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Predictions from higher order perturbation theory

Ultimate Goal: describe measurements for high energy collisions

= Model — QFT
= predictions — perturbation theory
= (simplified) idea: higher orders — better predictions

= higher order introduce UV and IR divergences

= need for regularization (dimensional regularization, mass,...) and
renormalization (introduction of additional scale 1)
= methods of handling IR divergences

= increasing complexity of calculations
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The Les Houches wishlist

List of processes of phenomenological

interest

process

NNLO

N3LO

pp — H
pp— H+j
pp — H +2j
pp — H+ 3j

pp— V
pp— V +j
pp— V +2f

pp — tt
pp — tt+j

pp — 2j
pp — 3j

LR

(V) HEFT
v
(V) ver

— R

(\/)HEFT
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current bottlenecks:

= Two-loop > 5-point
functions

= Handling of real radiation
contributions
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Collider observables in QCD

= any process at colliders is specified by final states, and cuts on these final states
= parton-hadron duality is used, but partons being massless can be emitted at will

= it is necessary to sum (incoherently) over processes with a different number of

final partons

= exchange or emission of partons lead to divergences

Q. @ @

virtual - UV/IR real - IR collinear
/ real - IR soft
virtual momentum arbitrarily i X angle between partons
gluon energy arbitrarily small .
large/small arbitrarily small
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Kinoshita-Lee-Nauenberg theorem

= the theorem states that for “suitably averaged” transition probabilities
(cross sections), the result is finite

= particular case is given by electron-positron annihilation

= after cuts: the different contributions are divergent, but the self energy
itself is finite, and the total cross-section is just its imaginary part

= the averaging is obtained by integrating the cross section with a “jet
function” F, dependent on the momenta of the partons (or mesons and
hadrons)

= F, is required to be “infrared safe”, i.e. the value for a soft or collinear
degenerate configuration of n+ 1 is the same as the value for the
equivalent n partons
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Factorization

= unfortunately, in hadronic collisions, the initial states are not properly
averaged
= instead a factorization theorem is used, e.g. for top quark pair production:

11
UhthAt?(svm?)ZE //dxldxz
— Jo Jo
i

2 2\ a A 2 2 2 2
Dy (X1, ) D) my (25 1) 835 (8, M, s (kR)s Ry )

= the divergences of the initial state collinear radiation are absorbed into the
(universal) parton distribution functions
= the general formula is

1
[o40arx] =D leu@/aerger;  [A®n] )= / dxqdxpf (x1)f (x0)6 (x — x1%0)
0

Fj = 65801 —x) — Eﬁ + (E)Z [i ((Pff) ® P‘(;)) =)+ ﬁgPI(jo)(x)) -

™ ™

1
- P’(jl)(x)] +0(ad)

= Consistency of the construction requires a consistent dimensional
regularization
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The general idea of subtraction

» add to the original cross section ¢ = ¢'© + oM©

O'LO:/CIO'B , O'NLOE/dO'NLO:/ dO’R+/dO'v
m m+1 m

an identity involving approximations to the real radiation cross section

oMo :/ [daR — dO’A] Jr/ do? +/ do
m+1 m+1 m

and regroup the terms as

o= [ ) = 6 s [ o]

= for do” it must be possible to

1. obtain the Laurent expansion by integration over the single particle
unresolved space (preferably analytically)
2. approximate do® (preferably pointwise)
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Subtraction at NLO (and beyond?)

. = Nature of singularities known: soft and
NLO Subtraction Schemes ure of singularities known n
collinear limits

= Dipole Subt. [cataniseymourag
= FKS [Frixione,Kunst,Signer'95]
= Antenna Subtraction [kesowero7]

= Nagy-Soper inagsoperon

Generalization to NNLO?

= NLO (fairly simple):
= single soft
= single collinear

= At NNLO? : Many (overlapping) ways
to reach soft and collinear limits

= Possible way: Decomposition of the
phase space to disentangle them
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NNLO subtraction schemes

Handling real radiation contribution in NNLO calculations
cancellation of infrared divergences

increasing number of available NNLO calculations with a variety of schemes
L qT-incing [Catani,Grazzini, '07] ,[Ferrera,Grazzini, Tramontano, '11], [Catani,Cieri,DeFlorian,Ferrera,Grazzini,'12],
[Gehrmann,Grazzini,Kallweit,Maierhofer,Manteuffel, Rathlev, Torre,'14-15'], [Bonciani,Catani,Grazzini,Sargsyan, Torre, 14-'15]
" N-jettiness incing [Gaunt, Stahlhofen, Tackmann,Walsh, '15], [Boughezal Focke, Giele, Liu, Petriello, 15-'16] ,

[Bougezal,Campell,Ellis,Focke,Giele, Liu, Petriello,"15], [Campell,Ellis, Williams, 16]

= Antenna subtraction (cehrmann, GehrmannDeRidder,Glover, Heinrich, 05-08] , [Weinzierl, 08, 09],
[Currie,Gehrmann, GehrmannDeRidder, Glover, Pires,'13-'17], [Bernreuther,Bogner, Dekkers,'11,'14],
[Abelof,(Dekkers), GehrmannDeRidder,'11-'15], [Abelof, GehrmannDeRidder, Maierhofer,Pozzorini, 14], [Chen,Gehrmann,Glover, Jaquier,'15]
= Colorful subtraction [peibucs.somogyi, Troscanyi, 05-'13], [DelDuca,Duhr,Somogyi, Tramontano, Troscanyi, 15]
= Sector-improved residue subtraction (STRIPPER) (cuakon/10/11] |
[Czakon, Fiedler,Mitov,'13,'15], [Czakon,Heymes, 14] [Czakon, Fiedler,Heymes, Mitov,'16,'17],
[Bughezal,Caola,Melnikov,Petriello,Schulze,'13,'14], [Bughezal ,Melnikov,Petriello,'11], [Caola,Czernecki,Liang,Melnikov,Szafron, 14],

[Bruchseifer,Caola,Melnikov, 13-'14], [Caola, Melnikov, Réntsch,'17]
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Formulation

Hadronic cross section:
Thyhy (PL, P2) = Z//Oldn Ao fyymy (X1, 1E) Fo iy (32, 117 )G a6 (X0 P, X0 Pa; s (i), pi, 1)
partonic cross section:
6o =03 +6%) +6%) +0(ad)
Contributions with different final state multiplicities and convolutions:

~(2) _ ARR ~ RV A VV A C2 ~Cl
Uab = Oap + Oab + Oab + Oab + Oab

1 /

ARR (0) (0)

f = = [ a0 (M )M" Foi2

b = 2 + < +2 +2> * 6—5; = (single convolution) F,41
1

6N = PT d®,i1 2Re <M£,921‘ME,121> Fri1 652 = (double convolution) F,,

o = 2—15 /dd)n (2Re <M(,,°)’M(n2)> i <M("1"M(n”>) F
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Sector decomposition

Several layers of decomposition

Selector functions: originally: 5 sub-sectors

Triple collinear factorization
1=>" Sik+ Y Sikii
k k,l La>a

hJ

Factorization of double soft limits: - —-— - ______

H(U? - ug) + 0(ug - u?)

Sector parameterization i

Parameterization with respectto @~ ~—~—-----
the reference parton r: w noa
angles: f; = (1 —cosf;) €[0,1] ______________

~ 0
energies: & = —— € [0, 1]
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Sector decomposition

Several layers of decomposition

Selector functions: now: 4 sub-sectors

Triple collinear factorization
1=>" Sik+ Y Sikii )
k kel RAE

hJ

Factorization of double soft limits:

H(U? - ug) + 0(ug - u?)

Sector parameterization

Parameterization with respect to
the reference parton r:
angles: ; = 3(1 — cos6;) € [0, 1]

. A W0 Caola, Melnikov, Réntsch [hep-ph:1702.01352v1]
energies: & = 5~ € [0, 1]
max
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STRIPPER

</
5RR (0) (0)
&5 = o [ 40nia (M| MO, ) Firia
ab 25 " k2|2 /T &gbl = (single convolution) Fy41
1
&.?L:/ =2 /d¢n+1 2Re <Mf70£1‘/\/l£,1421> Fni1 5’53 = (double convolution) F,

7% = 55 [ 40 (2Re (MO M) + (M| aa) ) .

. -1
Sector decomposition and master formula: XTI = = [x’l’bﬂ
€ +
~— N e
pole term reg. + sub.

4

(07", 055, 050) (oF",055,050) (oF",0p0:0K) (950,050) (750, 0Fk)

l} 4 dim formulation [Czakon,Heymes'14]
RR RV %% RR RV _Cl RR RV W Cl _C2 RV W (2
OF OF OF Osu,0su,0su OpuU,9DpUs DU, DU, ODU OFRsO0FROFR
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How to improve the STRIPPER subtraction
scheme?

| Alternative phase

Subtraction kinematics ..
space parameterization
1 v

. .. formulation in 't
Mis-binning ‘

Hooft-Veltman scheme

Numerical stability

event/histogram-smearing,
On-the-fly stability-check

Computing time Fewer sectors ’

Optimizing by minimizing
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New phase space construction: ldea

Goal

Phase space construction with a minimal # of subtraction kinematics

Old construction

= Start with unresolved partons
= Fill remaining phase space with Born configuration

— Non-minimal # kinematic configurations
(e.g. single soft and collinear limits yield different configurations)

New construction

= Start with Born configuration

= Add unresolved partons (u;)
= Cleverly adjust Born configuration to accommodate the u;
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New phase space construction

Mapping from n + 2 to Born configuration: {P, rj, ux} — {P, %}
modification of [Frixone,Webber'02] or [Frixione,Nason,Oleari'07]
Requirements:

= Keep direction of reference r fixed

= Invertible for fixed u;:

{P. 7w} = {P.rj, i}

= Preserve g2 =%, §=P — yurys

Main steps:

* = Generate Born phase space configuration
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New phase space construction

Mapping from n + 2 to Born configuration: {P, rj, ux} — {P, %}
modification of [Frixone,Webber'02] or [Frixione,Nason,Oleari'07]
Requirements:

= Keep direction of reference r fixed

= Invertible for fixed u;:

{Pv?ﬁuk} — {Pvrj7uk}

= Preserve ¢> =%, §=P — yurys
Main steps:

= Generate Born phase space configuration

un = Generate unresolved partons u;
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New phase space construction

Mapping from n + 2 to Born configuration: {P, rj, ux} — {P, %}
modification of [Frixone,Webber'02] or [Frixione,Nason,Oleari'07]
Requirements:
= Keep direction of reference r fixed
= Invertible for fixed u;:
{P. 1 u} = {P. 1, e}
L = Preserve g2 =§%, §=P— yurys
Main steps:
= Generate Born phase space configuration
un = Generate unresolved partons u;

= Rescale reference momentum
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New phase space construction

Mapping from n + 2 to Born configuration: {P, rj, ux} — {P, %}
modification of [Frixone,Webber'02] or [Frixione,Nason,Oleari'07]
Requirements:

= Keep direction of reference r fixed

= Invertible for fixed u;:

{P. 7w} = {P.rj, i}

= Preserve g2 =%, §=P — yurys
Main steps:

= Generate Born phase space configuration

= Generate unresolved partons u;

= Rescale reference momentum

= Boost non-reference momenta of the Born
configuration
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Behaviour in singular limits

Collinear limit of up Soft limit of u,

(sector 1, m, — 0) (sector 1, & — 0)

P1

Q2
r Y
‘)l

a1 up

uq

— Both singular limits approach the same kinematic configuration
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Behaviour in singular limits

Collinear limit of up Soft limit of u,

(sector 1, m, — 0) (sector 1, & — 0)

P1

Q2

y
%\

a9

uq

— Both singular limits approach the same kinematic configuration
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Behaviour in singular limits

Collinear limit of up Soft limit of u,

(sector 1, m, — 0) (sector 1, & — 0)

q2

uq

— Both singular limits approach the same kinematic configuration
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Behaviour in singular limits

Collinear limit of up Soft limit of u,

(sector 1, m, — 0) (sector 1, & — 0)

P1

g2

r+uy "
>
g1

uq

— Both singular limits approach the same kinematic configuration
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Behaviour in singular limits

Collinear limit of up Soft limit of u,

(sector 1, m, — 0) (sector 1, & — 0)

P1

" q2
A

q1

r+u;

uq

— Both singular limits approach the same kinematic configuration

Rene Poncelet 17 / 28



Behaviour in singular limits

Collinear limit of up Soft limit of u,

(sector 1, m, — 0) (sector 1, & — 0)

uq

— Both singular limits approach the same kinematic configuration
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Behaviour in singular limits

Collinear limit of up Soft limit of u,

(sector 1, m, — 0) (sector 1, & — 0)
P1 P1
r+uy g2
\i 9 \J
[\ e 7\A
a1
q1
P2 P2

— Both singular limits approach the same kinematic configuration
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Behaviour in singular limits

Collinear limit of up Soft limit of u,

(sector 1, m, — 0) (sector 1, & — 0)
P1 P1
r+up q2
Y % y
[\ A
g1
q1
P2 P2

— Both singular limits approach the same kinematic configuration
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Behaviour in singular limits

Collinear limit of up Soft limit of u,

(sector 1, m, — 0) (sector 1, & — 0)
P1 P1
r+u; o
[\
q1
q1
P2 P2

— Both singular limits approach the same kinematic configuration
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Behaviour in singular limits

Collinear limit of up Soft limit of u,

(sector 1, m, — 0) (sector 1, & — 0)
P1 P1
r+u; a
[\
o g1
P2 P2

— Both singular limits approach the same kinematic configuration
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Behaviour in singular limits

Collinear limit of up Soft limit of u,

(sector 1, m, — 0) (sector 1, & — 0)
P1 P1
r+up r+u,
\J 9z y a2
[\ [
g1 a1
P2 P2

— Both singular limits approach the same kinematic configuration
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Behaviour in singular limits

Triple collinear limit of u; & u» Double soft limit of u; & up

(sector 1, my; — 0) (sector 1, & — 0)

— Both double unresolved limits approach the Born configuration
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Behaviour in singular limits

Triple collinear limit of u; & u» Double soft limit of u; & up

(sector 1, my; — 0) (sector 1, & — 0)

G2 : a2

r+uy+uz r+u+uz

— Both double unresolved limits approach the Born configuration
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Behaviour in singular limits

Triple collinear limit of u; & u» Double soft limit of u; & up

(sector 1, my; — 0) (sector 1, & — 0)

‘/ " ' @

q1
} r+up+u;

r+uq+Up

P2 P2

— Both double unresolved limits approach the Born configuration
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Behaviour in singular limits

Triple collinear limit of u; & u» Double soft limit of u; & up

(sector 1, my; — 0) (sector 1, & — 0)

[¢F]

q1 : r+uq+uy

a1

r+uq+uz

— Both double unresolved limits approach the Born configuration
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Behaviour in singular limits

Triple collinear limit of u; & u» Double soft limit of u; & up

(sector 1, my; — 0) (sector 1, & — 0)

92
r+uq+uy q2

r+uy+u
1+ U2 a1

— Both double unresolved limits approach the Born configuration
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Behaviour in singular limits

Triple collinear limit of u; & u» Double soft limit of u; & up

(sector 1, my; — 0) (sector 1, & — 0)

r+uj+u

r+u+u; %
1+ U2 . = 42

q1

— Both double unresolved limits approach the Born configuration
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Behaviour in singular limits

Triple collinear limit of u; & u» Double soft limit of u; & up

(sector 1, my; — 0) (sector 1, & — 0)

r+uy+uy r+uy+uz

92 92

— Both double unresolved limits approach the Born configuration
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Consequences

Features

= Minimal number of subtraction kinematics

= Only one DU configuration
— pole cancellation for each Born phase space point
= Expected improved convergence of invariant mass distributions, since

i =q

Unintentional features

= Construction in lab frame

= Original construction of 't Hooft Veltman corrections [Czakon,Heymes'14]
is spoiled
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4 dimensional formulation
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Separately finite contributions

Finite parts:
N | |
Finite remainder parts:
OFR  OFR Ok
Single (SU) and double (DU) unresolved parts:
050,050 050 B8 TBU» 50> TBY» OB
/ \

o8f, o8, a5k | | o e
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The measurement function

Observables: Implemented by infrared safe measurement function (MF) F,,

Infrared property in STRIPPER
context:

{x;i} = 0 <> single unresolved
limit

= Frio = Fos

{xi} = 0 <> double unresolved
limit

= Fn+2 — Fn

= F,—,+1 — Fn

Tool for new formulation in the 't
Hooft Veltman scheme:

Parameterized MF F,

= F*=0fora#0
(NLO MF)

= ‘arbitrary’ FO
(NNLO MF)
= a#0= DU =0 and SU
separately finite
Example: F2; = Fri1©a({ai})
with ©, = 0 if some a; <

Rene Poncelet 22 /28



The single unresolved (SU) contribution

osy =ofR +oRY + 0} where oSy = [d®ni1 (IS Far1 + ISF)

NLO measurement function (o # 0):

/d¢n+1 (IRR, + IRY) +1S1)) F2y = finite in 4 dim.

All divergences cancel in d-dimensions:

Z / dq)nJrl

/ciIZ) /541(171)
n n a  — c _
T + n+l = EC :I =0

€

Rene Poncelet
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SU finiteness for o =0

osy = 055 + 0§L\,/ + USCLlj —ZRR _ RV _ 1€t

=0

: (=2 (-1 ;
oSy —I° = / dd, { [—"*:2 + /5;(1)} Foir +

- / d¢n+1

16:(=2) 6:(=1)
nE2 4 n . +In5,(0) Fn

c.(—2) c.(—1)
et *—} Fr10a({or})
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SU finiteness for o =0

IRR IRV o ICl
=0

JSU:JSU+0' —|—U

: I
oy —I°= / AP,y { [% + /n+(1)1| Fny1 +

- / d¢n+1

D i+ 1902F, Y 100,
:/dd),,ﬂ n+1 + + n+1 + (1-0.({ai}))

2 €
+ /d¢n+l [’;lr(f)’:nﬂ + ’Z’(O)Fn} +/d¢n+1 [

je:(=2) e J(—1)
: €2 T € + IC () Fr

I‘-'v(1*2) I‘-'v(lfl)
o+ | Fi©a({ai})
€2 €

€

/C( 2) j6:(=1)
+ = Fr©a({ai})

=: Z() + £; + N (w)

integrable, zero volume for a—0 o divergencies 51y F DU
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The function N¢(a)

Looks like slicing, but it is slicing only for divergences
— no actual slicing parameter in result

Putting parts together:

Powerlog-expansion:

Lina sy — Z N5 (0) and opy + Z NG (0)
N(a) = > In“(@) N () ¢ ¢
k=0 are finite in 4 dimension
= all N(«) regular in « ~U
= start expression independent of
o = all logs cancel SU contribution: o5y — 3, NS = 33, €°
= only N§(0) relevant original expression osy in 4-dim
without poles, no further e pole
cancellation
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C+-+ implementation of STRIPPER
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C++ implementation of STRIPPER

Features of the implementation

= General subtraction framework

= Provides a general set of subtraction terms
= Tree-level amplitudes are calculated automatically

using a Fortran library [van Hameren '09][Bury, van Hameren '15]
= User has to provide the 1- and 2-loop amplitudes

= Separate evaluation of coefficients of scales and PDFs
— Cheaper calculations with several scales and PDFs
= FastNLO interface

= Allows to produce tables for fast fits
= FastNLO tables for tt differential distributions released this spring
[Czakon, Heymes, Mitov '17]
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Summary

= Minimizing the STRIPPER scheme
= alternative phase space parameterization
= new formulation of 't Hooft Veltman scheme

= tests for a class of processes:
pp — tt, eTe” — 2,3j, t decay, DIS, Drell-Yan, H decays, dijets
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Supplements
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Factorization and subtraction terms

Single unresolved phase space:

//1 dndgnalfble&.aner
0

Double unresolved phase space:

Master formula
//// diy déy dnp dép nft ~P1e g TR T bt g e

Regularisation:

—1—be __ 71 —1—be

X ~ b + [X ]+

0 . 0 . v \_\/_J
Factorized singular limits: poleterm reg. + sub.

/oldx [X_l—bs]+ f(x) _ /0‘1 f(X))(IIb:(O)
/d¢,,]___[dx,- xflfb"é a({xi})
———

singular

H Xa’ (M2 |Mpi2) Foro

regular
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Calculation of N§(0)

For each sector/contribution:

1. extraction of d®,1 from d® .4 |su pote (only for RR contribution)

d¢n+2 |SU pole = (d¢n ddll(ul) dd,u(uz) )
—_———

dq>n+1

upcol /soft

2. expansion in € up to e~ ! (except d®,;1): d9®, (? + ?)
3. ldentifying Ink(a)'s from x; integrations over © function
Oa (), u”) = (1) — @)O(Etimax / Enorm — )
— discard them

4. perform integration over ©-functions of non-canceling and non-vanishing
(in & — 0 limit) terms
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PS

common starting point for all phase spaces :

ng Ny ny 2 nq
HU’O"J HNO uk)d ((P_er_zuk> - >:|Hﬂm, qi)(2m) 5(d (Zq'_q>
=1 k=1

i=1
dk
(2m)d

n : # final state particles, ng : # final state references, n, : # additional partons

with pim(k) = 218 (K — m*) 6 (k°),
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