NLO event generation with the $(MC)^3$ sampling algorithm

Rene Poncelet¹

Institut für Theoretische Teilchenphysik und Kosmologie

2016-03-01

¹in cooperation with S. Schumann (Uni Göttingen), K. Kröninger (TU Dortmund)

Event Generation

Factorization

- Hard-Process
- Parton-Shower, Resummation
- PDF, Hadronization, Underlying Event, ...

Phase Space Sampling

- Generation of (un)weighted events
- State of the art: Multi-Channel Importance Sampling
- Phase Space Mapping

Multi-Channel Importance Sampling

$$\int f(x) dx = \int \frac{f(x)}{p(x)} p(x) dx$$
$$= \sum_{i=1}^{m} \alpha_i \int \frac{f(x)}{p(x)} dP_i(x)$$

Various peaks \rightarrow different channels $p_i(x)$ with weight α_i : $p(x) = \sum \alpha_i p_i(x)$

Mis-mappings

 $f(x)/Mp(x) \ll 1$ \rightarrow inefficient sampling

Hit and Miss algorithm

Assume: $M \cdot p(x) \ge f(x) \ \forall x$, p(x) probability density

- 1. Draw X according to P(X)
- 2. Accept X with probability $\frac{f(X)}{Mp(X)}$
- 3. Return to step 1.

Markov Property

- Given state $X_0 \ (\in \Omega)$
- Choose next state
 X_i = K(X_{i-1}) according
 to transition kernel K

Requirements on *K*:

- K is ergodic
- *K* is balanced, e.g. $p(X_1)K(X_1 \rightarrow X_2) =$ $p(X_2)K(X_2 \rightarrow X_1)$
- *K* is independent of *i* (*time-homogeneous*)

Metropolis-Hasting

- 1. current state X_n
- 2. Generate randomly a proposal point *Y*
- 3. Accept the proposal point Y with probability $\alpha(X_n, Y) = \min \left[1, \frac{f(Y)}{f(X_n)}\right]$. If proposal point is accepted, $X_{n+1} = Y$, otherwise $X_{n+1} = X_n$.
- 4. Return to step 2.

(MC)³ Sampling Algorithm

• New Monte Carlo Sampling algorithm [Willenberg et al., Comput.Phys.Commun. 186 (2015) 1-10]

Linear combination of two transition-kernels

$$K_{(\mathsf{MC})^3} = eta K_{\mathsf{IS}} + (1-eta) K_{\mathsf{MH}}$$

IS-Kernel K_{IS}:

- PS-Points from IS
- with acceptance prob. $\alpha_{IS} = \min \left[1, \frac{f(y)p(x)}{f(x)p(y)} \right]$

MH-Kernel K_{MH}:

- PS-Points via local symmetric variation
- with acceptance prob. $\alpha_{MH} = \min \left[1, \frac{f(y)}{f(x)} \right]$
- Burn-In phase ightarrow adjustment of local variation width
- Lag \rightarrow reduction of autocorrelation effects

(MC)³ Implementation in SHERPA

Implementation in SHERPA framework

- Local phase space mapping with RamboDiet[Plätzer,arXiv:1308.2922]
- Automated Burn-In handling
- Sampling with arbitrary number of phase spaces
- Extended for NLO calculations

(MC)³ \ Multi Channel \ / Markov Chain Monte Carlo

NLO Event Generation with (MC)³

- Various final-state multiplicities, i.e. σ_R and σ_V → multi-engine mode, selection via channel weights (only IS-kernel)
- Negative valued integrands, loops and counter-terms
 → Sampling of the modulus, bookkeeping of the sign

Example:

Validation

Markov-Chains naturally incorporate autocorrelation effects \rightarrow Idea: Compare (MC)^3 with IS samples

 $\chi_i \sim \mathcal{N}(0,1)$ for statistical independent events

Criteria

- $\bar{\chi}$ compatible with 0 within 1.5 standard deviations
- *RMS* compatible with 1 within 1.5 standard deviations
- ightarrow "Statistically compatible"

Validation Example

Performance Measurement

	Timo Coin —		Time to generate sample with unweighted IS				
	Time	Gain –	Time to generate sample with $(MC)^3$				
	Process	Gain factor			Process	Gain factor	
	pp ightarrow	LO	NLO		pp ightarrow	LO	NLO
	$I^+I^- + 1j$		19.1		W^+W^-	1	1.8
	$I^{+}I^{-} + 2j$	2.4	106.0		$W^+W^- + j$	1.8	13.1
	$I^{+}I^{-} + 3j$	17.2			$W^{+}W^{-} + 2j$	15.9	
	$I^{+}I^{-} + 4j$	8.6			WZ	0.4	0.7
	tī	1.0	1.3		WZ + j	1.0	36
	$t\overline{t}+j$	3.1	86.9		WZ + 2j	5.1	
	$t\overline{t}+2j$	7.7			ZZ	1.8	0.9
	tŦΗ	1.0	1.7		ZZ + j	2.0	6.0
	$t\overline{t}H + j$	9.4	36		ZZ + 2j	7.6	
	$t\overline{t}H + 2j$	20.0			H+j	3.3	43.5
		•	<u>.</u>		H + 2j	2.2	31.6
					H + 3j	4.9	

Conclusion

- Validated and tested within SHERPA framework for LO and NLO processes
- Setup dependent time-gain
 - \$\mathcal{O}\$(10)\$ for high multiplicities
 \$(> 3 particles)\$
 - up to $\mathcal{O}(100)$ for NLO

Outlook

- Future SHERPA release
- Paper

Thank you for your attention.

Backup

Rene Poncelet

$$\sigma = \sigma_{LO} + \sigma_{NLO} \text{ with } \sigma_{NLO} = \sigma_R + \sigma_V = \int_{n+1} \mathrm{d}\sigma_R + \int_n \mathrm{d}\sigma_V$$

- $\sigma_R \& \sigma_V$ separately IR-divergent (after Renormalization) (for $\epsilon \to 0$ in dimensional regulation with $d = 4 - 2\epsilon$)
- \rightarrow Subtraction-Method (Catani-Seymour-scheme)

$$\sigma^{NLO} = \int_{m+1} \left[\mathrm{d}\sigma^R - \mathrm{d}\sigma^A \right] + \int_{m+1} \mathrm{d}\sigma^A + \int_m \mathrm{d}\sigma^V$$
$$\sigma^{NLO} = \int_{m+1} \left[\mathrm{d}\sigma^R - \mathrm{d}\sigma^A \right]_{\epsilon=0} + \int_m \left[\mathrm{d}\sigma^V + \int_1 \mathrm{d}\sigma^A \right]_{\epsilon=0}$$

• \int_{m+1} and \int_m finite in d = 4 dimensions

Rene Poncelet

Processes:

- $pp \rightarrow l^+l^- + 0, 1, 2(, 3, 4)j$
- $pp \rightarrow VV + 0, 1(, 2)j$
- $pp \rightarrow t\overline{t} + 0, 1(,2)j$

Parameter:

- $\beta \in [0.5, 0.9]$
- $N_{LAG} = 1, 10, 20$

Result:

- $ar{\chi} pprox 0$ always
- *RMS* \nearrow for $\beta \searrow$
- RMS \nearrow for N_{LAG}
- *RMS* \nearrow for number of $j \nearrow$

"Quality" strongly process (multiplicity) dependent: A priori choice of N_{LAG} not ideal

 \downarrow

Dynamic lag choice

based on the correlation length for $\beta=1$