Top production at the LHC

DIS 2019 - Turin

Rene Poncelet

9th April 2019

Cavendish Laboratory

Outline

- Introduction
- Precision stable top-quark pair production
 - Recent theory developments: scale setting, resummation and EW corrections
 - Applications:
 PDFs and charge symmetry
- Production and decay
 - Towards realistic top-quark states
 - Off-shell $t\bar{t}$ @ NLO + PS
 - Production ⊗ Decay @ NNLO QCD

Top-quark production at the LHC

- ullet Heaviest known particle o special place in the SM
- Abundantly produced at the LHC
 - → top-quark factory
 - ightarrow high quality and precision data
- Many opportunities to study QCD/SM in high precision
- Many connections to other fields: Higgs, BSM, EW precision
- High perturbative accuracy needed to describe and squeeze out most of the data available ← this talk

State-of-the-art predictions for top quark pair production

State-of-the-art: Total cross section for $t\bar{t}$ production

- NNLO QCD + NNLL soft gluon resummation
- Uncertainties of a few percent
- Remarkable agreement with measurements at 7, 8 and 13 TeV

State-of-the-art: Differential $t\bar{t}$ cross sections @ NNLO QCD

NNLO QCD

- Modification of shape for p_T and $m_{t\bar{t}}$
- Reduction of scale dependence
- choice of dynamical scale is crucial
 - \rightarrow extensive study of perturbative convergence

State-of-the-art: Renormalization and Factorization scale dependence

- Renormalization/Factorization scale dependence → major source of theory uncertainty
- What is a sensible scale choice? →
 possible metric:
 principle of fasted convergence
- Total cross section: $\mu = m_t/2$
- Differential cross sections? Probing a vast energy regime
 ⇒ dynamical scales
- $H_T/4$ established for most observables (except $m_T/2$ for $p_{T,t}$ distributions)

arxiv:1606.03350 [Czakon, Heymes, Mitov '16]

State-of-the-art: Resummation for differential observables

- Advances in resummation for differential observables
- Threshold (low p_T) and small-mass (high p_T 'boosted tops') logarithms
- Stabilizes results w.r.t. scale choice form
- Results support H_T/4 as the 'best' scale since H_T/4 seems to capture most of the resummation features

arxiv:1803.07623 [Czakon,Ferroglia,Heymes,Mitov,Pecjak,Scott,Wang,Yang '18]

State-of-the-art: NLO-EW corrections

- Studied in additive and multiplicative approach
- Observed strong PDF dependence
- Size of corrections are observable dependent: $p_{T,avt}$: up to -25% at high p_T (Sudakov logarithms),
 - > NNLO QCD scale dependence for $p_{T,avt} >$ 500 GeV
 - $y_t, y_{t\bar{t}}$: small effect (< NNLO QCD scale dependence)
- multiplicative approach results in smaller scale dependence

Combination with NNLL' resummation \rightarrow most complete SM description available

Applications

Applications: LHC charge asymmetry

arxiv:1711.03945 [Czakon, Heymes, Mitov, Pagani, Tsinikos, Zaro '17]

- Inclusive and differential charge asymmetry
- $A_c = \frac{\sigma_{\text{bin}}^+ \sigma_{\text{bin}}^-}{\sigma_{\text{bin}}^+ + \sigma_{\text{bin}}^-}$ with $\sigma_{\text{bin}}^{\pm} = \int \theta(\pm \Delta |y|) \theta_{\text{bin}} d\sigma$
- ullet Small effect at the LHC ($\sim 1\%$)
- NNLO QCD + NLO EW accuracy (additive combination)
- Numerically challenging calculation
- Significant increasing effect of NNLO QCD and NLO EW
- Comparison to 8 TeV data in favour of SM
- Experimentally limited

Applications: Top-quark meets PDF

- Excellent theoretical and experimental precision → PDF sensitivity
- $t\bar{t}$ data sensitive to large-x gluon PDF
- Differential top-quark data included in PDF fits
- Fit within NNPDF framework

 arxiv:1611.08609[Czakon,Hartland,Mitov,Nocera,Rojo '16]
 - Reduction of large-x gluon PDF uncertainties
 - Reduction of PDF uncertainties in fitted observables

Applications: Top-quark meets PDF \rightarrow fastNLO

- ullet NNLO QCD calculation are expensive $\mathcal{O}(10^5)$ CPU hours
- Changing setup (PDF, Scales, Histograms, Parameter) requires recalculation
- ullet ightarrow fastNLO PDFs allow to separate the PDF integration.
- fastNLO tables for NNLO QCD available arxiv:1704.08551 [Czakon,Heymes,Mitov '17]
- New: double differential observables (CMS binning, 8 TeV)
 Czakon, Mitov, Papanastasiou (2018), to appear.

Production and decay

Production and decay: Towards realistic top-quark states

Elephant in the room:

Top-quarks are not stable and are measured utilising the decay products

- ullet Decay products are measured in fiducial phase space o all previous results rely on the extrapolation of the phase space
- The phase space extrapolation relies heavily on MC modeling of the top-quark production and its decay
- The modeling might have more or less subtle impacts on results derived in the extrapolated phase space

Production and decay: Towards realistic top-quark states

Two main approaches to include the decay in prediction

Narrow-Width-Approximation

- Considering limit $\Gamma_t \to 0$
- Factorization of production and decay
- Reduction of complexity by keeping crucial features of decay like spin-correlations
- Expected error of $\mathcal{O}(\Gamma_t/m_t)$

Off-shell calculations

- Considering the complete process: $pp \rightarrow \ell^+ \ell^- \nu \bar{\nu} b \bar{b} + X$
- Technically challenging due to high multiplicity, difficult phase space
- Off-shell and non-resonant effects important in certain phase space region

Production and decay: NLO for off-shell $t\bar{t}$

- NLO corrections to full $pp \to \ell^+\ell^-\nu\bar{\nu}b\bar{b} + X$ [5FS: Bevilacqua et al, Denner et al, Heinrich et al, 4FS: Frederix, Cascioli et al]
- Off-shell & non-resonant effects depend strongly on observable
- → NWA approximation valid for many observables
- Higher order corrections to decay are important!
- Kinematical thresholds and edges are sensitive to off-shell effects ⇒ NWA does not give a valid description

Production and decay: NLO + PS for off-shell $t\bar{t}$

- Matching fixed order calculation to PS
- Technical subtlety: resonance-aware matching.
 Implementation in POWHEG framework
- Detailed comparison of:
 - "tt": NWA, NLO production only (industry standard)

[Campbell, Ellis, Nason, Re '14]

• " $b\bar{b}4\ell$ ": full off-shell

[Jezo,Nason '15] [Jezo,Lindert,Nason,Oleari,Pozzorini '16]

- Upshot:
 - " $t\bar{t} \otimes$ decay" closer to " $b\bar{b}4\ell$ " than " $t\bar{t}$ " (in terms of shape and normalization)
 - NLO corrections to decay are crucial for NWA to be reliable to work

Production and decay: Production and decay in NWA @ NNLO QCD

- NNLO QCD correction to NWA with leptonic decays now available
- ullet Extension of the STRIPPER framework used for differential $tar{t}$
- Predictions for inclusive and fiducial phase spaces
- Many applications in work: leptonic distributions, top-quark (differential) cross sections in fiducial phase space, top-quark mass extraction

Preliminary

Production and decay: Spin-correlation @ NNLO QCD

- Leptonic observables are sensitive to $t\bar{t}$ spin-correlations. For example the azimuthal opening angle of the leptons: $\Delta\Phi_{\ell\ell}$
- Interesting due to observed tension between SM and LHC data in inclusive (extrapolated) phase space
- Comparison in fiducial phase space: NNLO QCD describes data well
- → extrapolation effect?

arxiv:1901.05407 [Behring,Czakon,Mitov,Papanastasiou,P '19]

Production and decay: Spin-correlation @ NNLO QCD

- Leptonic observables are sensitive to $t\bar{t}$ spin-correlations. For example the azimuthal opening angle of the leptons: $\Delta\Phi_{\ell\ell}$
- Interesting due to observed tension between SM and LHC data in inclusive (extrapolated) phase space
- Comparison in fiducial phase space: NNLO QCD describes data well
- → extrapolation effect?
- Published results: [arXiv:1903.07570 ATLAS '19]
 (discrepancy resolved by EW effects?)

arxiv:1901.05407 [Behring,Czakon,Mitov,Papanastasiou,P '19]

Summary & Outlook

Summary

- Top-quark production at the LHC is theoretically very well understood and under control and allows for precision test and parameter extraction of the SM
- Refined calculation (through resummation and/or NLO EW) allow to improve theoretical stability and understanding
- Precision calculations for more realistic final states including the top-quarks decay.
- NNLO QCD predictions including leptonic top-quark decays. Production cross sections and differential distributions in fiducial volumes.

Outlook

- Using precision predictions to get out as much as possible of LHC data
- SM model precision test and parameter estimations: m_t , α_S , PDFs,...
- Incoming NNLO QCD predictions including leptonic decays: differential distributions of decay products → overcome penalties of extrapolation