### Improvements of the sector-improved residue subtraction scheme

Rene Poncelet in collaboration with Michal Czakon and Arnd Behring Institute for Theoretical Particle Physics and Cosmology **RWTH Aachen University** ETH Zürich Seminar

2018-3-20





### Introduction

Sector-decomposition

New phase space construction

4 dimensional formulation

 $\mathsf{C}{++} \text{ implementation of STRIPPER}$ 

Summary

# Predictions from higher order perturbation theory

### Ultimate Goal: describe measurements for high energy collisions

- $\bullet \ \mathsf{Model} \to \mathsf{QFT}$
- predictions  $\rightarrow$  perturbation theory
- (simplified) idea: higher orders  $\rightarrow$  better predictions
- higher order introduce UV and IR divergences
  - need for regularization (dimensional regularization, mass,...) and renormalization (introduction of additional scale  $\mu$ )
  - methods of handling IR divergences

 $\Rightarrow$  increasing complexity of calculations

List of processes of phenomenological interest

| process                           | NLO          | NNLO         | N <sup>3</sup> LO |
|-----------------------------------|--------------|--------------|-------------------|
| pp  ightarrow H                   |              | $()_{HEFT}$  | (√)heft           |
| pp  ightarrow H+j                 | $\checkmark$ | $\checkmark$ |                   |
| pp  ightarrow H+2j                |              | $()_{VBF}$   |                   |
| pp  ightarrow H+3j                |              |              |                   |
| pp  ightarrow V                   | $\checkmark$ | $\checkmark$ | !                 |
| pp  ightarrow V+j                 | $\checkmark$ | $\checkmark$ |                   |
| pp  ightarrow V+2j                |              | !            |                   |
| $ ho p  ho 	o t ar{t}$            | $\checkmark$ | $\checkmark$ |                   |
| $ ho p  ho 	o t \overline{t} + j$ |              | !            |                   |
| pp  ightarrow 2j                  | $\checkmark$ | $\checkmark$ |                   |
| pp ightarrow 3j                   |              | !            |                   |
|                                   |              |              |                   |

### current bottlenecks:

- Two-loop ≥ 5-point functions
- Handling of real radiation contributions

### Collider observables in QCD

- any process at colliders is specified by final states, and cuts on these final states
- parton-hadron duality is used, but partons being massless can be emitted at will
- it is necessary to sum (incoherently) over processes with a different number of final partons



exchange or emission of partons lead to divergences



virtual - UV/IR virtual momentum arbitrarily large/small



real - IR soft gluon energy arbitrarily small



real - IR collinear angle between partons arbitrarily small

# Kinoshita-Lee-Nauenberg theorem

- the theorem states that for "suitably averaged" transition probabilities (cross sections), the result is finite
- particular case is given by electron-positron annihilation



- after cuts: the different contributions are divergent, but the self energy itself is finite, and the total cross-section is just its imaginary part
- the averaging is obtained by integrating the cross section with a "jet function" F<sub>n</sub> dependent on the momenta of the partons (or mesons and hadrons)
- *F<sub>n</sub>* is required to be "infrared safe", i.e. the value for a soft or collinear degenerate configuration of *n* + 1 is the same as the value for the equivalent *n* partons

### **Factorization**

- unfortunately, in hadronic collisions, the initial states are not properly averaged
- instead a factorization theorem is used, e.g. for top quark pair production:



$$\begin{aligned} \sigma_{h_1 h_2 \to t\bar{t}}(s, m_t^2) &= \sum_{ij} \int_0^1 \int_0^1 dx_1 dx_2 \\ \phi_{i,h_1}(x_1, \mu_F^2) \phi_{j/h_2}(x_2, \mu_F^2) \hat{\sigma}_{ij}(\hat{s}, m_t^2, \alpha_s(\mu_R^2), \mu_R^2, \mu_F^2) \end{aligned}$$

- the divergences of the initial state collinear radiation are absorbed into the (universal) parton distribution functions
- the general formula is

Γ<sub>ij</sub>

$$\begin{bmatrix} \sigma_{ij}(x)/x \end{bmatrix} = \sum_{i} [\hat{\sigma}_{kl}(z)/z] \otimes \Gamma_{ki} \otimes \Gamma_{lj} \qquad \begin{bmatrix} f_1 \otimes f_2 \end{bmatrix} (x) = \int_0^1 dx_1 dx_2 f_1(x_1) f_2(x_2) \delta(x - x_1 x_2) \\ = \delta_{ij} \delta(1 - x) - \frac{\alpha_s}{\pi} \frac{P_{ij}^{(0)}(x)}{\epsilon} + \left(\frac{\alpha_s}{\pi}\right)^2 \left[ \frac{1}{2\epsilon^2} \left( \left( P_{ik}^{(0)} \otimes P_{kj}^{(0)} \right) (x) + \beta_0 P_{ij}^{(0)}(x) \right) - \frac{1}{2\epsilon} P_{ij}^{(1)}(x) \right] + \mathcal{O}\left(\alpha_s^3\right)$$

• Consistency of the construction requires a consistent dimensional regularization

### The general idea of subtraction

- add to the original cross section  $\sigma = \sigma^{\rm LO} + \sigma^{\rm NLO}$ 

$$\sigma^{LO} = \int_m \mathrm{d}\sigma^B \quad , \qquad \sigma^{NLO} \equiv \int \mathrm{d}\sigma^{NLO} = \int_{m+1} \mathrm{d}\sigma^R + \int_m \mathrm{d}\sigma^V$$

an identity involving approximations to the real radiation cross section

$$\sigma^{\textit{NLO}} = \int_{m+1} \left[ \mathrm{d} \sigma^{\textit{R}} - \mathrm{d} \sigma^{\textit{A}} \right] + \int_{m+1} \mathrm{d} \sigma^{\textit{A}} + \int_{m} \mathrm{d} \sigma^{\textit{V}}$$

and regroup the terms as

$$\sigma^{\textit{NLO}} = \int_{m+1} \left[ \left( \mathsf{d} \sigma^{\textit{R}} \right)_{\epsilon=0} - \left( \mathsf{d} \sigma^{\textit{A}} \right)_{\epsilon=0} \right] + \int_{m} \left[ \mathsf{d} \sigma^{\textit{V}} + \int_{1} \mathsf{d} \sigma^{\textit{A}} \right]_{\epsilon=0}$$

- for  $d\sigma^A$  it must be possible to
  - obtain the Laurent expansion by integration over the single particle unresolved space (preferably analytically)
  - 2. approximate  $d\sigma^R$  (preferably pointwise)

# Subtraction at NLO (and beyond?)

### NLO Subtraction Schemes

- Dipole Subt. [Catani,Seymour'98]
- FKS [Frixione,Kunst,Signer'95]
- Antenna Subtraction [Kosower'97]
- Nagy-Soper [Nagy,Soper'07]

### Generalization to NNLO?

- Nature of singularities known: soft and collinear limits
- NLO (fairly simple):
  - single soft
  - single collinear
- At NNLO? : Many (overlapping) ways to reach soft and collinear limits
- Possible way: Decomposition of the phase space to disentangle them

### **NNLO** subtraction schemes

# Handling real radiation contribution in NNLO calculations cancellation of infrared divergences

### increasing number of available NNLO calculations with a variety of schemes

- qT-slicing [Catani, Grazzini, '07], [Ferrera, Grazzini, Tramontano, '11], [Catani, Cieri, DeFlorian, Ferrera, Grazzini, '12],
   [Gehrmann, Grazzini, Kallweit, Maierhofer, Manteuffel, Rathley, Torre, '14-15'],
   [Bonciani, Catani, Grazzini, Saresvan, Torre, '14-15'],
- N-jettiness slicing [Gaunt,Stahlhofen,Tackmann,Walsh, '15], [Boughezal,Focke,Giele,Liu,Petriello,'15-'16], [Bougezal,Campell,Ellis,Focke,Giele,Liu,Petriello,'15], [Campell,Ellis,Williams,'16]
- Antenna subtraction [Gehrmann, GehrmannDeRidder, Glover, Heinrich, '05-'08], [Weinzierl, '08, '09],

[Currie,Gehrmann,GehrmannDeRidder,Glover,Pires,'13-'17], [Bernreuther,Bogner,Dekkers,'11,'14], [Abelof,(Dekkers),GehrmannDeRidder,'11-'15], [Abelof,GehrmannDeRidder,Maierhofer,Pozzorini,'14], [Chen,Gehrmann,Glover,Jaquier,'15]

- Colorful subtraction [DelDuca,Somogyi,Troscanyi,'05-'13], [DelDuca,Duhr,Somogyi,Tramontano,Troscanyi,'15]
- Sector-improved residue subtraction (STRIPPER) [Czakon,'10,'11]

[Czakon,Fiedler,Mitov,'13,'15], [Czakon,Heymes,'14] [Czakon,Fiedler,Heymes,Mitov,'16,'17], [Bughezal,Caola,Melnikov,Petriello,Schulze,'13,'14], [Bughezal,Melnikov,Petriello,'11], [Caola,Czernecki,Liang,Melnikov,Szafron,'14], [Bruchseifer,Caola,Melnikov,'13-'14], [Caola, Melnikov, Röntsch,'17]

### **Formulation**

Hadronic cross section:

$$\sigma_{h_1h_2}(P_1, P_2) = \sum \iint_0^1 \mathrm{d}x_1 \,\mathrm{d}x_2 \,f_{a/h_1}(x_1, \mu_F^2) f_{b/h_2}(x_2, \mu_F^2) \hat{\sigma}_{ab}(x_1P_1, x_2P_2; \alpha_S(\mu_R^2), \mu_R^2, \mu_F^2)$$

partonic cross section:

$$\hat{\sigma}_{ab} = \hat{\sigma}_{ab}^{(0)} + \hat{\sigma}_{ab}^{(1)} + \hat{\sigma}_{ab}^{(2)} + \mathcal{O}\left(\alpha_5^3\right)$$

Contributions with different final state multiplicities and convolutions:

$$\hat{\sigma}_{ab}^{(2)} = \hat{\sigma}_{ab}^{\text{RR}} + \hat{\sigma}_{ab}^{\text{RV}} + \hat{\sigma}_{ab}^{\text{VV}} + \hat{\sigma}_{ab}^{\text{C2}} + \hat{\sigma}_{ab}^{\text{C1}}$$

$$\begin{split} \hat{\sigma}_{ab}^{\mathsf{RR}} &= \frac{1}{2\hat{s}} \int d\Phi_{n+2} \left\langle \mathcal{M}_{n+2}^{(0)} \middle| \mathcal{M}_{n+2}^{(0)} \right\rangle F_{n+2} \\ \hat{\sigma}_{ab}^{\mathsf{RV}} &= \frac{1}{2\hat{s}} \int d\Phi_{n+1} \, 2\mathsf{Re} \left\langle \mathcal{M}_{n+1}^{(0)} \middle| \mathcal{M}_{n+1}^{(1)} \right\rangle F_{n+1} \\ \hat{\sigma}_{ab}^{\mathsf{C2}} &= (\mathsf{double convolution}) \, F_n \\ \hat{\sigma}_{ab}^{\mathsf{VV}} &= \frac{1}{2\hat{s}} \int d\Phi_n \left( 2\mathsf{Re} \left\langle \mathcal{M}_n^{(0)} \middle| \mathcal{M}_n^{(2)} \right\rangle + \left\langle \mathcal{M}_n^{(1)} \middle| \mathcal{M}_n^{(1)} \right\rangle \right) F_n \end{split}$$

### Sector decomposition

Several layers of decomposition

Selector functions:

$$1 = \sum_{i,j} \left[ \sum_k \mathcal{S}_{ij,k} + \sum_{k,l} \mathcal{S}_{i,k;j,l} 
ight]$$

Factorization of double soft limits:

 $\theta(u_1^0 - u_2^0) + \theta(u_2^0 - u_1^0)$ 

### Sector parameterization

Parameterization with respect to the reference parton *r*: angles:  $\hat{\eta}_i = \frac{1}{2}(1 - \cos \theta_{ir}) \in [0, 1]$ energies:  $\hat{\xi}_i = \frac{u_i^0}{u_{max}^0} \in [0, 1]$ 

### originally: 5 sub-sectors



### Sector decomposition

Several layers of decomposition

Selector functions:

$$1 = \sum_{i,j} \left[ \sum_k \mathcal{S}_{ij,k} + \sum_{k,l} \mathcal{S}_{i,k;j,l} \right]$$

Factorization of double soft limits:

 $\theta(u_1^0 - u_2^0) + \theta(u_2^0 - u_1^0)$ 

### Sector parameterization

Parameterization with respect to the reference parton *r*: angles:  $\hat{\eta}_i = \frac{1}{2}(1 - \cos \theta_{ir}) \in [0, 1]$ energies:  $\hat{\xi}_i = \frac{u_i^0}{u_{max}^0} \in [0, 1]$ 

### now: 4 sub-sectors



### **STRIPPER**

$$\begin{split} \hat{\sigma}_{ab}^{RR} &= \frac{1}{2\hat{s}} \int d\Phi_{n+2} \left\langle \mathcal{M}_{n+2}^{(0)} \middle| \mathcal{M}_{n+2}^{(0)} \right\rangle F_{n+2} \\ \hat{\sigma}_{ab}^{RV} &= \frac{1}{2\hat{s}} \int d\Phi_{n+1} 2\text{Re} \left\langle \mathcal{M}_{n+1}^{(0)} \middle| \mathcal{M}_{n+1}^{(1)} \right\rangle F_{n+1} \\ \hat{\sigma}_{ab}^{C1} &= (\text{single convolution}) F_n \\ \hat{\sigma}_{ab}^{VV} &= \frac{1}{2\hat{s}} \int d\Phi_n \left( 2\text{Re} \left\langle \mathcal{M}_n^{(0)} \middle| \mathcal{M}_n^{(2)} \right\rangle + \left\langle \mathcal{M}_n^{(1)} \middle| \mathcal{M}_n^{(1)} \right\rangle \right) F_n \end{split}$$

Sector decomposition and master formula:



 $\downarrow$ 

$$\begin{pmatrix} \sigma_{F}^{RR} \end{pmatrix} \quad \begin{pmatrix} \sigma_{F}^{RV} \end{pmatrix} \quad \begin{pmatrix} \sigma_{F}^{VV} \end{pmatrix} \quad \begin{pmatrix} \sigma_{SU}^{RR}, \sigma_{SU}^{RV}, \sigma_{SU}^{C1} \end{pmatrix} \quad \begin{pmatrix} \sigma_{DU}^{RR}, \sigma_{DU}^{RV}, \sigma_{DU}^{VV}, \sigma_{DU}^{C1}, \sigma_{DU}^{C2} \end{pmatrix} \quad \begin{pmatrix} \sigma_{FR}^{RV}, \sigma_{FR}^{VV}, \sigma_{FR}^{C2} \end{pmatrix}$$

# How to improve the STRIPPER subtraction scheme?



Motto

Optimizing by minimizing

### Goal

Phase space construction with a minimal # of subtraction kinematics

### Old construction

- Start with unresolved partons
- · Fill remaining phase space with Born configuration
- $\rightarrow$  Non-minimal # kinematic configurations (e.g. single soft and collinear limits yield different configurations)

### New construction

- Start with Born configuration
- Add unresolved partons (u<sub>i</sub>)
- Cleverly adjust Born configuration to accommodate the *u<sub>i</sub>*

Mapping from n + 2 to Born configuration:  $\{P, r_j, u_k\} \rightarrow \{\tilde{P}, \tilde{r}_j\}$ modification of [Frixone,Webber'02] or [Frixione,Nason,Oleari'07]

Requirements:

- Keep direction of reference r fixed
- Invertible for fixed  $u_i$ :  $\{\tilde{P}, \tilde{r}_j, u_k\} \rightarrow \{P, r_j, u_k\}$
- Preserve  $q^2 = ilde{q}^2$ ,  $ilde{q} = ilde{P} \sum_{j=1}^{n_{fr}} ilde{r}_j$

Main steps:

- Generate Born phase space configuration



Mapping from n + 2 to Born configuration:  $\{P, r_j, u_k\} \rightarrow \{\tilde{P}, \tilde{r}_j\}$ modification of [Frixone,Webber'02] or [Frixione,Nason,Oleari'07]

Requirements:

- Keep direction of reference r fixed
- Invertible for fixed  $u_i$ :  $\{\tilde{P}, \tilde{r}_j, u_k\} \rightarrow \{P, r_j, u_k\}$
- Preserve  $q^2 = ilde{q}^2$ ,  $ilde{q} = ilde{P} \sum_{j=1}^{n_{fr}} ilde{r}_j$

Main steps:

- Generate Born phase space configuration
- Generate unresolved partons  $u_i$



r=x r

Mapping from n + 2 to Born configuration:  $\{P, r_j, u_k\} \rightarrow \{\tilde{P}, \tilde{r}_j\}$ modification of [Frixone,Webber'02] or [Frixione,Nason,Oleari'07]

Requirements:

- Keep direction of reference r fixed
- Invertible for fixed  $u_i$ :  $\{\tilde{P}, \tilde{r}_j, u_k\} \rightarrow \{P, r_j, u_k\}$
- Preserve  $q^2 = \tilde{q}^2$ ,  $\tilde{q} = \tilde{P} \sum_{j=1}^{n_{\rm fr}} \tilde{r}_j$

Main steps:

- Generate Born phase space configuration
- Generate unresolved partons  $u_i$
- Rescale reference momentum



Mapping from n + 2 to Born configuration:  $\{P, r_j, u_k\} \rightarrow \{\tilde{P}, \tilde{r}_j\}$ modification of [Frixone,Webber'02] or [Frixione,Nason,Oleari'07]

Requirements:



- Invertible for fixed  $u_i$ :  $\{\tilde{P}, \tilde{r}_j, u_k\} \rightarrow \{P, r_j, u_k\}$
- Preserve  $q^2 = ilde{q}^2$ ,  $ilde{q} = ilde{P} \sum_{j=1}^{n_{fr}} ilde{r}_j$

Main steps:

- Generate Born phase space configuration
- Generate unresolved partons  $u_i$
- Rescale reference momentum
- Boost non-reference momenta of the Born configuration





 $\rightarrow$  Both singular limits approach the same kinematic configuration



 $\rightarrow$  Both singular limits approach the same kinematic configuration



 $\rightarrow$  Both singular limits approach the same kinematic configuration



 $\rightarrow$  Both singular limits approach the same kinematic configuration



 $\rightarrow$  Both singular limits approach the same kinematic configuration



 $\rightarrow$  Both singular limits approach the same kinematic configuration



 $\rightarrow$  Both singular limits approach the same kinematic configuration



 $\rightarrow$  Both singular limits approach the same kinematic configuration



 $\rightarrow$  Both singular limits approach the same kinematic configuration



 $\rightarrow$  Both singular limits approach the same kinematic configuration



 $\rightarrow$  Both singular limits approach the same kinematic configuration



 $\rightarrow$  Both double unresolved limits approach the Born configuration



 $\rightarrow$  Both double unresolved limits approach the Born configuration



 $\rightarrow$  Both double unresolved limits approach the Born configuration



 $\rightarrow$  Both double unresolved limits approach the Born configuration



 $\rightarrow$  Both double unresolved limits approach the Born configuration



 $\rightarrow$  Both double unresolved limits approach the Born configuration



 $\rightarrow$  Both double unresolved limits approach the Born configuration

### Consequences

### Features

- Minimal number of subtraction kinematics
- Only one DU configuration  $\rightarrow$  pole cancellation for each Born phase space point
- Expected improved convergence of invariant mass distributions, since  $\tilde{q}^2=q^2$

### Unintentional features

- Construction in lab frame
- Original construction of 't Hooft Veltman corrections [Czakon,Heymes'14] is spoiled

# 4 dimensional formulation

### Separately finite contributions



Observables: Implemented by infrared safe measurement function (MF)  $F_m$ 

Infrared property in STRIPPER context:

- $\{x_i\} \rightarrow 0 \leftrightarrow \text{single unresolved}$ limit
  - $\Rightarrow$  F<sub>n+2</sub>  $\rightarrow$  F<sub>n+1</sub>
- $\{x_i\} \rightarrow 0 \leftrightarrow \text{double unresolved}$ limit

$$\Rightarrow F_{n+2} \to F_n$$
$$\Rightarrow F_{n+1} \to F_n$$

Tool for new formulation in the 't Hooft Veltman scheme:

### Parameterized MF $F_{n+1}^{\alpha}$

- $F_n^{\alpha} \equiv 0$  for  $\alpha \neq 0$ (NLO MF)
- 'arbitrary' F<sup>0</sup><sub>n</sub>
   (NNLO MF)
- $\alpha \neq 0 \Rightarrow DU = 0$  and SU separately finite

Example:  $F_{n+1}^{\alpha} = F_{n+1}\Theta_{\alpha}(\{\alpha_i\})$ with  $\Theta_{\alpha} = 0$  if some  $\alpha_i < \alpha$ 

### The single unresolved (SU) contribution

 $\sigma_{SU} = \sigma_{SU}^{RR} + \sigma_{SU}^{RV} + \sigma_{SU}^{C1} \qquad \text{where} \\ \text{NLO measurement function } (\alpha \neq 0):$ 

$$\sigma_{SU}^{c} = \int \mathrm{d}\Phi_{n+1} \left( I_{n+1}^{c} F_{n+1} + I_{n}^{c} F_{n} \right)$$

$$\int d\Phi_{n+1} \left( I_{n+1}^{RR} + I_{n+1}^{RV} + I_{n+1}^{C1} \right) F_{n+1}^{\alpha} = \text{finite in 4 dim.}$$

All divergences cancel in *d*-dimensions:

$$\sum_{c} \int \mathrm{d}\Phi_{n+1} \left[ \frac{I_{n+1}^{c,(-2)}}{\epsilon^2} + \frac{I_{n+1}^{c,(-1)}}{\epsilon} \right] F_{n+1}^{\alpha} \equiv \sum_{c} \mathcal{I}^{c} = 0$$

### SU finiteness for $\alpha = 0$

$$\sigma_{SU} = \sigma_{SU}^{RR} + \sigma_{SU}^{RV} + \sigma_{SU}^{C1} \underbrace{-\mathcal{I}^{RR} - \mathcal{I}^{RV} - \mathcal{I}^{C1}}_{=0}$$

$$\sigma_{SU}^{c} - \mathcal{I}^{c} = \int d\Phi_{n+1} \left\{ \left[ \frac{I_{n+1}^{c,(-2)}}{\epsilon^{2}} + \frac{I_{n+1}^{c,(-1)}}{\epsilon} + I_{n+1}^{c,(0)} \right] F_{n+1} + \left[ \frac{I_{n}^{c,(-2)}}{\epsilon^{2}} + \frac{I_{n}^{c,(-1)}}{\epsilon} + I_{n}^{c,(0)} \right] F_{n} \right\}$$

$$- \int d\Phi_{n+1} \left[ \frac{I_{n+1}^{c,(-2)}}{\epsilon^{2}} + \frac{I_{n+1}^{c,(-1)}}{\epsilon} \right] F_{n+1} \Theta_{\alpha}(\{\alpha_{i}\})$$

### SU finiteness for $\alpha = 0$

$$\begin{split} \sigma_{SU} &= \sigma_{SU}^{RR} + \sigma_{SU}^{RV} + \sigma_{SU}^{C1} \underbrace{-\mathcal{I}^{RR} - \mathcal{I}^{RV} - \mathcal{I}^{C1}}_{=0} \\ \sigma_{SU}^{c} - \mathcal{I}^{c} &= \int d\Phi_{n+1} \left\{ \left[ \frac{I_{n+1}^{c,(-2)}}{\epsilon^{2}} + \frac{I_{n+1}^{c,(-1)}}{\epsilon} + I_{n+1}^{c,(0)} \right] F_{n+1} + \left[ \frac{I_{n}^{c,(-2)}}{\epsilon^{2}} + \frac{I_{n}^{c,(-1)}}{\epsilon} + I_{n}^{c,(0)} \right] F_{n} \right\} \\ &- \int d\Phi_{n+1} \left[ \frac{I_{n+1}^{c,(-2)}}{\epsilon^{2}} + \frac{I_{n+1}^{c,(-1)}}{\epsilon} \right] F_{n+1} \Theta_{\alpha}(\{\alpha_{i}\}) \\ &= \int d\Phi_{n+1} \left[ \frac{I_{n+1}^{c,(-2)} F_{n+1} + I_{n}^{c,(-2)} F_{n}}{\epsilon^{2}} + \frac{I_{n+1}^{c,(-1)} F_{n+1} + I_{n}^{c,(-1)} F_{n}}{\epsilon} \right] (1 - \Theta_{\alpha}(\{\alpha_{i}\})) \\ &+ \int d\Phi_{n+1} \left[ I_{n+1}^{c,(0)} F_{n+1} + I_{n}^{c,(0)} F_{n} \right] + \int d\Phi_{n+1} \left[ \frac{I_{n}^{c,(-2)}}{\epsilon^{2}} + \frac{I_{n}^{c,(-1)}}{\epsilon} \right] F_{n} \Theta_{\alpha}(\{\alpha_{i}\}) \end{split}$$



The function  $N^{c}(\alpha)$ 

Looks like slicing, but it is slicing *only* for divergences  $\rightarrow$  no actual slicing parameter in result

Powerlog-expansion:

$$N^{c}(\alpha) = \sum_{k=0}^{\ell_{\max}} \ln^{k}(\alpha) N_{k}^{c}(\alpha)$$

• all 
$$N_k^c(\alpha)$$
 regular in  $\alpha$ 

- start expression independent of  $\alpha \Rightarrow$  all logs cancel
- only N<sup>c</sup><sub>0</sub>(0) relevant

Putting parts together:

$$\sigma_{SU} - \sum_{c} N_0^c(0)$$
 and  $\sigma_{DU} + \sum_{c} N_0^c(0)$ 

are finite in 4 dimension

# $\Downarrow$

SU contribution:  $\sigma_{SU} - \sum_c N_0^c = \sum_c C^c$ original expression  $\sigma_{SU}$  in 4-dim without poles, no further  $\epsilon$  pole cancellation

# C++ implementation of STRIPPER

# C++ implementation of STRIPPER

### Features of the implementation

- General subtraction framework
  - Provides a general set of subtraction terms
  - Tree-level amplitudes are calculated automatically using a Fortran library [van Hameren '09][Bury, van Hameren '15]
  - User has to provide the 1- and 2-loop amplitudes
- Separate evaluation of coefficients of scales and PDFs  $\rightarrow$  Cheaper calculations with several scales and PDFs
- FastNLO interface
  - Allows to produce tables for fast fits
  - FastNLO tables for  $t\bar{t}$  differential distributions released this spring [Czakon, Heymes, Mitov '17]

# Summary

### Summary

- Minimizing the STRIPPER scheme
- alternative phase space parameterization
- new formulation of 't Hooft Veltman scheme
- tests for a class of processes:

 $pp 
ightarrow t ar{t}, \ e^+e^- 
ightarrow 2, 3j, \ t$  decay, DIS, Drell-Yan, H decays, dijets

Supplements

### Factorization and subtraction terms

Single unresolved phase space:

$$\iint_0^1 \mathrm{d}\eta \,\mathrm{d}\xi \,\eta^{a_1-b_1\epsilon}\xi^{a_2-b_2\epsilon}$$

Double unresolved phase space:

### Factorized singular limits:

$$\int \mathrm{d}\Phi_n \prod \mathrm{d}x_i \underbrace{x_i^{-1-b_i\epsilon}}_{\text{singular}} \tilde{\mu}(\{x_i\})$$

$$\underbrace{\prod x_i^{a_i+1} \langle \mathcal{M}_{n+2} | \mathcal{M}_{n+2} \rangle}_{i} F_{n+2}$$

regular

### Regularisation:

### Master formula

$$x^{-1-b\epsilon} = \underbrace{\frac{-1}{b\epsilon}}_{\text{pole term}} + \underbrace{\left[x^{-1-b\epsilon}\right]_{+}}_{\text{reg. + sub.}}$$
$$\int_{0}^{1} dx \left[x^{-1-b\epsilon}\right]_{+} f(x) = \int_{0}^{1} \frac{f(x) - f(0)}{x^{1+b\epsilon}}$$

For each sector/contribution:

1. extraction of  $d\Phi_{n+1}$  from  $d\Phi_{n+2}|_{SU \text{ pole}}$  (only for *RR* contribution)

$$\mathrm{d}\Phi_{n+2}\left|_{\mathsf{SU pole}}=\big(\underbrace{\mathrm{d}\Phi_{n}\,\mathrm{d}^{d}\mu(u_{1})}_{\mathrm{d}\Phi_{n+1}}\mathrm{d}^{d}\mu(u_{2})\,\big)\right|_{u_{2}\mathsf{col/soft}}$$

- 2. expansion in  $\epsilon$  up to  $\epsilon^{-1}$  (except  $d\Phi_{n+1}$ ):  $d^d\Phi_{n+1}\left(\frac{\dots}{\epsilon^2} + \frac{\dots}{\epsilon}\right)$
- 3. Identifying  $\ln^{k}(\alpha)$ 's from  $x_{i}$  integrations over  $\Theta$  function

$$\Theta_{\alpha}(\hat{\eta}, u^{0}) = \Theta(\hat{\eta} - \alpha)\Theta(\hat{\xi}u_{max}/E_{norm} - \alpha)$$

 $\rightarrow$  discard them

4. perform integration over  $\Theta\text{-functions}$  of non-canceling and non-vanishing (in  $\alpha \to 0$  limit) terms

### common starting point for all phase spaces :

$$d\Phi_{n} = dQ^{2} \left[ \prod_{j=1}^{n_{fr}} \mu_{0}(r_{j}) \prod_{k=1}^{n_{u}} \mu_{0}(u_{k}) \delta_{+} \left( \left( P - \sum_{j=1}^{n_{fr}} r_{j} - \sum_{k=1}^{n_{u}} u_{k} \right)^{2} - Q^{2} \right) \right] \prod_{i=1}^{n_{q}} \mu_{m_{i}}(q_{i}) (2\pi)^{d} \delta^{(d)} \left( \sum_{i=1}^{n_{q}} q_{i} - q \right)$$
  
with  $\mu_{m}(k) \equiv \frac{d^{d}k}{(2\pi)^{d}} 2\pi \delta(k^{2} - m^{2}) \theta(k^{0}),$ 

n: # final state particles,  $n_{fr}: \#$  final state references,  $n_u: \#$  additional partons