiducial phase space \to all previous results rely on the extrapolation of the phase space
- The phase space extrapolation relies heavily on MC modeling of the top-quark production and its decay
- The modeling might have more or less subtle impacts on results derived in the extrapolated phase space

Off-shell calculations

- Considering the complete process: $pp \rightarrow \ell^+ \ell^- \nu \bar{\nu} b \bar{b} + X$
- Technically challenging due to high multiplicity, difficult phase space
- Off-shell and non-resonant effects important in certain phase space region

Narrow-Width-Approximation

- Considering limit $\Gamma_t/m_t \to 0$
- Factorization of production and decay
- Reduction of complexity by keeping crucial features of decay like spin-correlations
- Expected error of $\mathcal{O}(\Gamma_t/m_t)$

- NNLO QCD correction to NWA with leptonic decays now available
- Extension of the STRIPPER framework used for differential $t\bar{t}$
- Predictions for inclusive and fiducial phase spaces
- Many applications in work: leptonic distributions, top-quark (differential) cross sections in fiducial phase space, top-quark mass extraction
- Study of top-quark spin-correlation

Production and decay: fiducial cross sections at 8 TeV

- comparison between CMS data [CMS,1505.04480] and NWA @ NNLO QCD
- good description of many distributions:
 - transverse momentum of ℓ and b-jets
 - \bullet rapidities of ℓ and b-jets
 - transverse momentum of lepton and b-jet pairs
 - invariant masses of lepton and b-jet pairs
- Work on 13 TeV update in progress

Production and decay: fiducial cross sections at 8 TeV

- comparison between CMS data [CMS,1505.04480] and NWA @ NNLO QCD
- good description of many distributions:
 - transverse momentum of ℓ and b-jets
 - rapidities of ℓ and b-jets
 - transverse momentum of lepton and b-jet pairs
 - invariant masses of lepton and b-jet pairs
- Work on 13 TeV update in progress

Production and decay: Spin-correlation @ NNLO QCD

- Direct measurement of top-quark spin density matrix [CMS,PAS TOP-18-006]
 - full spin information
 - systematic difficulties (neutrinos → top-momenta)
- Leptonic observables are sensitive to $t\bar{t}$ spin-correlations. For example the opening angles of the leptons: $\Delta \Phi_{\ell\ell}$ and $|\Delta \eta_{\ell\ell}|$
- Boosted top favor antiparallel leptons
- Spin correlation counter acts
- Effect of higher corrections?

Production and decay: Spin-correlation @ NNLO QCD

Fiducial phase space

LHC 13 TeV m_l = 172.5 GeV Scale: Hg/4 PDF: NNPDF31mlo Scale: H_T/4 PDF: NNPDF31mlc --- LO - NNLO --- LO - NNLO - NLO ATLAS - NLO ATLAS inclusive fiducial 3 $|\Delta \eta(\ell, \tilde{\ell})|$ $|\Delta \eta(\ell, \bar{\ell})|$ $d(\Delta \phi/\pi)$ -- LO NNLO Fiducial $dr / d(\Delta \phi/\pi)$ LO - NNLO Inclusive NLO . ATLAS NLO ATLAS LHC 13 TeV $m_t = 172.5$ GeV LHC 13 TeV $m_l = 172.5$ GeV Scale: $H_T/4$ PDF: NNPDF31nulo Scale: Hy/4 PDF: NNPDF31nnle 01N/0 OIN/OINN R 0.92 NLO/LO ٠ $\Delta \phi(\ell, \bar{\ell})/\pi$ $\Delta \phi(\ell, \bar{\ell})/\pi$

Inclusive phase space

arxiv:1901.05407 [Behring,Czakon,Mitov,Papanastasiou,RP '19]

Extrapolation effects?

Production and decay: Spin-correlation - checks and anatomy

- Radiation effects vs. spin correlation
- Scale dependence
- Parameteric dependence/fiducial phase space @ NLO
 - PDF (<1% in norm.)
 - m_t (small < 1%)
- Check of NLO EW and off-shell effects (small in fiducial region)

- Radiation effects vs. spin correlation
- Scale dependence
- Parameteric dependence/fiducial phase space @ NLO
 - PDF (<1% in norm.)
 - m_t (small < 1%)
- Check of NLO EW and off-shell effects (small in fiducial region)

- $\bullet \ \rightarrow \ \text{extrapolation effect?}$
- [arXiv:1903.07570 ATLAS '19] Published results:

arxiv:1901.05407 [Behring,Czakon,Mitov,Papanastasiou,P

Summary & Outlook

Summary

- Top-quark production at the LHC is theoretically very well understood and under control and allows for precision test and parameter extraction of the SM
- Refined calculation (through resummation and/or NLO EW) allow to improve theoretical stability and understanding
- Precision calculations for more realistic final states including the top-quarks decay.
- NNLO QCD predictions including leptonic top-quark decays. Production cross sections and differential distributions in fiducial volumes.

Outlook

- Using precision predictions to get out as much as possible of LHC data
- SM model precision test and parameter estimations: m_t , α_s , PDFs,...
- Incoming NNLO QCD predictions including leptonic decays: differential distributions of decay products → overcome penalties of extrapolation

Backup

State-of-the-art: $t\bar{t}$ cross sections @ NNLO QCD

Total cross section

- NNLO QCD + NNLL soft gluon resummation
- Uncertainties of a few percent
- Remarkable agreement with measurements at 7, 8 and 13 TeV

Differential

- Modification of shape for p_T and $m_{t\bar{t}}$
- Reduction of scale dependence
- Multi-dimensional distributions
- choice of dynamical scale is crucial
 → extensive study of perturbative
 convergence

arxiv:1303.6254 [Czakon,Fiedler,Mitov '13]

arxiv:1606.03350 [Czakon, Heymes, Mitov '16]

- Renormalization/Factorization scale dependence \rightarrow major source of theory uncertainty
- What is a sensible scale choice? → possible metric: principle of fasted convergence
- Total cross section: $\mu = m_t/2$
- Differential cross sections? Probing a vast energy regime ⇒ dynamical scales
- *H*_T/4 established for most observables (except *m*_T/2 for *p*_{T,t} distributions)

arxiv:1606.03350 [Czakon,Heymes,Mitov '16]

State-of-the-art: Resummation for differential observables

- Advances in resummation for differential observables
- Threshold (low p_T) and small-mass (high p_T 'boosted tops') logarithms
- Stabilizes results w.r.t. scale choice form
- Results support $H_T/4$ as the 'best' scale since $H_T/4$ seems to capture most of the resummation features

arxiv:1803.07623 [Czakon, Ferroglia, Heymes, Mitov, Pecjak, Scott, Wang, Yang '18]

State-of-the-art: NLO-EW corrections

- Studied in additive and multiplicative approach
- Consistent treatment of Photon PDF \rightarrow LUXqed sets
- Size of corrections are observable dependent: $p_{T,avt}$: up to -25% at high p_T (Sudakov logarithms),

> NNLO QCD scale dependence for $p_{T, \textit{avt}} > 500$ GeV

 $y_t, y_{t\bar{t}}$: small effect (< NNLO QCD scale dependence)

• multiplicative approach results in smaller scale dependence

```
Combination with NNLL' resummation \rightarrow most complete SM description available
```

arxiv:1705.04105 [Czakon, Heymes, Mitov, Pagani, Tsinikos, Zaro '17]

Production and decay: NLO for off-shell $t\bar{t}$

- NLO corrections to full $pp \rightarrow \ell^+ \ell^- \nu \bar{\nu} b \bar{b} + X$ [5FS: Bevilacqua et al, Denner et al, Heinrich et al, 4FS: Frederix, Cascioli et al]
- Off-shell & non-resonant effects depend strongly on observable
- $\bullet \ \rightarrow \ NWA \ approximation \ valid \ for \\ many \ observables$
- Higher order corrections to decay are important!
- Kinematical thresholds and edges are sensitive to off-shell effects ⇒ NWA does not give a valid description

Production and decay: NLO + PS for off-shell $t\bar{t}$

- $\bullet\,$ Matching fixed order calculation to PS
- Technical subtlety: resonance-aware matching. Implementation in POWHEG framework
- Detailed comparison of:
 - "*tt*": NWA, NLO production only (industry standard)
 - " $t\bar{t}\otimes$ decay": NWA, NLO production & decay , approximate LO finite width effects

[Campbell,Ellis,Nason,Re '14]

*"bb*4ℓ": full off-shell

[Jezo, Nason '15] [Jezo, Lindert, Nason, Oleari, Pozzorini '16]

- Upshot:
 - " $t\bar{t} \otimes$ decay" closer to " $b\bar{b}4\ell$ " than " $t\bar{t}$ " (in terms of shape and normalization)
 - NLO corrections to decay are crucial for NWA to be reliable to work