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Chapter 1IntrodutionIn this dissertation we present a desription of interations in deep inelastisattering (DIS) of eletrons and protons at small values of the Bjorken variablex. Suh proesses are urrently studied experimentally at the DESY ep olliderHERA. DIS experiments established Quantum Chromodynamis (QCD) as theunderlying theory of strong interations. Quarks and gluons, the basi quantaof this theory, aount for the revealed point-like struture of the proton downto distanes of about 10�16 m. The small-x kinemati domain explored atHERA is partiularly interesting from the point of view of QCD studies.The basi feature of QCD interations is asymptoti freedom. At distanesmuh smaller than the typial hadroni size (� 1 fm) quarks and gluons behaveas very weakly interating free partiles (partons). The manifestation of suha behaviour is saling of the proton struture funtion F2 with logarithmiviolation explained by perturbative QCD (pQCD). With the rising distane,the interations beome stronger and eventually quarks and gluons are boundin diretly observed hadrons. This phenomenon, alled on�nement, has beenextensively studied sine the advent of QCD. Despite these e�orts, however,the full understanding of on�nement is yet to be ahieved. In the on�nementregion pQCD breaks down and new nonperturbative methods are neessary.The lattie formulation of QCD serves as an example.The QCD studies of DIS at small x (� 1) are loated between the regionsof asymptoti freedom and on�nement. The physial piture of the protonwhih emerges from these studies suggests that the proton struture at small xis dominated by dense gluoni systems with a large number of low momentum(wee) gluons. As a result, the proton struture funtion F2 strongly inreaseswith dereasing x. The strong rise, however, annot go on inde�nitely due tointerations between gluons in the dense systems. This e�et, alled partonsaturation, tames the strong rise of F2 in agreement with the ondition of uni-tarity of the desription. Thus, at small x gluons in the proton form a stronglyorrelated system of interating partiles. Let us reall that the �xed targetDIS experiments, performed for x � 1, revealed a dilute system of free par-tons. Thus in DIS at small x, a new (semi-hard ) regime of QCD is studiedin whih the strong oupling onstant is small but the interations betweenpartons annot be negleted. 7



8 Chapter 1. IntrodutionThe question whether parton saturation is relevant in the kinemati range ofHERA has intrigued physiists sine the beginning of this experiment. Due tothe large ep enter-of-mass energy, the Bjorken variable x � 10�5 at sales forwhih pQCD is still appliable. The desription whih we are going to presentstrongly suggests the positive answer to this question.The physial interpretation of DIS at small x is provided in the proton restframe. In this frame, the virtual photon � utuates into a quark-antiquarkpair long time before the pair interats with the proton. Thus, the pair forma-tion and its subsequent interation are learly separated. In this interpretation,� is a linear superposition of partoni omponents, being the q�q dipoles har-aterized by the transverse size r (with respet to the �p ollision axis) andlongitudinal momentum z. The dipole{proton interation does not mix theseomponents, i.e. r and z are good quantum numbers onserved by the intera-tion. Therefore, DIS at small x an be viewed as the sum over independent q�qdipole satterings on the proton target. In this sense, the DIS proess is similarto hadron{hadron sattering, with the advantage that the struture of one ofthe projetiles is ompletely known.The dipole{proton interation depends on the dipole size. For small sizes(r � 1 fm), pQCD is appliable and the interation is realized by a singlegluon exhange aompanied by an additional gluon radiation. For large sizes(r � 1 fm), on�nement fores are important, hanging the interation to a oneresembling hadron{hadron interations with a weak dependene on energy. Thise�et annot be omputed in pQCD and has to be modelled, but the onset of thetransition between the QCD radiation at small sizes and hadroni interationsfor large sizes is within the reah of pQCD means. In the intermediate rangeof the dipole sizes, multi-gluon exhanges with additional interations betweenthe gluons are important, leading to the piture of parton saturation.The detailed QCD desription of the above proesses has not been ahievedyet. We propose a phenomenologial approah and postulate a parameterizationof the dipole{proton interations whih inorporates the desribed features.With this parameterization we ahieved a very good desription of the DIS dataat small x (mainly from HERA), inluding the transition to low Q2 values. Themain ingredient of this model is a saturation radiusR0(x), related to the size of agluon system in the proton. R0(x) sets the sale for the dipole on�gurations. Inpartiular, r � R0 orresponds to the transition region where saturation e�etsare important. The saturation radius dereases when x ! 0, thus, for smallenough x, saturation e�ets an be desribed by pQCD, making the approahonsistent. We �nd that it happens in the HERA kinemati range sine R0 �0:2 fm (whih orresponds to the saturation sale Qs(x) = 1=R0(x) � 1 GeV)for x � 10�4. Parton saturation allows to desribe the transition of the �pross setion, ��p � F2=Q2, to low Q2 values. Namely, if the wavelength ofthe virtual probe is smaller than the saturation radius, 1=Q � R0, Bjorkensaling (with logarithmi violation) is found, ��p � 1=Q2. In the oppositease, when 1=Q� R0, the virtual probe annot resolve the gluoni system and��p saturates to a onstant value.A very stringent test of the postulated model of the dipole-proton intera-tions is provided by di�rative DIS at small x. In a �rst approximation, these



9proesses an be interpreted as elasti sattering of q�q dipoles o� the protonwith the net olourless exhange. As a result, the proton stays intat, losingonly a small fration of its initial momentum. The most striking feature of DISdi�ration, measured at HERA, is a onstant ratio (� 10%) between the di�ra-tive and total ross setions as a funtion of x and Q2. The understanding ofthis feature, as well as the entire proess, is a great hallenge for QCD.The parameters of the dipole{proton interations were determined in theanalysis of inlusive DIS. With these parameters a good desription of di�rativeDIS is also obtained. In partiular, the onstant ratio �diff=�tot is naturallyexplained. The key element for the suess of this approah is inorporation ofparton saturation e�ets with the intrinsi saturation sale R0(x). A distintivefeature of DIS di�ration is the suppression of the small size dipole on�guration(r � R0), making di�rative proesses diretly sensitive to the range of r �R0 in whih parton saturation e�ets dominate. The relative hardness of thesaturation sale, 1=R0 � 1 GeV, suggests that DIS di�ration is a semi-hardrather than soft proess as Regge theory (used traditionally in the desriptionof hadron-hadron high energy sattering) would require.In the following we desribe inlusive and di�rative proesses in DIS atsmall x from the uni�ed point of view imposed by the dipole piture presentedabove in whih parton saturation plays the dominant role. An extensive om-parison with the urrent data from HERA is also presented. The dissertationis based on the following original artiles (in the hronologial order).I K. Gole{Biernat and J. Kwiei�nski, QCD analysis of di�rative DIS atHERA, Phys. Lett. B353 (1995) 329, [117℄.II K. Gole{Biernat, Partoni struture of the pomeron, Ata Phys. Polon.B27 (1996) 134, [115℄.III K. Gole{Biernat and J.P. Phillips, QCD: Quantum hromodynami di�-ration, J. Phys. G22 (1996) 92, [114℄.IV K. Gole{Biernat and J. Kwiei�nski, Subleading reggeons in deep inelastidi�rative sattering at HERA, Phys. Rev. D55 (1997) 3209, [120℄.V K. Gole{Biernat, J. Kwiei�nski and A. Szzurek, Reggeon and pion on-tributions in semi{exlusive di�rative proesses at HERA, Phys. Rev.D56 (1997) 3955, [121℄.VI K. Gole{Biernat and M. W�ustho�, Saturation e�et in deep inelastisattering at low Q2 and its impliation on di�ration, Phys. Rev. D59(1999) 014017, [94℄.VII K. Gole{Biernat and M. W�ustho�, Saturation in di�rative deep inelastisattering, Phys. Rev. D60 (1999) 114023 [95℄.VIII J. Bartels, K. Gole{Biernat and K. Peters, An estimate of higher twistat small x and low Q2 based upon a saturation model, Eur. Phys. J. C17(2000) 121, [99℄.



10 Chapter 1. IntrodutionIX A. Sta�sto, K. Gole-Biernat and J. Kwiei�nski, Geometri saling for thetotal �p ross setion in the low x region, Phys. Rev. Lett., 86 (2001)596, [98℄.X K. Gole{Biernat and M. W�ustho�, Di�rative parton distributions fromthe saturation model, Eur. Phys. J. C20 (2001) 313 , [155℄.The outline of the presentation is the following. In Chapter 2 we providebasi elements of the QCD desription of deep inelasti proesses, mainly forpedagogial reason, following the literature on this subjet in the past 30 years.A partiular attention is paid to the desription of DIS at small x. From thepoint of view of Regge theory, used traditionally in the desription of highenergy hadroni sattering, the small x limit orresponds to Regge limit inwhih a pomeron exhange with soft dependene on energy dominates. Theanalysis of this limit in pQCD leads to the onept of a hard pomeron withmuh stronger dependene on energy. The hard pomeron alls for unitarizationorretions. They are realized in terms of parton saturation e�ets whih leadto nonlinear modi�ations of the standard evolution equations.In Chapter 3, based on the results from Refs. [VI,VIII,IX℄, we present adesription of inlusive DIS in the dipole piture. In this piture, the parame-terization of the dipole{proton interations inorporates in a phenomenologialway both the hard pomeron onept and its unitarization done with the help ofthe idea of parton saturation [VI℄. We determine few parameters of this modelfrom a �t to all available data at small x. As a result, a very good desriptionof inlusive DIS data at small x is obtained, inluding the transition region tosmall Q2 values. In addition, a new saling law at small x is predited andonfronted with the data [IX℄. We disuss also heavy avour prodution andanalyze more formal aspet related to the twist expansion in DIS at small x[VIII℄. We �nish this part by presenting two oneptually di�erent approahesto the desription of the transition to small Q2 values in DIS.In Chapter 4 we desribe di�rative DIS following the results obtained inRefs. [I-V,VII,X℄. In the �rst part, these proesses are desribed using Reggetheory, modi�ed to allow for a partoni struture of the di�rative system [I-V℄.This is neessary in order to aount for the measured leading twist harater ofthe di�rative struture funtion. In the seond part, we present an alternativedesription in whih the di�rative system and its interation with the protonare modelled starting from perturbative QCD [VII℄. The dipole{proton rosssetion found in the inlusive DIS analysis is naturally applied in this approah.In DIS di�ration, the idea of saturation is even more important, allowing forexplanation of the most striking experimental fat from HERA of the onstantratio between the di�rative and inlusive ross setions. We disuss in detailvarious aspets of the desription, presenting an extensive omparison with thedata The relation between the two approahes to DIS di�ration is disussedin the part on di�rative parton distributions [X℄. We point out that manyfeatures of these proesses whih are postulated in the Regge-like approah �ndan explanation in the pQCD desription ombined with the idea of saturation.Conlusions and outlook are presented in Chapter 5. The derivation of someruial relations for the main stream presentation is moved to Appendies.



Chapter 2Basis2.1 DIS ross setion and struture funtionsIn the eletron-proton deep inelasti sattering (DIS), shown shematially inFig. 2.1, the inoming eletron ouples to the eletroweak urrent whih probesthe struture of the proton. In the following we will onentrate on the kine-mati range in whih eletromagneti part of the urrent dominates. In suh aase a virtual photon is exhanged with virtuality1Q2 = �q2 = �(e� e0)2 > 0 ; (2.1)where e and e0 are inoming and sattered eletron momenta. Q2 determinesthe resolution power with whih the proton is probed by the photon. The otherimportant quantity is the dimensionless Bjorken variablex = Q22p � q = Q2Q2 +W 2 ; (2.2)where p is the inoming proton momentum and W 2 is the square of enter-of-mass energy of the virtual photon{proton (�p) system,W 2 � (p+ q)2 = Q2 �1x � 1� : (2.3)In proton's rest frame 2p � q = 2M�, with � = E�E0 being the energy transferfrom the eletron to the proton. Both quantities, x and Q2, an be determinedby measuring energy E0 and sattering angle �0 of the sattered eletron. Otheromplementary methods involve the �nal hadroni state X. From the onep-tual point of view, however, the observation of the sattered eletron suÆesto reveal the proton struture. The de�ned kinemati variables, x and Q2, arepartiularly useful for a physial interpretation of DIS.The di�erential ross setion for unpolarized ep DIS in one photon exhangeapproximation reads d�dx dQ2 = 2� �2emx2s2Q2 L�� W�� ; (2.4)1It is onvenient to hange the sign of the spae{like photon virtuality.11
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Figure 2.1: Kinemati invariants in DIS.where �em � 1=137 and s = (p + e)2 is the ep system enter-of-mass energysquared. The negleted W and Z boson exhanges are important for Q2 �M2W;Z , orresponding to muh larger values of x than those we onsider.L�� is the leptoni tensor, fully determined from QED oupling of the virtualphoton to the eletron,L�� = 12 Trf6e 0 � 6e �g = 2 fe 0�e� + e0�e� � g��e 0 �eg : (2.5)W �� is the hadroni tensor, related to the eletromagneti urrent J�, whihgives the hadroni part of unpolarized DIS 2,W��(p; q) = 14� Z d4z eiq�z <p jJ�(z)J�(0)j p> (2.6)= 14� XX <p jJ�(0) jX >< X jJ�(0) j p> (2�)4 Æ4(p+ q � pX) :The seond line is obtained after inserting the omplete set of �nal states be-tween the two eletromagneti urrents, and using the translation invarianeproperty of the urrent. The Lorentz struture of W�� is found from theonservation of the eletromagneti urrent, q�W�� = 0, and the symmetryW�� = W�� due to parity onservation,W��(p; q) = ��g�� + q�q�q2 �F1 + 1p�q �p� � q� p�qq2 ��p� � q� p�qq2 �F2 ;(2.7)The unknown salar struture funtions F1(x;Q2) and F2(x;Q2), haraterizethe hadron struture revealed in unpolarized DIS with Z and W boson ex-hanges negleted.The hadroni tensor W�� is related to the imaginary part of the forward2We use the notation <p j:::j p>= 1=2P� <p� j:::j p�> where the summation is performedover the proton polarization, and p is the proton momentum.



2.2. Partons and their distributions 13�p sattering amplitude T�� ,W�� = 12� ImT�� ; (2.8)where T�� = i Z d4z eiq�z <p jT(J�(z)J�(0)) j p> : (2.9)With some are with respet to the de�nition of the virtual photon ux andusing the optial theorem, the struture funtions an be related to the �pross setions for the transverse and longitudinal polarized virtual photon, �Tand �L, respetively, 2xF1 = Q24�2�em �T � FT ; (2.10)F2 � 2xF1 = Q24�2�em �L � FL : (2.11)Thus, the newly de�ned transverse and longitudinal struture funtions obeyF2 = FT + FL : (2.12)The �nal form of the DIS ross setion (2.4) is obtained after ontratingthe tensors (2.5) and (2.7),d�dx dQ2 = 2� �2emxQ4 �(1 + (1� y)2) F2(x;Q2) � y2 FL(x;Q2)� (2.13)where y � p � qp � e = Q2x s (2.14)is another useful variable used in the DIS desription. In the proton rest framey is a fration of inoming eletron energy transfered into the hadroni system.Both x and y obey: 0 < x; y < 1.The struture funtions desribe the proton struture as measured in inlu-sive DIS. From the theoretial point of view the major task is to provide anexplanation or predition for their form.2.2 Partons and their distributionsIn the key experiment, performed at SLAC, ep DIS was studied in the Bjorkenlimit: Q2; 2p � q !1 and x �xed. In this limit, the struture funtions exhibitBjorken saling [1℄, i.e. they approximately depend only on the dimensionlessvariable x, Fi(x;Q2) � Fi(x) ; i = 1; 2 : (2.15)To a good approximation the Callan-Gross relation is ful�lled, F2 � 2xF1 =FL � 0. As we will see, this relation has a physial meaning.
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Figure 2.2: Deep inelasti sattering in the parton model.The interpretation of saling is due to Feynman [2, 3℄. He envisaged theproton as a olletion of point-like, non-interating among themselves partiles,alled partons. In the in�nite-momentum frame in whih the proton movesvery fast, the relativisti time dilation slows down the rate at whih partonsinterat. As a result, the virtual photon interats with an individual partonwithout disturbing the rest of the system. The total ross setion is a sum overinoherent �-parton interations, weighted by the probability f(�) to �nd aparton in a fast moving proton with a fration � of the proton momentum,d�dx dQ2 = Z 10 d� f(�) d~�(�)dx dQ2 : (2.16)In this way the distribution of partons in a proton, f(�), is introdued. Theabove formula reets fatorization of the DIS ross setion into a short distaneinteration, desribed by the partoni ross setion d~�(�), and a long distanestruture, desribed by the parton distribution f(�).Assuming that partons are Dira fermions with spin 1=2 arrying the fra-tion � of the proton's momentum, the following result is found in the partonmodel [4℄F2(x) = 2xF1(x) = Xi e2i Z 10 d� Æ(x � �) �fi(�) = Xi e2i x fi(x) : (2.17)where ei is the eletri harge. Additionally, the parton transverse momentawith respet to the proton diretion are negleted. The Callan-Gross relationresults from the spin 1=2 assumption.Saling is explained by the parton model. Moreover, Bjorken-x is equal tothe momentum fration of the struk parton sine from the momentum onser-vation at the �-parton vertex, see Fig. 2.2, we have(� p+ q)2 = 0 ) � = �q2=2p � q = x : (2.18)Thus, the struture funtion F2(x) \measures" the parton distributions of theproton. Let us emphasize that partoni interpretation is inherent to the in�nite-momentum frame in whih DIS is viewed.



2.3. Parton model justi�ation 152.3 Parton model justi�ationThe justi�ation of the parton model omes from Quantum Chromodynamis(QCD) [5, 6℄. QCD is the unbroken SU(3) gauge theory of strong interationswith fermioni quark �elds and bosoni gluon �elds. Both types of �elds arryquantum number related to loal gauge group, alled olour.The most important property of QCD is asymptoti freedom [6℄. The e�e-tive oupling onstant �s(Q2), desribing the strength of interations betweenquarks and gluons, vanishes when the sale Q2 ! 1. The Q2-dependene isgoverned by the renormalization group equation. In the lowest order�s(Q2) = 1b0 ln(Q2=�2) ; (2.19)where b0 = (33 � 2Nf )=12� is positive (for a reasonable number Nf of quarkavours) and � is the basi mass parameter of QCD (of the order 200 MeV)introdued by the renormalization proedure. The above formula is valid forQ2 � �2, when �s(Q2) � 1 and perturbative desription in terms of interat-ing weakly quarks and gluons makes sense. For Q2 ! �2 the strong ouplingonstant beomes large and perturbative methods break down. It means thatthe region of on�nement is reahed in whih quarks and gluons form stronglybound olourless systems, observed as asymptoti hadroni states.It is natural to interpret partons as the quarks and gluons. Asymptoti free-dom means that QCD is asymptotially free, i.e. it approahes free-�eld theoryat short distanes with logarithmi modi�ations. This leads to the observedexperimentally logarithmi violation of Bjorken saling for matrix elements ofeletromagneti urrents between on-mass-shell states [7℄. In ontrast to thenaive parton model, in QCD the struk quark an aquire large transverse mo-mentum by emitting a gluon whih e�et gives saling violation.There are two approahes to desribe DIS in the Bjorken limit using QCD.The �rst approah is based on the operator produt expansion (OPE) of theprodut of two eletromagneti urrents. The seond one relies on diret alu-lations using Feynman diagrams, ombined with a fatorization theorem whihallows to separate the short and long distane struture.2.3.1 Operator produt expansion for DISHistorially, the �rst justi�ation of the parton model ame through the oper-ator produt expansion (OPE) of the eletromagneti urrents in the hadronitensor W�� , eq. (2.6). In the Bjorken limit, the dominant ontribution to W��omes from the region of integration lose to the light one, see e.g. [8℄,0 � z2 � onst=Q2 ; (2.20)Thus, the OPE around the light one is relevant when Q2 !1. Ignoring, forsimpliity, the vetor harater of the urrent, we have [9℄J(z)J(0) = 1Xn=0 XA CAn (z2) z�1 � � � z�n OAf�1����ng(0) : (2.21)



16 Chapter 2. BasisThe expansion is singular at z2 = 0, and W�� is determined from the singularitystruture, ontained entirely in the oeÆient funtions CAn alled also WilsonoeÆients. The operators OA are well behaved loal omposite operators,symmetri and traeless in Lorentz indies (whih is indiated by the urlybrakets). In this ase n is the value of spin of the omposite operator, and Adistinguishes operators with the same spin.From naive dimensional ounting in the units of mass, the Wilson oeÆientsbehave in the following way in the limit z ! 0CAn (z2) � � 1z2�dJ�(dO�n)=2 ; (2.22)where dJ (= 3) and dO are anonial dimensions of the urrent J and the om-posite operator OA, respetively. Relation (2.22) is true for free �eld theorywhile in QCD it obtains logarithmi modi�ations. The di�erene� � dO � n (2.23)is alled twist of the omposite operator, and its value determines the singularitystruture of the oeÆient funtions. The most singular (dominant) term in(2.21) is given by the lowest twist operators. These are the operators with� = 2, whih give Bjorken saling in free �eld theory. The higher twist termsare suppressed by additional powers of 1=Q2.From now on we limit our disussion to the leading twist-2 operators. Therelevant QCD operators are: the quark avour nonsinglet ONS;in , quark singletO Sn , and gluon OGn operators,ONS;if�1����ng = � �f f�1 i$D�2 � � � i$D�ng  ; (2.24)O Sf�1����ng = � f�1 i$D�2 � � � i$D�ng  ; (2.25)OGf�1����ng = Ff�1� i$D�2 � � � i$D�n�1F��ng ; (2.26)where i = 1; 2; � � � ; N2f � 1, �f are the generators of the avour group SU(Nf )and the ovariant derivative $D= (!D �  D)=2. The trae over olour indiesin the above is impliit. There is an in�nite tower of the twist-2 operatorsenumerated by spin n.Plugging (2.21) (with the tensor struture modi�ations for vetor urrents)into the forward Compton sattering tensor T�� , eq. (2.9), we obtain the ana-lyti expansion in the unphysial region of ! = 1=x < 1 in the Bjorken limit.Shematially, T��(!) = Pn a��;n !n; where a��;n involve produts of the Wil-son oeÆients CA and matrix elements of the omposite operators < pjOAjp >.The analytial struture of T��(!) in the omplex !-plane is given by uts along(�1;�1) and (1;1) on the real axis. Therefore, using analytiity we anrewrite a��;n in the form of the integrals over disontinuities of T��(!) alongthe uts, i.e. in the physial region of j! = 1=xj > 1. These disontinuities, inturn, are related to the hadroni tensor W�� , eq. (2.8), and hene to the DIS



2.3. Parton model justi�ation 17struture funtions Fi. Finally, the following relation is found for the Mellinmoments of the struture funtions [10℄Z 10 dx xn�2 Fi(x;Q2) = XA CAn;i(Q2) MAn ; (2.27)where i = 2; L and the Wilson oeÆient CAn;i(Q2) are the Fourier transforms ofthe z2-dependent oeÆient funtions in eq. (2.21), see [10℄. The oeÆientsMAnparameterize the diagonal matrix elements of the omposite operators betweennuleon states <p j OA(�1 ����n) j p> = MAn p(�1 � � � p�n) : (2.28)Notie that the tensor struture on the r.h.s of (2.28) is unique sine we onlyhave the nuleon momentum p� at our disposal.Up to now, we have negleted the neessity of renormalization. The matrixelements of the operators appearing in the OPE are divergent and need tobe renormalized. This proedure introdues a renormalization sale � intothe problem. The hange of � an be absorbed by the hange of parametersof a theory, that leads to the renormalization group (RG) equation for therunning parameters and matrix elements of the onsidered operators. Applyingthis method to the OPE (2.21) for a massless theory, we �nd as a onsistenyonditionXA ���2 ���2 + �(�s) ���s� ÆAB + (n(�s))AB� CAn;i(Q2=�2; �s) = 0 ;(2.29)where we indiated the presene of the renormalization sale � in the WilsonoeÆient. �(�s) is the Gell-Mann-Low funtion, and n(�s) is the matrix ofanomalous dimensions of the omposite operators OA with spin n. They mixunder renormalization if they have the same quantum numbers. The quarksinglet and gluon operators (2.25) and (2.26) are examples of suh operators.Both �(�s) and n(�s) are omputed in pQCD as a series in powers of �s:�(�s) = ��2s b0 + �3s b1 + � � � ; (2.30)n(�s) = ��s2�� (0)n + ��s2��2 (1)n + � � � ; (2.31)where b0 is de�ned in eq. (2.19), and (0)n were found for the operators (2.24)-(2.26) in Ref. [7℄. The famous minus sign in the expansion of the � funtionleads to asymptoti freedom of QCD. The running oupling onstant (2.19) isa solution of the equationQ2 d�s(Q2)dQ2 = �(�s(Q2)) ; (2.32)with �(�s) in the lowest order approximation.



18 Chapter 2. BasisThe solution to the RG equation (2.29) is given in terms of the runningoupling onstant. In the lowest order approximation for � and n, we �ndCn;i(Q2=�2; �s(�2)) = Cn;i(1; �s(Q2)) � �s(�2)�s(Q2)� (0)n2�b0 ; (2.33)where the matrix notation is assumed, and �s is given by (2.19).When the renormalization proedure is performed, the oeÆients CAn;i andMAn in eq. (2.27) aquire the �-dependene. Now, we haveZ 10 dx xn�2 Fi(x;Q2) = Cn;i(Q2=�2; �s(�2))Mn(�2) ; (2.34)where the solution (2.33) is substituted. The l.h.s in the above is a measuredquantity and obviously does not depend on a renormalization point �. There-fore, di�erentiating both sides with respet to �, we �nd the following RGequation for the oeÆients MAn�2 dMAn (�2)d�2 = �s(�2)2� XB �(0)n �AB MBn (�2) : (2.35)The renormalization sale � is arbitrary, thus, we are free to hoose � = Q� �.In suh a ase (2.34) beomesZ 10 dx xn�2 Fi(x;Q2) = XA CAn;i(1; �s(Q2)) MAn (Q2) ; (2.36)where i = 2; L. In this way the logarithmi saling violation for the struturefuntions is found [7℄ due to the running oupling onstant �s, and the evolutiongoverned by the anomalous dimensions of the twist-2 operators (2.24)-(2.26).We have to keep in mind that our disussion onerns the leading behaviourof the struture funtions, therefore, it applies to large Q2, when QCD is asymp-totially free. In general, the OPE leads to the following expansion in powersof 1=Q2 in the Bjorken limit3F2;L(x;Q2) = F (�=2)2;L (x;Q2) + F (�=4)2;L (x;Q2) �2Q2 + � � � ; (2.37)where the twist-2 part is found by inverting the Mellin moments (2.36). Thetwist-4 (and higher) ontribution has to be analyzed independently by onsid-ering twist-4 operators and their logarithmi in Q2 evolution [11℄.In summary, QCD predits the breakdown of Bjorken saling, desribed byeq. (2.36). The Wilson oeÆients CAn;i are omputed in pQCD. The oeÆ-ients MAn (Q2), however, are not determined until initial onditions at somesale Q20 � �2 are provided for eqs. (2.35). Thus, despite the evolution isdriven by the perturbatively omputed anomalous dimensions, the nonpertur-bative aspet is enoded in the initial onditions for the evolution. This is amanifestation of the short- and long-distane fatorization present in the OPE.3Other soures of 1=Q2 orretions are provided by target mass orretions, relevant atlarge x, or resummation e�ets like renormalons.



2.3. Parton model justi�ation 19
1 1 1

y y y

1-y 1-y 1-y

Figure 2.3: The elementary proesses desribed by the splitting funtions Pqq(y),PqG(y) and PGG(y) from the left to the right, respetively. Additionally,PGq(y) = PqG(1� y).2.3.2 The Altarelli-Parisi formulationIn [12℄ Altarelli and Parisi reinterpreted the main results of the previous setionon the saling violation in terms of parton distributions and basi interationsbetween partons being quarks and gluons.They identi�ed the Mellin moments of the parton distributions fA(x;Q2)with the oeÆients MAn (Q2) from eq. (2.28),Z 10 dx xn�1 fA(x;Q2) = MAn (Q2) ; (2.38)where we denote olletively fA = (qNS; qS; g), the quark avour nonsinglet,singlet and gluon distributions, respetively. Let us reall that MAn haraterizematrix elements of the twist-2 QCD operators OA, see eq. (2.28). Choosing anadditional light-like vetor n̂� suh that n̂ � p = 1, we �nd the following relationZ 10 dx xn�1 fA(x;Q2) = n̂�1 � � � n̂�n <p j OA(�1����n) j p>�=Q ; (2.39)The matrix elements in the above annot be omputed in pQCD, only theirhange with Q is governed by the RG equation. Thus, the parton distributionsare of nonperturbative nature, and their determination an be attempted inlattie formulation of QCD or, indiretly, with the help of experimental data.The next step is the identi�ation of the anomalous dimension ((0)n )AB ,eq. (2.31), with the moments of the splitting funtions PAB(y)Z 10 dy yn�1 PAB(y) = ((0)n )AB : (2.40)The splitting funtions were omputed in [12℄ from basi verties of QCD, usingthe generalization of equivalent photon method. They desribe the elementaryproesses, shown in Fig. 2.3, independent of the quark avour.Relation (2.38) an be inverted, and after that the evolution equations (2.35)are rewritten in the following form4Q2 �fA(x;Q2)�Q2 = �s(Q2)2� Z 1x dyy PAB(y) fB�x=y;Q2� ; (2.41)4Using the property of the Mellin moments: AnBn $ (A
B)(x) = R 1x dy=y A(y)B(x=y)



20 Chapter 2. Basiswhere the summation over B is impliit and the splitting funtion matrix equalsPAB = 0� Pqq 0 00 Pqq PqG0 PGq PGG 1A :These are the Altarelli-Parisi evolution equations, derived for abelian theo-ries before the advent of QCD by Gribov and Lipatov [13℄ and independently,following the method of [13℄, by Dokshitzer for QCD [14℄. Notie that thequark nonsinglet distribution evolves independently of the quark singlet andgluon distributions. This ours beause the orresponding partoni operatorOf does not mix under renormalization with the operators OS and OG.The Altarelli-Parisi (DGLAP) equations have probabilisti interpretation.In the in�nite momentum frame, the parton distributions fA(x;Q2) desribeprobability to �nd quark or gluon in a hadron, arrying a fration x of hadron'smomentum, as seen by the probe with a virtuality Q2. The evolution equationsdesribe the hange of this probability with the resolution power Q2, due to theemission of partons desribed by the splitting funtions.Relation (2.36) for the moments of the struture funtions an also be in-verted. After that we �nd the following formula for the struture funtionsFi(x;Q2) = XA Z 1x dyy CAi (y; �s(Q2)) xfA �x=y;Q2� ; (2.42)where i = 2; L and oeÆient funtions CAi (y) are related to the the Wilson o-eÆients CAn;i from the previous setion through the Mellin transformation. For-mula (2.42) reets the short- and long-distane fatorization, alled ollinearfatorization, in whih the oeÆient funtions are omputed in perturbativeQCD while the parton distributions ontain information about nonperturbativestruture of the nuleon. In the lowest order in �s for the oeÆient funtionsFL = 0 and F2(x;Q2) = Xf e2f fxq f (x;Q2) + x�q f(x;Q2)g : (2.43)where the sum over quark avours is performed. In order to �nd the partondistributions, we have to speify initial onditions for the DGLAP evolutionequations at some sale Q20 � �2. In pratie, an analytial form in x of theinitial onditions is given in terms of several parameters. Then, the parametersare determined from a �t to DIS data.2.3.3 Evolution in diagramsBy summation over a lass of in�nitely many diagrams the DGLAP equationsan be diretly obtained from perturbative QCD [14℄. This method serves as astarting point for the omputations beyond the leading order.In brief, the DIS struture funtions is omputed using the optial theo-rem (2.8). The relevant lass of diagrams are ladder diagrams, with the utstates being on mass-shell, see Fig. 2.4. We treat for a moment the lowest lying
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Figure 2.4: QCD ladder diagrams ontribution to DIS struture funtions.inoming parton as a hadron with a small virtuality �m2, whih serves as aregulator in the alulation. The diagrams with n ells amount the ontribution�ns logn(Q2=m2) � 1. Thus, the large logarithms log(Q2=m2) ompensate forthe smallness of �s in eah order n and have to be resummed. The key elementfor the dominane of the ladder diagrams is the hoie of the planar gauge forthe gluon �eld. As shown in [15℄, other diagrams, inluding non-planar ones,are suppressed by additional powers of �s without aompanying logarithms,and are negleted. Suh an approximation is alled leading-logarithmi approx-imation (LLA).The leading-logarithmi expression for the struture funtions is obtainedafter the integration over exhanged parton momenta [15℄,ki = �i p0 + �i q0 + k?i ; (2.44)in the on�guration strongly ordered in the transverse momentam2 � jk2?1j � jk2?2j � � � � � jk2?nj � Q2 : (2.45)Here the Sudakov deomposition of momenta is adopted with the null basevetors de�ned by q0 = q + xBp and p0 = p + (m2=s)q0, where p2 = �m2 and2p0 � q0 � s � Q2. The longitudinal momentum frations are also ordered dueto mass-shell ondition imposed on the emitted gluons (ut in Fig. 2.4),1 > �1 > �2 > � � � > �n � x : (2.46)The �i variables are small (� m2=s) and an be integrated out. Thus, thesuessive parton emissions are in the proton momentum diretion p � p0.Condition (2.45) leads to the improved parton piture. From the point ofview of the quark (i� 1), the upward quark (i) looks as a probing (bare) par-tile, with muh larger virtuality. As we move upwards, the quark (i) beomes\dressed" (in loud of partons with smaller virtualities) for the quark (i + 1),whih now ats as a highly virtual probe. Therefore, inreasing virtuality, thenumber of deays inreases, and the loud of virtual partiles is penetrated moredeeply (at shorter transverse distanes). This is a physial piture behind thesaling violation in the LLA.



22 Chapter 2. BasisThe large logarithms ome from the integration over the ordered transversemomenta. Eah ell ontributes one power of �s and logarithmi integral. Thus,the integration over n ells gives�ns Z Q2m2 djk2?njjk2?nj Z jk2?njm2 djk2?n�1jjk2?n�1j � � � Z jk2?2jm2 djk2?1jjk2?1j = �nsn! logn Q2m2 : (2.47)The integration over the longitudinal variables �i leads to a onvolution of nsplitting funtions Pqq. After the transformation into the Mellin spae a simplefator with anomalous dimension is obtained: ((0)N =2�)n. Thus, we �nd for theMellin moments of the struture funtion F2F2N�1(Q2) = 1Xn=0 �nsn! logn Q2m2  (0)N2� !n = �Q2m2��s (0)N2� : (2.48)The small virtuality �m2 of the inoming parton annot be set to zero dueto ollinear singularity whih appears when a massless parton deays into twoollinear massless partons. The remedy is to assume that there exists a suÆ-iently hard fatorization sale5 �F � �. With this sale, the short-distanepart, given by the integration over the transverse momenta �F < jk?j < Q,is safe from the point of view of perturbative alulations. The long-distanepart, m < jk?j < �F , an be fatored out and absorbed into the unknown baredistribution of the parent parton in a nuleon q0. Thus, we haveF2N�1(Q2) = �Q2�2F ��s (0)N2� ��2Fm2��s (0)N2� q0N| {z }qN (�F ) : (2.49)As a measured quantity, F2N�1(Q2) does not depend on the fatorizationsale. Thus we an write the RG equations for qN (�F ) by di�erentiation of bothsides of (2.49) with respet to �F . Choosing �F = Q, the evolution equationfor the Mellin moments of the parton distribution is foundQ2 dqN (Q2)dQ2 = �s2� (0)N qN (Q2) : (2.50)In the presentation, the oupling onstant was �xed, but the running �s anbe onsistently inluded by onsidering the next-to-leading logarithmi approx-imation (NLLA), in whih the terms proportional to �s(�s log(Q2=m2))n aresummed up. In this ase, the splitting funtions P (�s; x) and oeÆient fun-tions C(�s; x) are omputed to a higher order in �s [16℄. In generalP (�s; x) = ��s2��P (0)(x) + ��s2��2 P (1)(x) + ��s2��3 P (2)(x) + � � � (2.51)C(�s; x) = C(0)(x) + �s C(1)(x) + �2s C(2)(x) + � � � ; (2.52)5In most alulations �F = �, the renormalization sale related to ultraviolet divergenes.



2.4. DIS in Regge limit 23where (0) refers to LLA, (1) to NLLA, (2) to NNLLA and so on. The runningoupling onstant also has to be omputed to the appropriate order.The parton distributions are universal for a given hadron in a sense thatthe same distributions an be used in the ross setions for whih ollinearfatorization holds. Usually, it is a matter of nontrivial proofs in whih infraredstruture of pQCD is arefully examined, see Collins et al. in Ref. [17℄.2.4 DIS in Regge limitExpansions (2.51) trunated at some order are good approximations away fromx = 0. In the limit x! 0, however, large logarithms log(1=x) appear in all or-ders exept the lowest one 6. Thus, the perturbative expansion (2.51) beomesslowly (or badly) onvergent beause of the presene of large logarithmi or-retions. A systemati method of resummation of these orretions is neessaryin order to restore the reliability of QCD in the small x domain.In the standard DGLAP approah, the following hierarhy of sales is as-sumed to assure that x � 1 W 2 � Q2 � �2 ; (2.53)where W is the �p enter-of-mass energy (2.3). The seond ondition justi�esthe use of perturbative QCD. For the �xed target DIS experiments ondition(2.53) holds true. With the advent of the ep ollider HERA, however, the studyof a new limit of DIS has started in whih W is muh bigger than any othersale involved. In partiular,W 2 � Q2 � �2 : (2.54)This ondition orresponds to the Regge limit of DIS. In suh a ase x � 1,and the �xed order DGLAP approah is inomplete. The DIS proesses in thelimit (2.54) are alled semi-hard. They are similar to soft hadroni proesses inthe sense that energy is muh bigger than the `mass' of the projetile Q. On theother hand these proesses are hard sine �s(Q2) � 1 and pQCD is appliable.In the leading twist desription of DIS at small x, the resummation of largelog(1=x) terms is neessary in the singlet and gluon splitting funtions (2.51),and in the oeÆient funtions (2.52). The systemati method orresponds tothe resummation of terms proportional to �ks logk(1=x) in the leading logarith-mi approximation and subleading terms proportional to �n+ks logk(1=x) in thehigher order approximations. In generalxP (�s; x) = 1Xn=0 (�s)n " nXk=1 p(n)k logk(1=x)# + regular part (2.55)C(�s; x) = 1Xn=0 (�s)n " nXk=1 (n)k logk(1=x)# + regular part : (2.56)6There are also large logarithms log(1� x) when x! 1. We are not disussing them here.



24 Chapter 2. BasisIn the above, k = n orresponds to the leading ontribution whereas k < ngives subleading orretions. In this way an improved perturbative expansionfor (2.51) and (2.52) is obtained. In pratie, the leading ontribution is ob-tained using the k?-fatorization formula [33℄, disussed in setion 2.4.3, inthe ollinear limit. This formula an be extended beyond the leading order inagreement with ollinear fatorization (2.42) by a areful examination of theregion of low transverse momenta for parton emissions [34℄.The large log(1=x) terms, however, are present in all twist ontributions tothe struture funtions, making them as important as the leading twist ontri-bution. The k?-fatorization formula also inludes these orretions by keepingthe Q2-dependene exat. Thus, the new way of omputation is a nontrivialextension of the leading twist formalism. Moreover, using the k?-fatorization,it was shown [18℄ that for �xed Q2 � �2 the operator produt expansion breaksbelow some value of x due to nonperturbative e�ets. A problem whih arisesin the new approah is unitarity of the omputed ross setions. This is themain theoretial hallenge in QCD of semi-hard proesses, whih we addressphenomenologially in Chapter 3.Before disussing the small-x limit in QCD in detail, we desribe the highenergy limit of sattering proesses using Regge theory whih dominated in thepre-QCD era. This introdues the onept of a pomeron in terms of whih thesemi-hard proesses are usually disussed.2.4.1 Soft pomeronRegge theory [19℄ allows to study the high energy limit of sattering reations,based on general assumptions about the sattering matrix S = 1 + iA, likeLorentz invariane, rossing, unitarity and ausality. From the last assumptionfollows the property of analytiity of the sattering matrix as a funtion ofLorentz invariants regarded as omplex variables. The only singularities allowedare those imposed by unitarity onditions.For the two-to-two sattering of spinless and massless partiles the satteringamplitude A(s; t) is an analyti funtion of the Mandelstam variables7. A(s; t)desribes three di�erent reations, depending on the domain of the kinematiinvariants. We are interested in the Regge limit of the sattering amplitude,s!1; t = onst (2.57)for the s-hannel reation, a + b !  + d, with s = (pa + pb)2 > 0 and t =(pa�p)2 < 0. For this purpose we onsider sattering in the rossed t�hannel,a + � ! �b + d, with t = (pa + p�)2 > 0 and s = (pa � p�b)2 < 0. The standardpartial wave deomposition for this proess readsA(s; t) = 1Xl=0 (2l + 1) a l(t)P l(os �t) : (2.58)The above expression is onvergent for j os �tj = j1 + 2s=tj < 1, i.e. throughoutthe t�hannel physial region, t > 0 and �t < s < 0, but it quikly breaks7The third Mandelstam variable u = �s� t.
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Figure 2.5: Integration ontour C and its distortion in the omplex angularmomentum planedown when ontinued into the s�hannel region s > 0 and t < 0. The appro-priate analyti ontinuation of (2.58) is provided through the omplex angularmomentum plane l [20℄,A(s; t) = 12i IC dl 2l + 1sin�l n�(+)l a(+)l (t) + �(�)l a(�)l (t)o P l�1 + 2st � ; (2.59)where a(�)l are partial wave amplitudes with signature � = �1, and P l isthe Legendre polynomial, analytially ontinued in l. The funtions �(�)l =1=2 (� + exp(�i�l)) are alled signature fators. The ontour C enirles thepole singularities at l = 0; 1; 2; :::, due to the denominator sin�l, see Fig. 2.5.By omputing residues of the poles enirled by C, we hek that (2.59) providesanalyti ontinuation of (2.58). The two signatured partial wave amplitudes in(2.59) are neessary for uniqueness of the analyti ontinuation. In this ase,a(+)l (t) is an analyti ontinuation of a l(t) for even l and a(�)l (t) for odd l.The signature fators allow to obtain (2.58) when the residues in (2.59) areomputed.With the representation (2.59), the Regge limit an be ahieved by distort-ing the integration ontour C as shown in Fig. 2.5. On the way to the newontour C 0, singularities of the partial wave amplitude a(�)l (t) appear (uts orpoles), whih have to be irumvented by winding the ontour around. Theusefulness of Regge theory is based on the assumption that there are only iso-lated singularities, uts or poles. In the simplest nontrivial ase, one simplepole, alled Regge pole, is assumed,a(�)l (t) � �(t)l � �(t) ; (2.60)where the pole position �(t) is alled Regge trajetory (with a de�nite signature),and �(t) is a residue. In this ase we �ndA(s; t) = 2�(t) + 1sin��(t) �(�)�(t) �(t) P�(t)�1 + 2st � + AC0(s; t) ; (2.61)where AC0 is the ontribution given by the integration along the ontour C 0.



26 Chapter 2. BasisA. Regge trajetoryWhen the Regge pole ours for an integer value of li = �(ti), then (2.61)has a pole at t = ti, beause of the denominator sin��(ti). This orrespondsto a physial meson bound state (or a resonane if Im �(ti) 6= 0), produed inthe t�hannel with mass mi = pti and spin li. It appears that most of theknown mesons form families with the same quantum numbers but spin whihlie on the straight line Regge trajetories�(t) = �(0) + � 0 t ; (2.62)where �(0) is the interept, and � 0 is the slope of the Regge trajetory. Thesignature fator ensures that partiles lying on a Regge trajetory di�er by twounits of angular momentum.The Regge trajetory ontinued to negative values of t desribes the sat-tering in the s�hannel. In the Regge limit, AC0 = 0 in (2.61) and only theRegge pole ontributes. We �nd 8 for large sA(s; t) � ~�(t) s�(t) ; (2.63)where the residue �(t) and the signature fator ��, were absorbed in ~�(t).Therefore, the prodution of partiles in the t�hannel an be `deteted' in thes�hannel from the asymptoti behaviour of the orresponding amplitude. Itis usually said that the Regge trajetory (reggeon) is exhanged.From the optial theorem, we have for large s�tot = s�1 ImA(s; 0) � s�(0)�1 : (2.64)Thus, the interept of the Regge trajetory �(0) determines the asymptotibehaviour of the total ross setion for the s-hannel reation. If many reggeonsare exhanged, we add amplitudes with di�erent trajetories. The dominantontribution is given by the trajetory with the highest interept (the rightmostsingularity in the l-plane).The slope of the Regge trajetory �0 is found from the t-dependene ofelasti sattering amplitude [21℄.B. PomeronHow useful are the presented onepts ? Donnahie and Landsho� per-formed a very eonomial �t to the total ross setion data for various hadronireations, assuming the form (2.64) with two powers of s [22℄. As a result, theyfound �tot = A (s=s0)�0:45 + B (s=s0) 0:08 ; (2.65)where s0 = 1 GeV. The two powers are universal, but the oeÆients A and Bdepend on a hadroni reation. The �rst term orresponds to the exhange ofthe (�; !; f; a)-meson Regge trajetory�R(t) = 0:55 + 0:86 GeV�2 � t : (2.66)8Using the asymptoti formula Pl(z) / �(2l+1)�2(l+1) (z=2)l for large z.
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  Figure 2.6: (�; !; f; a)-meson and soft pomeron trajetoriessee Fig. 2.6. The seond term in (2.65), responsible for the rise of the rosssetions for large s, is attributed to the pomeron exhange.By de�nition, the pomeron trajetory is the even signature (� = 1) Reggetrajetory with the interept �(0) � 1 orresponding to the exhange of thevauum quantum numbers9. In the Donnahie and Landsho� analysis the softpomeron (IP ) trajetory has the interept slightly above one�IP (t) = 1:08 + 0:25 GeV�2 � t : (2.67)Notie that the pomeron slope �0IP = 0:25 GeV�2 is muh smaller than thereggeon slope. Thus, if there is a real partile (with spin l = 2) lying on thesoft pomeron trajetory, it has mass around 2 GeV, see Fig. 2.6. A glueball isa andidate, see [23℄ for a reent review.However, there is a problem with the soft pomeron. If the energy dependenes0:08 ontinues as s!1, it will eventually ome into onit with the Froissart-Martin bound [24℄, reeting unitarity�tot � C log2 (s=s0) ; (2.68)where C = �=m2� � 60 mb. Thus, the desription with the help of the pomerontrajetory with �(0) > 1 is inonsistent and more ompliated singularities likeuts have to be onsidered. In the DL parameterization s0 = 1 GeV2, and thetotal ross setions lie muh below the unitarity bound for present energies.Nevertheless, for di�rative proesses the problem of unitarity is more aute.C. Appliation to DISLet us apply the onept of Regge trajetory exhanges to DIS at small x.Considering �p sattering, we may write the Donnahie-Landsho� parameter-9i.e. parities P = +1, C = +1, G = +1 and isospin I = 0.



28 Chapter 2. Basisization of the nuleon struture funtion F2 � Q2 ��p asF2(x;Q2) = A(Q2)x1��IP (0) + B(Q2)x1��R(0) : (2.69)Having in mind partoni interpretation, we expet the pomeron ontributionto be given by avour singlet sea quarks, while the reggeon term is determinedby avour nonsinglet valene quarks. Thus, we �nd for the proton and neutronstruture funtionsF p2 � x�0:08 F p2 � F n2 � x0:5 (2.70)in the small x limit. However, the measured at HERA proton struture funtion,F2 � x��(Q), has a bigger e�etive power �(Q) than the soft pomeron valuewhih additionally rises with Q2. Suh a behaviour an be aounted for by theDGLAP evolution equations due to exibility in hoosing initial onditions forthe evolution. In partiular, the dependene (2.70) an be inoporated in initialdistributions at the sale Q20 � 1 GeV2 where nonperturbative Regge theorymay be appliable. The strong rise of F2 is also predited by the analysis of theRegge limit of perturbative QCD.2.4.2 Hard pomeronIn this setion we present the main results on the Regge limit in QCD, basedon a seminal work of the BFKL group [25℄. The largest ontribution to thesattering amplitude in this limit omes from leading logarithms in the enter-of-mass energy s in the kinemati region where�s � 1; �s log s � 1: (2.71)The approximation in whih terms proportional to (�s log s)n are summed isalled the leading logarithmi approximation (LLA(s)).Let us onsider for illustration the elasti sattering of two quarks, seeFig. 2.7. In the Regge limit, exhanges of the highest spin elementary quanta(gluons) dominate. The imaginary part of the qq ! qq amplitude is omputedfrom the unitarity ondition,ImsAR(s; t) = PR2 Xn Z d�n+2 A(p1; p2;n+ 2)A�(p01; p02;n+ 2) : (2.72)In suh a ase, two prodution amplitudes for the proess qq ! (ng)qq haveto be squared and integrated over the �nal state partile momenta. PR is theolour projetor on a representation R of the gauge group. For the pomeron ex-hange, the projetor on a singlet representation is relevant. The full amplitudean be reonstruted from the imaginary part using dispersion relations. In theLLA(s), whih we onsider from now on, the amplitude is purely imaginary.There are three key elements in the omputation of the r.h.s of eq. (2.72):the phase spae, reggeized gluon and new e�etive verties.
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,Figure 2.7: Pomeron exhange in QCD.� The large logarithms of energy are obtained in the LLA(s) assuming multi-Regge kinematis for phase spae of the �nal state partiles. Parameter-izing their momenta with the help of the Sudakov variables,li = �i p1 + �i p2 + l?i ; (2.73)where p21 = p22 = 0 and 2p1 � p2 = s, the multi-Regge kinematis is de�nedby the onditions �i � �i+1 ; l?i � s0 ; (2.74)In ontrast to the DGLAP ondition (2.45), the transverse momenta arenot ordered but limited to the region around s0 whih does not inreasewith energy ps. The sale s0 annot be determined in the LLA(s). Strongordering in �'s leads to similar ordering in rapidityyi � yi+1 ; (2.75)sine yi � yi+1 ' log(�i=�i+1) in the ollinear frame for the inidentquarks.� The exhanged gluons in the ladder in Fig. 2.7 are reggeized. This is anontrivial property of nonabelian gauge theories, obtained in the LLA(s)as a result of summation of virtual orretions to the olour otet exhangein the high energy limit [26℄. Gluon reggeization means that the standardpropagator is replaed by 1ti �! 1ti � sis0�!(ti) ; (2.76)where ti = k2i ' �k2?i and si = (li�1 + li)2. The funtion10!(t) = �sN t Z d2k0?(2�)2 1k02?(k � k0)2? (2.77)10The integral is divergent and should be regularized, e.g. by introduing infrared uto� �.
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Figure 2.8: The struture of the amplitude A(!; t) in the high energy limit.de�nes the negative signature Regge trajetory of the reggeized gluon�(t) = 1 + !(t). Notie that the trajetory passes through 1 at t = 0,as expeted for spin-1 gluon.� There are two types of e�etive verties. The gauge invariant reggeon-reggeon-partile vertex �(ki; ki+1), denoted by a blob in Fig. 2.7, replaesthe standard triple gluon oupling. Its expliit form an be found e.gin [20℄. The oupling of the t-hannel gluons into the external quarks isgiven by the eikonal vertex 2 p�1;2 Æ��0 ; (2.78)where the olour struture has to be additionally supplied. The deltafuntion reets heliity onservation in the high energy limit. In theLLA(s), the momentum struture of eikonal vertex is also valid for gluonsas external partiles, whih ould illustrate our onsiderations.A. BFKL equationUsing the presented elements, the total ross setion for the sattering oftwo quarks in the Regge limit is derived from (2.72)�tot = ImsAI(s; 0)s : (2.79)The reader may onsult original artiles [25℄ as well as exellent reviews [20, 27,29℄ for details of the derivation. The �nal result looks as follows [20℄.Let us introdue the Mellin transform of the s-hannel disontinuity (2.72)A(!; t) = Z 11 d� ss0�� ss0��!�1 ImsAI(s; t)s : (2.80)



2.4. DIS in Regge limit 31The struture of the amplitude A(!; t) is shown in Fig. 2.8. It is a onvolutionof the impat fators �i(ki;q) and the funtion F (!;k1;k2;q) desribing QCDpomeron exhangeA(!; t) = G(2�)4 Z d2k1 d2k2k22 (k1 � q)2 �1(k1;q) �2(k2;q) F (!;k1;k2;q) ; (2.81)where t = �q2. For the quark-quark sattering, G = (N2 � 1)=4N2 and theimpat fators for slightly o�-shell quarks to regulate infrared divergene aregiven by �i = �s Æ��0 .The funtion F obeys the BFKL equation. In the forward limit t = 0,!F (!;k1;k2; 0) = Æ2(k1 � k2) + �s� Z d2k0(k1 � k0)2 (2.82)�F (!;k0;k2; 0) � k21k02 + (k1 � k0)2F (!;k1;k2; 0)� ;where �s = N�s=�. The �rst term in the square brakets is related to realgluon emission while the seond one orresponds to virtual orretions leadingto reggeization of the exhanged gluons. Notie that the latter term anelsinfrared divergene at k0 = k1 in the real emission part.Relation (2.80) an be inverted using the inverse Mellin transform. Afterthat the total ross setion (2.79) reads�tot = G(2�)4 Z d2k1k21 d2k2k22 �1(k1; 0) �2(k2; 0) F(s;k1;k2; 0) ; (2.83)where F(s; � ) is the inverse Mellin transform of F (!; � ) given by eq. (A.12) inAppendix A.The energy dependene of �tot is predited by the solution of the BFKLequation. In Appendix A we present details of the omputations leading to thefollowing spherially symmetri solutionF(s; k1; k2; 0) = 1�k21 ZC d2�i �k21k22� ZC0 d!2�i � ss0�! 1! � �sK() ; (2.84)where the integration is done in the omplex - and !-planes, related to theMellin transformations in the variables k21 and s, respetively. K() is theLipatov kernel, de�ned in Appendix A.B. Asymptoti form of the solutionThe asymptoti form of solution of the BFKL equation for s!1 is foundafter the saddle point integration around  = 1=2 at whih point K0(1=2) = 0.In this ase, the integration ontour C is given by:  = 1=2+i�. The singularitystruture of the integrand in (2.84) is fully determined by its denominator, i.e.the equation ! = �sK(1=2 + i�) : (2.85)



32 Chapter 2. BasisK(1=2 + i�) is a real funtion, and when � runs from �1 to 1, ! goes from�1 to !0 = 4�s ln 2 (for � = 0) and then bak to �1. Thus we obtain a utfrom �1 to !0 in the omplex !-plane. This should be ontrasted with thesituation whih is usually assumed in Regge theory where we deal with polesin the omplex angular momentum plane l = ! + 1, see Setion 2.4.1.Now, the integration ontour C 0 in the !-plane is hosen to the right ofthe tip of the ut !0, and is losed in the left half-plane enirling the utsingularity. The integral over ! in (2.84) is given in terms of the disontinuityof its integrand aross the ut. After omputing this disontinuity, we �ndF(s; k1; k2; 0) = 1�k21 Z 1�1 d�2� �k21k22�1=2+i� � ss0��sK(1=2+i�) :After expanding the integrand around the saddle point � = 0 and performingthe �-integration, we �nd11 the asymptoti solutionF(s; k1; k2; 0) = 1�pk21k22 � ss0��sK(1=2) exp� � ln2(k21=k22)2�sK00(1=2) ln(s=s0)�p2��sK 00(1=2) ln(s=s0) : (2.86)The above formula has several interesting features.1. Strong rise with energy s, determined by!0 = �sK(1=2) = 4�s ln 2 : (2.87)Substituting �s � 0:2 we �nd: F � s 0:5. Beause of muh strongerdependene on energy than for the soft pomeron, the presented vauumquantum number exhange is termed hard (or BFKL) pomeron,2. Di�usion pattern in ln(k?) with a rate determined by the seond deriva-tive of the Lipatov kernel �sK00(1=2) = 28�s �(3) and ln(s). The lak ofstrong ordering in gluon transverse momenta is the origin of di�usion.The strong oupling onstant is �xed in the leading log(s) summation. Itsdependene on a hard sale is introdued in the next-to-leading approximation.The strong rise of F is the soure of problems. It leads to the same leadingbehaviour of the total ross setion (2.83) in the high energy limit�tot � s�IP�1 = s 4�s ln 2; (2.88)whih ultimately violates unitarity bound (2.68).The lak of unitarity is related to the problem of di�usion into the nonper-turbative region of small transverse momenta for large enough s, making theBFKL approah doubtful. One way to save this approah is to apply it only tothe situation in whih large sales of the same order in k? exist at the beginingand at the end of the evolution. In this ase di�usion into the low k?-region11With the help of the relation R1�1 d�=2� exp(�A�2=2 + iB�) = exp(�B2=(2A))=p2�A



2.4. DIS in Regge limit 33is minimized. Solving the unitarity problem, however, allows to avoid small k?di�usion due to the existene of a saturation sale [28℄.C. NLO orretions to the BFKL equationThe next-to-leading logarithmi approximation (NLLA) to the BFKL equa-tion is found by the resummation of terms proportional to �s(�s log s)n [29℄. Inthis approximation the linear struture of the BFKL equation is retained. TheBFKL integral kernel, however, obtains orretions proportional to �s.The �rst soure of the NLL orretions are virtual ontributions to thereggeized gluon trajetory !(t), eq. (2.77), and to the reggeon-reggeon-partilevertex �. The most important orretions ome from the relaxation of thestrong ordering ondition (2.75) for the multi-Regge kinematis of the �nalstate partiles. In the NLLA, two �nal state gluons an be lose to eah other.In addition, a �nal state q�q pair an also be emitted.The �rst analysis of the next-to-leading order BFKL equation revealed thatthe found orretions are very large [30℄. The value of the hard pomeron inter-ept, �IP = 1 + !NLO, dereases signi�antly,!NLO = !0 (1 � 6:47�s) ; (2.89)where !0 is the leading order value (2.87). Therefore, for a reasonable value of�s � 0:2 we have !NLO < 0, and the interept beomes smaller than 1. Theure of this problem is to additionally resum ollinear orretions to the BFKLequation to all orders. In suh a ase the BFKL equation orretly reproduethe ollinear limit, see [31℄ and referenes therein. At the same time, the value of!NLO is stable with respet to the hange of �s, e.g. for �s = 0:2, !NLO = 0:27[31℄. This value is signi�antly lower than the LO value. The unitarity bound,however, remains violated.2.4.3 k?-fatorizationIn the appliation of the BFKL approah to DIS at small x, the gluon ladderouples to the proton on one side and to the q�q pair produed by the virtualphoton on the other side, see Fig. 2.9. Thus, formula (2.83) takes the followingform �� = G(2�)4 Z d2k1k21 d2k2k22 ��(k1; 0) �p(k2; 0) F(x;k1;k2; 0) ; (2.90)where � = T;L denotes the virtual photon polarization and we replae s byx ' Q2=s . �� and �p are the virtual photon and proton impat fators,respetively. From gauge invariane, ��(k1 = 0; 0) = �p(k2 = 0; 0) = 0, whihare the neessary onditions for the infrared �niteness of the ross setions.The photon impat fator is the high-energy hard ross setion for the sub-proess: � + g(k) ! q + �q, omputed in pQCD to the lowest order in �s asa funtion of the transverse momentum k of the inoming o�-shell gluon withk ' xp + k? and k2 = �k2. The two relevant diagrams are are shown inFig. 2.9. In the NLLA, the diagrams ontain additional gluon in the �nal state
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Figure 2.9: The photon impat fator graphs.or they are modi�ed by virtual orretions. The alulations of the photonimpat fator in the NLLA are being pursued [32℄.The proton impat fator is of a nonperturbative origin and an only bemodelled. We rewrite relation (2.90) in a di�erent way, by hiding the protonform fator in the unintegrated gluon distributionf(x;k) = 1(2�)3 Z d2k2k22 �p(k2; 0) k2F(x;k;k2; 0) : (2.91)In suh a ase eq. (2.90) beomes�T;L(x;Q2) = Z d2kk4 �T;L(Q2;k) f(x;k) ; (2.92)where we absorbed the fator G=(2�) in the de�nition of the photon impatfator �T;L and indiated that it depends on the photon virtuality.Relation (2.92) is alled k?-fatorization formula [33℄. In the small x limitthe DIS ross setions are omputed by the onvolution of the photon im-pat fators and unintegrated gluon distribution, done over all values of thegluon transverse momentum k2. This reets the lak of the ordering in gluontransverse momenta in the BFKL ladder in ontrast to the DGLAP approah.For large Q2, in the leading twist approah, formula (2.92) resums leading inlog(1=x) orretions to the splitting funtion Pgg and next-to-leading orre-tions to the funtion Pqg [34, 35, 72℄.As disussed in the previous setion, di�usion to the low k? region is a soureof problems. There is the danger that in the appliation to the desription of F2at small x, dominant ontribution will ome from the nonperturbative region.Extrating, however, the leading twist part for high Q2, the nonperturbativepart fatorizes from the perturbative part, allowing for meaningful perturbativealulations in the spirit of ollinear fatorization [34, 35, 72, 20℄.By onsidering the ollinear limit in eq. (2.92), the following relation be-tween the unintegrated gluon distribution and the gluon distribution g(x;Q2)



2.4. DIS in Regge limit 35from the DGLAP approah is found for large Q2xg(x;Q2) = Z Q20 dk2k2 f(x; k) ; (2.93)where we assume spherial symmetry for k. The derivation of this relation ispresented in Setion 3.2.6.In the leading log(1=x) approximation, the unintegrated gluon distributionf(x; k) obeys the BFKL equation whih an easily be found from eq. (2.82)after the angular integration (see Appendix A for details)! �f(!; k) = �f0(k) +�s Z 10 dk02k02 k2� �f(!; k0)� �f(!; k)jk02 � k2j + �f(!; k)p4k04 + k4� ; (2.94)where the relation between the x-spae representation and the Mellin momentsis given by f(x; k) = ZC d!2�i x�! �f(!; k) : (2.95)The nonhomogeneous term f0(k) orresponds to the exhange of two perturba-tive gluons between the q�q pair and the proton. The higher order orretionsto this proess, desribed by the seond term, lead to the BFKL gluon ladder.In the x-spae, the BFKL equation takes the form of the evolution equation inthe rapidity Y = log(1=x).The alulations of the photon impat fator an be found in [25℄ or [20℄.They are organized in suh a way that only the leading order ontribution(the q�q pair Fok omponent) to the photon impat fator is onsidered. Thehigher order orretions are inluded in the unintegrated gluon distribution.In an alternative way of alulations, performed in [36, 37, 38℄ in the dipolerepresentation, the BFKL e�ets are loated in the photon wave funtion. Theparent q�q pair is dressed in the soft gluon ontribution, and the interation withthe proton is realized by the exhange of two perturbative gluons. The expliitform of the photon impat fator an be read o� from formulae (3.1) and (3.4),presented in Setion 3.1.Following the presented method of onstruting the solution of the BFKLequation (2.94), we �nd the strong inrease of the proton struture funtionswhen x! 0, F2(x;Q2) � x�4�s ln 2 : (2.96)Thus, unitarization orretions are neessary whih would tame the rise in x.It is not lear whether an analogue of the Froissard-Martin bound (2.68) existsfor the �p sattering, F2 �  log2(1=x) : (2.97)Although this ondition has not been proven a logarithmi bound in x is widelyexpeted.In order to ful�l unitarity in the desription of DIS di�erent methods havebeen proposed. The literature on this subjet was initiated by the seminalwork of Gribov, Levin and Ryskin (GLR) [39℄ and ontinued over the yearsin [40℄-[64℄. The overall piture whih emerges from these studies is related tosaturation in dense partoni systems.



36 Chapter 2. Basis2.4.4 Parton saturationIn the DGLAP approah in the double leading logarithmi approximation(DLLA), when x! 0 and Q2 !1, the number of gluons strongly rises [65℄,xg(x;Q2) � exp 2q�s log(Q2=Q20) log(1=x) ; (2.98)where the �xed oupling onstant �s = N�s=� is assumed for simpliity. Thisfollows from the singular behavior of the splitting funtion Pgg(z) � 2N=zwhih dominates in the evolution equation for the gluon distribution at smallx. The solution (2.98) orresponds to a at input distribution. For a singularinput, xg � x��, the power-like rise in x is onserved by the evolution in Q2.Through the oupling to the sea quarks, g ! q�q, the strong rise of the gluondistribution leads to a similar behaviour of the proton struture funtion F2. Aswe have seen in the previous setion, the same result is obtained in the leading-and next-to-leading BFKL approah.The gluon distribution inrease annot ontinue inde�nitely with dereasingx. If the density of gluons beomes too large anihilation or reombination ofgluons beome important, taming the strong inrease. This e�et is alledparton saturation. A simple geometri estimation shows when these e�ets maybeome signi�ant [40℄. In a frame in whih the proton momentum is large,xg(x;Q2) gives the number of gluons per unit of rapidity of transverse size ofthe order of 1=Q. The transverse area oupied by gluons is given by the gluon-gluon ross setion �gg � �s(Q2)=Q2 times the number of gluons. If this areais omparable to transverse proton size,�s(Q2)Q2 xg(x;Q2) � � R2 ; (2.99)the gluons in the proton overlap and reombination ours [39℄.Condition (2.99) de�nes ritial line (or better transition region) in the(x;Q2)-plane where parton saturation is important, see Fig. 2.10. With thisline, the saturation sale Qs(x) is also de�ned. The saturation sale inreaseswith dereasing x, thus we expet that for small enough x, the region aroundthe ritial line orresponds to semi-hard QCD when �s is small and the par-toni system is dense. Below the ritial line the linear evolution equationshold, above this line reombination e�ets annot be negleted and the evolu-tion equations obtain non-linear modi�ations, alled shadowing or sreeningorretions. Muh above the ritial line the approah based on pQCD breaksdown. Thus, with dereasing x and �xed Q2, the following transition is studied:perturbative QCD �! high density QCD �! nonperturbative QCDGribov, Levin and Ryskin found the following approximate modi�ation ofthe DGLAP evolution equation for the gluon distribution in the DLLA [39℄,�2 xg(x;Q2)� ln(1=x) � ln(Q2=�2) = �s xg(x;Q2) � �2sR2Q2 �xg(x;Q2)�2 : (2.100)
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Figure 2.10: Parton distributions and ritial line .Notie the fator 1=Q2 whih in general suppresses the nonlinear term. Thenonlinearity, however, beomes important lose to the ritial line where theratio between the nonlinear and linear terms is of the order of �s. With suha modi�ation, the gluon distribution saturates with dereasing x, and so doesthe struture funtion. A more re�ned analysis of Mueller and Qiu [40℄ extendsthe GLR result by inluding nonlinear modi�ations for the DGLAP equationsfor the sea quark distributions.The GLR equation e�etively resums `fan' diagrams where one gluon ladder,orresponding to QCD pomeron in the DLLA, splits into two gluon ladders. Thenonlinear term in (2.100) desribes the basi one-to-two ladder splitting. In fat,the nonlinear term ontains the two-gluon distribution G(2), approximated bythe square of the gluon distribution [40℄G(2)(x; x;Q2; Q2) = 1�R2 �xg(x;Q2)�2 ; (2.101)where R is related to the orrelation length between gluons from di�erent lad-ders. If the two ladders ouple to di�erent quarks, the proton size is relevant,and R � 5 GeV�1. If the ladders ouple to the same quark, the onstituentquark radius R � 2 GeV�1 is more appropriate [43℄. In this ase, the strengthof the nonlinear term in eq. (2.100) is signi�antly bigger.The GLR equation generated a lot of interest [40℄-[53℄. Phenomenologialstudies were onentrated on estimation of the numerial signi�ane of thenonlinear orretions [41, 42, 45℄, espeially for the DIS experiments at HERA[43, 44, 47℄. The analysis performed with the help of the nonlinear evolutionequations of Mueller and Qiu showed that the e�et of nonlinearity may be



38 Chapter 2. Basishidden in the initial distributions for the linear DGLAP evolution equations, atleast for not too small Q2 (� 2 GeV2) [49℄. On the theoretial side, the studyof the four-gluon operator revealed that the evolution of the four gluon statein the DLLA is not simply the produt of two independent gluon ladders, butproeeds through the pairwise interations of all four gluon lines [52℄. The e�etis not large but in order to estimate to what extent the GLR equation is a goodapproximation, more ompliated n-gluon operators should be analyzed [50, 51℄.The orresponding equations for them form the so-alled BKP hierarhy.A systemati program to study suh operators beyond the DLLA, withthe aim to �nd unitary desription of DIS, was formulated by Bartels in [50℄and developed in [52, 53℄. The idea is to identify and resum a minimal set ofnonleading orretions to the leading BFKL summation whih leads to a unitaryamplitude. This set omprises ontributions with n gluons in the t-hannel andin order to ful�l unitarity onditions in all subhannels any n is allowed. Theprogram was pursued up to n = 6. An interesting pattern, based on gluonreggeization and onformal symmetry, was revealed whih gives hope that thewhole set of unitarity orretions to the BFKL equation ould be formulatedas an e�etive onformal �eld theory in 2+1 dimensions [53℄. Lipatov withhis ollaborators were also trying to onstrut an e�etive �eld theory for highenergy QCD [54℄. Independently, the problem of unitarization was studied inthe dipole piture of Mueller in [56, 57℄ and in [58℄. A similar approah waspresented by Levin with oworkers [59℄. Unitarization has also been studiedusing renormalization group methods [60℄.A di�erent approah to unitary generalization of the BFKL equation wasproposed by Balitsky [61℄. By using the operator produt expansion for highenergy sattering in QCD, he derived an in�nite set (hierarhy) of oupledequations for n-point Wilson-line operators. Reently, Weigert managed tosimplify the form of these equations by writing them as a funtional evolutionequation for the generating funtional of the Wilson-line operators [62℄. Theonnetion between the e�etive theory for the Colour Glass Condensate [63℄and the evolution equation found by Weigert has been established in [64℄.The Balitsky's equations deouple in the large N limit. In this limit, theequation for the 2-point funtion was independently derived by Kovhegov [66℄in the dipole piture. The equation generalizes the BFKL equation by inludinga quadrati term, and redues to the GLR equation in the DLA. The propertiesof this equation were investigated in [66, 66, 68℄, supporting the piture ofparton saturation. The equation introdues an internal saturation sale Qs(x)below whih the nonlinear e�ets lead to saturation of the gluon density.The urrent status of the theoretial investigations of unitarization sug-gests further studies in order to obtain results whih ould be diretly ap-plied to the desription of high energy DIS. In Chapter 3 we desribe a semi-phenomenologial approah to unitarization where we propose an e�etive pa-rameterization of the DIS interations ontaining essential features of partonsaturation, in partiular the saturation sale. As the main result of this analy-sis, the idea of saturation turned out to be very suessful in the desription ofthe data from HERA.
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2Figure 2.11: Aeptane region at HERA. Additional onstraint omes from theangular ut on measured sattered eletron. The maximal Q2 ' 105 GeV2.2.4.5 Small x limit at HERAAn exellent review of experimental results obtained at HERA is presented in[69℄. Here we briey desribe the small x results. At this ollider, 27 GeVeletrons are brought into ollision with 820 GeV protons. Due to the largeenter-of-mass energy ps � 300 GeV, the range in the Bjorken variable x isextended by three orders of magnitude from 10�2 for �xed target experimentsdown to 10�5 at HERA (for Q2 = 1 GeV2). A part of the kinemati range ofHERA in the (x;Q2)-plane is shown in Fig. 2.11.The general situation onerning the appliability of pQCD tehniques tothe desription of DIS proesses is shown in Fig. 2.10. The DGLAP equationsevolve a known proton struture at a sale Q20 up to a large Q2 at moderatevalues of x by the summation of strongly ordered in kT parton emissions. Atsmall x and moderate Q2, the BFKL equation evolves to smaller values of x,summing strongly ordered in rapidity gluon emissions. The two equations havea ommon limit (DLLA) at high Q2 and small x. At very small x, satura-tion e�ets ome into the game, restoring unitarity through nonlinear evolutionequations (e.g. the GLR equation). From this perspetive, the main problemat HERA is how to loate the general sheme from Fig. 2.10 in Fig. 2.11. Inpartiular, the following questions have been addressed.1. For how low x is the DGLAP summation still a viable approximation?2. Are the values of x small enough for the BFKL approah to be applied?3. Has the region of parton saturation already been reahed?



40 Chapter 2. BasisThese problems are intimately onneted to the interplay between pertur-bative and nonperturbative aspets of QCD. Thus, the studies at HERA arenot simple tests of perturbative QCD but, by pushing perturbative tehniquesto the limit of appliability, they extend our knowledge about nonperturbativestruture of the proton and eventually about on�nement.A. BFKL searhesIn omparison to the �xed target experiments, the �rst most striking resultat HERA is the strong rise of the proton struture funtion F2 � x��(Q2)with dereasing x < 10�2 at �xed Q2, see Fig. 3.6. The measured valuesof � are muh bigger than for the soft pomeron exhange [70℄. The strongrise in x is predited by the BFKL summation, and the question arises if theobserved behaviour is a genuine signature of this approah. The analyses basedon the BFKL equation and k?-fatorization are suessful in the explanationof F2 [71℄. A partiular attention in these analyses was paid to the infraredregion of small transverse momenta sine the integration in (2.92) is arriedover all values of l. In the most elaborate analysis [72℄, a uni�ed desriptionis onstruted whih inorporates both the BFKL and DGLAP resummationsand takes into aount a signi�ant part of the next-to-leading orretions tothe BFKL equation. Other uni�ed approahes like CCFM sheme [73℄, whihinludes oherene e�ets in gluon emission, were also extensively studied [74℄.However, the standard method based on the �t of initial distributions forthe DGLAP evolution equations is also suessful in the desription of F2. Thereason is explained by the strong rise of the gluon distribution in the DLLA,see eq. (2.98), whih indues a similar behaviour of F2. Based on the double-logarithmi asymptotis, a saling low for F2 was proposed [75℄. The relationbetween the BFKL and DGLAP approahes was extensively studied in [76℄. Thepratial onlusion drawn from these studies was that in the kinemati rangeof HERA, the inlusive measurement of F2 is not able to disriminate betweenthe two approahes. For this purpose, exlusive proesses whih diretly probethe kinemati struture of gluon emission would be more appropriate.The proesses that have been suggested are shown in Fig. 2.12. In theforward jet prodution in DIS at small x [77℄, see Fig. 2.12(a), the jet transversemomentum k2Tj � Q2 in order to minimize the DGLAP evolution and the BFKLdi�usion into the region of small transverse momenta of the gluons in the ladder.The longitudinal momentum of the jet xj � x to enhane the role of the BFKLsummation and isolate the (x=xj)�� behaviour. In suh kinematis the jet isprodued lose to the proton remnants making the measurement a hallenge.The measurement was performed, however, and the experimental results favourthe desriptions with non-ordered in kT gluon emissions [78, 79℄.A hadroni variant of this proess is shown in Fig. 2.12() where two hardjets in hadron-hadron ollision are strongly separated in rapidity. If the BFKLmehanism populating the rapidity interval �y with no ordered in kT gluonsis used, the ross setion is proportional to exp (��y) [80℄. This idea is notfeasible, however, at �xed energy olliders. Instead, it is better to look at theangular orrelation of the dijets whih at leading (�xed) order are bak-to-
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Figure 2.12: BFKL footprintsbak, but gluon radiation introdues deorrelation [81℄. In DIS a similar e�etis observed in the proess shown in Fig. 2.12(d) [82℄. The �rst experimentalresults were reported in [83℄.Due to the relaxation of strong ordering of the gluon kT 's in the BFKLapproah, more transverse energy ET should be emitted between the urrentjet and the proton remnants than would result from the DGLAP approah [84℄,espeially in the entral and forward region, see Fig. 2.12(b). Suh an e�etwas indeed observed at HERA [78, 85℄. The omparison of the preditionswith the data, however, is plagued by hadronization e�ets. The BFKL-basedalulation [84℄ aounts for ET at the partoni level, assuming an additionalonstant ontribution due to hadronization. Other models, formulated withthe help of Monte Carlo tehniques, inlude hadronization and after some �ne-tunning are able to desribe the observed ET .In onlusion, although none of these proesses an be treated as proof ofBFKL e�ets, the measurements show that higher order QCD e�ets repre-sented by BFKL (or CCFM) on�guration for gluon emission are important inthe data desription.B. DIS di�rationKinematially, small x opens the possibility to observe DIS events with largerapidity gap in the �nal state between the photon and the proton fragmenta-tion regions. In fat, in most ases the sattered proton stays intat losingonly a small fration of its initial energy, see Fig. 2.13. In the pQCD approahbased on DGLAP emissions, the probability of suh proesses are exponentiallysuppressed due to the fragmentation proess driven by parton radiation. How-ever, the observed fration of these events in DIS at HERA is of the order of10%, with the distribution fairly independent of Q2 and x [86, 87℄. This is aseond striking result in the small x region at HERA. Large rapidity gap is aharateristi feature of di�rative proesses in whih the pomeron exhange is
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Figure 2.13: DIS di�ration.responsible for the sattered proton being intat. With this interpretation, thenatural question is whether the BFKL pomeron is responsible for DIS di�ra-tion.The most ompelling piture of di�ration is obtained in the proton restframe. In this frame, the virtual photon dissoiates into a q�q pair long beforethe interation with the proton. Then the pair is elastially sattered formingdi�rative system12 with the invariant mass M . The on�gurations whih dom-inate di�rative ross setion are the ones with large (hadroni) transverse sizesof the q�q pair (aligned jet on�guration). Small (perturbative) transverse sizes,giving e.g. di�ratively produed large pT jets, are not preluded but are sup-pressed as higher twist. A signi�ant part of the dominant ontribution is givenby intermediate (semi-hard) sizes. This region of the transverse sizes is boundto e�ets whih are at the border between perturbative and nonperturbativephases of QCD. In partiular, by suppressing pure perturbative omponent,DIS di�ration is espeially sensitive to parton saturation sine a large part ofunitarization orretions ontributes to di�rative dissoiation. Of ourse, bystudying exlusive di�rative proesses like high-pT jet or J= vetor mesonprodution, one an isolate the perturbative omponent, and suppress semi-hard and large on�gurations. In this ase a single BFKL pomeron exhangewould dominate.The presented piture is on�rmed in the studies of di�rative dissoiationbased on the BFKL approah [88℄. In inlusive di�rative DIS almost thewhole phase spae overed by the BFKL evolution is loated in the infrareddomain of transverse gluon momenta where pQCD is not appliable. This�nding on�rms the dominane of aligned jet on�guration. However, in thedi�rative J= prodution at large t, where small size omponent dominates,the BFKL pomeron provides a good desription [89℄.The observed features of DIS di�ration are intimately related to the prob-lem of unitarization orretions (with the intuitive piture of parton saturation).In the following presentation we explore this problem in detail. The main ideabehind the presentation is that unitarization e�ets are already important in12The system an be generalized to q�q + n gluon �nal state.



2.4. DIS in Regge limit 43the HERA kinemati range. In partiular, we suggest that the transition regionor ritial line from Fig. 2.10 is loated at Q2s = 1 � 2 GeV2 and x � 10�4.Thus for inlusive DIS, saturation e�ets manifest themselves in the transitionof F2 to low Q2 values. Sine Qs is in the perturbative region, the onset ofsaturation an be desribed by means of perturbative QCD. In Chapter 3 wepresent details of the unitary desription of inlusive DIS at small x.In di�rative DIS, saturation is ruial even for higher values of Q2, due tosuppression of the perturbative omponent. The onstant ratio of the DIS rosssetions �diff=�tot as a funtion of x and Q2 is a diret manifestation of thise�et. Using the parameterization of the �p interations found in the inlusivedata analysis, we obtain a good desription of di�rative data. This and relatedissues on DIS di�ration are disussed in Chapter 4.



Chapter 3Inlusive DIS at small xIn this hapter we present the desription of inlusive deep inelasti satter-ing at small x, based on the analysis [94℄. We start from presenting the kT -fatorization formulae for the �p ross setions (2.92). We swith then to thedipole representation in whih a simple physial interpretation of the satteringexists in the proton rest frame. In this interpretation, the virtual photon splitsinto a q�q dipole long before the interation with the proton takes plae. Thedipole-proton interation is parameterized in the way whih leads to unitarityby using the idea of parton saturation. In partiular, an internal sale relatedto a dense partoni system in the proton is introdued. We disuss qualita-tively the results of suh a model of the interation, emphasizing the transitionto low Q2 region of DIS. The other aspets like the photoprodution limit andheavy quark prodution are also analyzed. The presented model predits a newsaling of the �p ross setions at low values of x, on�rmed by the analysisof the existing data [98℄. More formal aspets of the desription are disussedin the setion on the twist expansion. This problem ould be studied in moredetail, and interesting results on the anellation of the transverse and longi-tudinal twist-4 omponents of the proton struture funtion F2 are presented,following [94, 99℄. We �nish with the disussion of the relation between thedipole formulation and the onventional DGLAP desription.3.1 Small x ross setionsThe ross setion for the �p sattering from transverse and longitudinal polar-ized photons are omputed from the imaginary part of the forward Comptonsattering amplitude in the high energy limit, see Fig. 2.9 with k replaed by l.The virtual photon splits into a quark-antiquark pair that interats elastiallywith the proton through the exhange of two gluons in the olour singlet state.This interation is desribed by the unintegrated gluon distribution f(x; l2),whih introdues the dependene on energy of the �p system. Stritly speak-ing, if only two perturbative gluons are exhanged whih diretly ouple toquarks in the proton, the proess is energy independent and f(x; l2) = f0(l2).If two reggeized gluons interat with themselves, forming the ompound sys-tem (hard pomeron), f(x; l2) is a solution of the BFKL equation (2.94). The44



3.1. Small x ross setions 45interation an also involve many gluon exhanges, like in the semilassial ap-proximation [91℄ in whih the basi k?-fatorization struture (2.92) is retained.For the transverse photons we have [90℄�T = �em� Xf e2f Z d2ll4 �sf(x; l2) Z d2kZ 10 dz([z2 + (1� z)2℄ � kD(k) � k+ lD(k+ l)�2 +m2f � 1D(k) � 1D(k + l)�2) ; (3.1)wheremf is a mass of the quark of avour f to whih the virtual photon ouples,D(k) = k2 +Q2 (3.2)and Q2 = z(1 � z)Q2 +m2f : (3.3)In the �p ollinear frame, �k are two-dimensional vetors of transverse momen-tum of the quarks and z; (1�z) are the frations of the light-one momentum ofthe photon arried by the quarks. The transverse momentum of the exhangedgluon l determines its virtuality, l2 = �l2.The ross setion for longitudinally polarized virtual photon takes the form�L = �em� Xf e2f Z d2ll4 �sf(x; l2) Z d2kZ 10 dz4Q2z2(1� z)2 � 1D(k) � 1D(k + l)�2 : (3.4)The relation between the struture funtions FT;L and �T;L is given by eq. (2.10).The photon impat fators, introdued in Setion 2.4.3, an be found byomparison of the above expressions with eq. (2.90) where k is replaed by l.The olour neutrality enfores the onditions �T;L(Q2; l = 0) = 0, importantfor the infrared �niteness of the ross setions.In the following we present an e�etive parameterization of the interationsbetween the q�q pair and the proton, leading to unitary ross setions. The pa-rameterization ontains essential features of parton saturation. The disussionwill be presented in a dipole representation whih is partiularly suitable for adisussion of unitarity issues.3.1.1 Dipole representationThe dipole representation of the inlusive ross setions is obtained after sub-stitution relations (B.1) and (B.3) from Appendix B into (3.1) and (3.4), andintegration over k. In this representation the transverse quark momentum k istraded for the Fourier onjugate variable, the q�q transverse separation r. Theruial element of the alulation is the observation that the k-integration givesthe delta funtion Æ2(r1�r2) whih allows to perform one of the two integrationsover r1;2 .
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Figure 3.1: Shemati representation of the basi fatorization in inlusive DISat small x.We obtain for the transverse ross setion�T = �em� Xf e2f Z d2rZ 10 dz n[z2 + (1� z)2℄ Q2K21 (Qr) + m2fK20 (Qr)o� Z d2ll4 �sf(x; l2) (1� e�il�r) (1� eil�r) ; (3.5)and similarly for the longitudinal ross setion�L = �em� Xf e2f Z d2rZ 10 dz 4 Q2 z2(1� z)2 K20 (Qr)� Z d2ll4 �sf(x; l2) (1� e�il�r) (1� eil�r) ; (3.6)were K0;1 are the Bessel{M Donald funtions. Both ross setions an bewritten in the following ompat form [90, 36℄, shown shematially in Fig. 3.1,�T;L(x;Q2) = Z d2rZ 10 dz Xf j	fT;L(r; z;Q2)j2 �̂(x; r) : (3.7)where the photon wave funtions 	fT;L desribe the splitting of the virtual pho-ton into the q�q pair [92℄,j	fT (r; z;Q2)j2 = 3�em2�2 e2f n[z2 + (1� z)2℄ Q2K21 (Qr) + m2fK20 (Qr)o ;(3.8)j	fL(r; z;Q2)j2 = 3�em2�2 e2f �4 Q2z2(1� z)2K20 (Qr)	 ; (3.9)and Q is de�ned in eq. (3.3). Formula (3.7) forms the basis of the followinganalysis.



3.1. Small x ross setions 47The dipole ross �̂(x; r) in eq. (3.7) haraterizes the interation of the q�qpair with the proton, and is onneted to the unintegrated gluon distributionf(x; l2), �̂(x; r) = 2�3 Z d2ll4 �sf(x; l2) (1� e�il�r) (1� eil�r)= 4�23 Z 10 dl2l4 �sf(x; l2) (1� J0(lr)) : (3.10)where in the last equation the angular integration was performed and J0 is theBessel funtion. The two terms in brakets in (3.10) are related to the waythe two exhanged gluons ouple to the quarks. 1 omes from the diagramswith the gluons oupled to the same quark while the exponents exp(�il � r) aregiven by the oupling to di�erent quarks, see Fig. 2.9. Notie that due to thisstruture the dipole ross setion vanishes for r ! 0. This phenomenon, alledolour transpareny, is a harateristi feature of perturbative QCD.Formula (3.7) reets the k?-fatorization theorem. The physial interpre-tation of this theorem is provided in the proton rest frame. The formation time(alled Io�e time [93℄) of the q�q pair is related to the unertainty of energy ofthe pair, �q�q � 1=�E. In the small-x limit �E � xMP in the proton rest frame,see e.g. [20℄. Thus the formation time �q�q is muh larger than the interationtime of the pair with the proton, �int � 1=MP ,�q�q � �int : (3.11)In summary, for a small enough x, the q�q pair is formed far upstream of theproton. This proess is desribed by the photon wave funtion 	(r; z). Then,the pair satters o� the proton with the harateristis (r; z) frozen over thetime of the interation. Consequently, �̂(x; r) an be interpreted as the rosssetion for a sattering of a q�q pair with transverse size r o� the proton.3.1.2 Approximate relationsThe dipole representation (3.7) is partiularly suitable for a qualitative analysissine the physial interpretation is transparent in this representation. In thissetion we derive approximate relations whih allow to perform suh an analysis.For simpliity we set mf = 0.We start from the ross setion (3.7) for transversely polarized photons�T � Z 10 dr2 Z 10 dz [z2 + (1� z)2℄ z(1� z)Q2 K21�pz(1 � z)Qr� �̂(x; r) :(3.12)Its properties are determined by the behaviour of the Bessel funtion K1:K1(x) = 8<: 1=x for x� 1p�=2x exp (�x) for x� 1 : (3.13)



48 Chapter 3. Inlusive DIS at small xThus the main ontribution to �T omes from the arguments of K1 smaller than1, �T � Z 10 dr2 Z 10 dz [z2 + (1� z)2℄ �̂(x; r)r2 � �z(1� z)Q2r2 < 1� ; (3.14)where the funtion �(x < 1) equals 1, if x < 1, or 0, otherwise.If 0 � r � 2=Q, the theta funtion does not impose any restrition on thevalues of z. In this ase the z-integration fatorizes and gives the fator 2=3.For suh a on�guration the distribution of z is rather uniform with the meanvalue < z >= 1=2. This is why we all this on�guration symmetri.A di�erent on�guration ours for large transverse separations r � 2=Q.Now, the theta funtion heavily restrits z to small values: z < 1=(Q2r2). Thez-integration is performed before the r-integration, giving the leading result2=(Q2r2), where the fator 2 arises from the symmetry z $ (1 � z). In thison�guration, alled aligned jet, z � 0 or (1 � z) � 0. Thus, one of the quarksfollows the photon diretion while the other stays with the proton. Notie thatsuh a on�guration ours for large values of the transverse separation, probingnonperturbative region.Summarizing, we obtain the following approximate form�T � Z 4=Q20 dr2r2 �̂(x; r)| {z }symmetri + Z 14=Q2 dr2r2 � 1Q2r2� �̂(x; r)| {z }aligned jet ; (3.15)where we have negleted multipliative numerial fators, unimportant for thequalitative analysis. For onveniene, we have de�ned aligned jet on�gurationstarting from r = 2=Q when z = 1=2. Thus, we should have in mind that thealigned jet integral also ontains an intermediate region of r. Notie the fator1=Q2r2 whih suppresses the integrand for r � 1=Q. Its signi�ane will bedisussed in detail in the following hapters.A similar analysis1 performed for the longitudinal ross setion gives�L � Z 4=Q20 dr2 Q2 �̂(x; r)| {z }symmetri + Z 14=Q2 dr2 Q2 � 1Q2r2�3 �̂(x; r)| {z }aligned jet : (3.16)In order to �nd the leading Q2 behaviour of the above formulae we have toprovide a form of the dipole ross setion. We do this in the next setionspeifying a model whih takes into aount unitarity requirements.3.2 Saturation modelThe saturation model was formulated and ompared at length to DIS datain [94℄. Here we desribe this model, disussing some details whih were notpresented in the original formulation. For related approahes see [96℄.1The behaviour K0(x) � log(1=x) for x� 1 is important in this ase.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Figure 3.2: Dipole ross setion for di�erent values of x.The interation of the q�q pair with the proton is desribed by the dipoleross setion �(x; r) whih is modelled in our analysis. The most ruial elementis the adoption of the x-dependent saturation radiusR0(x) = 1Q0 � xx0��=2 ; (3.17)whih sales the quark-antiquark separation r in the dipole ross setion�̂(x; r) = �0 g�r̂ = rR0(x)� : (3.18)Q0 = 1 GeV in eq. (3.17) sets the sale. The funtion g in eq. (3.18) is notompletely onstrained. Important is, however, the quadrati rise at small r̂and the onstant value at large r̂. The form whih we hooseg(r̂) = 1� exp (�r̂2=4) (3.19)obeys these onditions and turns out to be very suessful in the data desrip-tion. In our analysis we �t the three parameters of the model �0, � and x0to all available inlusive DIS data with x < 0:01. For a detailed �t desrip-tion see [94℄; here we only quote the values of these parameters for orientation:�0 = 23 mb, � = 0:29 and x0 = 3 � 10�4 in the �t without the harm ontribu-tion. We additionally assumed a ommon mass of 140 MeV for the three lightavour quarks, whih leads to a reasonable predition in the photoprodutionregion, see setion 3.2.2.The main assumption about the form (3.19) onerns saturation propertyof the dipole ross setion. For r̂ !1 we have g ! 1 so that �̂ ! �0. The fatthat the dipole ross setion is limited by the energy independent ross setion�0 may be regarded as a unitarity bound. It leads to the behaviour of the totalross setion, ��p � log(1=x), whih obeys the unitarity ondition (2.97). Inthe opposite limit, when r̂ ! 0, the funtion g � r̂2 and the dipole ross setionhas the pQCD property of olour transpareny, disussed in Setion 3.1.1.



50 Chapter 3. Inlusive DIS at small xThe saturation radius R0(x) distinguishes between the regions of olourtranspareny and saturation for the dipole ross setion. The transition betweenthem is x-dependent, and ours for smaller dipole sizes r as x! 0, see Fig. 3.2.This is an essential feature of the model whih agrees with the piture of partonsaturation. In partiular, R0(x) an be related to the saturation sale Qs(x) �1=R0(x), disussed in Setion 2.4.4. For the dipoles with the sizes below R0,the standard single ladder exhange dominates, lose to R0 multiple interations(saturation e�ets) beome important while for r � R0 nonperturbative e�etsdominate. This piture has been qualitatively on�rmed by the QCD analysiswith the help of nonlinear evolution equations [66℄, done after the presentedmodel was proposed, see also [55℄.It is instrutive to ontrast (3.18) with the dipole ross setion obtained fromthe BFKL equation. Negleting the exponential in (2.86) and using relation(3.10), we �nd for small r �̂(x; r) � x��s4 ln 2 r : (3.20)The linear inrease in r is �nally tamed, but nothing prevents �̂ from violatingunitarity due to the power-like rise in x when x! 0. We solve this problem bythe x-dependent transition to saturation.3.2.1 Qualitative analysisNow, we are ready now to onlude our qualitative analysis based on eqs. (3.15)and (3.16). In order to obtain the leading Q2 behaviour, we approximate thedipole ross setion (3.18) by�̂(x; r) = 8<: �0 r2=4R20(x) for r � 2R0(x)�0 for r > 2R0(x) : (3.21)This form ontains all essential features of the exat formula for the leading Q2analysis.In addition to the sale R0, whih we interpret as the mean distane in thetransverse plane between partons in the proton, there is another sale 1=Q, theharateristi size of the q�q pair. The Q2-behaviour of �T;L depends on therelation between the two sales.If the harateristi size of the q�q pair is muh smaller than the mean dis-tane between partons, 1Q � R0(x) ; (3.22)the transverse ross setion (3.15) beomes�T � 4=Q2Z0 dr2r2 ��0 r24R20 �| {z }symmetri + 4R20Z4=Q2 dr2r2 � 1Q2r2���0 r24R20 �| {z }aligned jet + 1Z4R20 dr2r2 � 1Q2r2��0 :| {z }aligned jet



3.2. Saturation model 51
d

σ T
/d

r
Inc

r [2R0]
2/Q

Q2= 10 GeV2

(a)

d
σ T

/d
r

Inc

r [2R0]
2/Q

Q2= 0.8 GeV2

(b)

0

1

2

3

1 2
0

1

2

3

1 2Figure 3.3: The distribution d�T =dr as a funtion of the dipole size r (solidlines) for two values of Q2 and W = 245 GeV. The dipole ross setion (3.18)is shown as the dotted lines. The r-axis is in units of 2R0(x) = 0:37 fm for (a),and 2R0(x) = 0:26 fm for (b).After omputing the relevant integrals, we obtain saling behaviour of the stru-ture funtion FT � Q2 �T with logarithmi violation�T � �0Q2R20| {z }r<2=Q + �0Q2R20 log(Q2R20)| {z }2=Q<r<2R0 + �0Q2R20| {z }r>2R0 (3.23)where we have suppressed similar numerial oeÆients (of the order of �em=�)for eah ontribution2.Notie that both symmetri and aligned jet on�gurations ontribute tothe leading twist result. The intermediate ontribution, 2=Q < r < 2R0, isespeially enhaned due to the large logarithm. An important ontributionomes also from the region r > 2R0 whih is dominated by nonperturbative sizeswith a large hadroni ross setion �0. The smallness of the suppression fator1=Q2r2, however, ompensates this e�et leading to the saling ontribution.This is a realization of the observation made by Bjorken and Kogut in [97℄.The qualitative results are illustrated in Fig. 3.3a, where d�T =dr as a funtionof r, omputed from (3.7), is shown by the solid lines. The dipole ross setion(3.18) is plotted as the dotted lines.The presented analysis of �T provides an additional motivation for thepower-like form of R0(x). In suh a aseFT � x�� ; (3.24)whih reets the small-x inrease of the DIS ross setion, similar to thatobtained from the BFKL equation. The preise value of � is not predited inour approah but it is �tted to the data. Thus, it an phenomenologially takeinto aount the next-to-leading logarithmi orretions to the BFKL equationwhih are known to be important for the value of �.2This analysis shows that 2=Q and 2R0 are better harateristi sales.



52 Chapter 3. Inlusive DIS at small xThe opposite relation, valid when the q�q pair size is muh larger than themean distane between partons, 1Q � R0(x) ; (3.25)leads to a di�erent behaviour from the point of view of the leading powers ofQ2. The transverse ross setion (3.15) takes now the form�T � Z 4R200 dr2r2 ��0 r24R20 �| {z }symmetri + Z 4=Q24R20 dr2r2 �0| {z }symmetri + Z 14=Q2 dr2r2 � 1Q2r2��0| {z }aligned jetwhih leads to �T � �0|{z}r<2R0 + �0 log� 1Q2R20�| {z }2R0<r<2=Q + �0|{z}r>2=Q : (3.26)Notie that even the region of small r, where the dipole ross setion featuresolour transpareny, leads to �T � �0. The energy dependene of �T is alsodi�erent, now it omes through the logarithmi term with the x-dependent R0.Thus we expet a smooth hange from the behaviour given by (3.24) to a milderdependene FT � Q2�0 log(1=x) ; (3.27)being in agreement with the unitarity bound (2.97).The disussed ase is illustrated in Fig. 3.3b by showing d�T =dr as a funtionof r. Notie that d�T =dr does no longer peak around r = 2=Q, as it does inthe saling ase. In our interpretation, the limit 1=Q � R0 orresponds tothe situation in whih the q�q pair annot resolve individual partons, and thepartoni system beomes dense for the probe. As a result, the dipole rosssetion beomes large and multiple interations are important.The transition from saling to the saturated behaviour is marked by theritial line in the (x;Q2)-plane for whih the harateristi q�q size equals themean separation between partons,1Qs = R0(xs) : (3.28)In reality, the line may beome a strip marking the transition region. Whatmatters is the relation between Qs and xs. Sine R20(x) � x�, the saturationsale Qs beomes higher when xs ! 0, see Fig. 3.4. Therefore, with dereasingBjorken-x one has to go to smaller distanes (larger Q2) to resolve a denseparton struture of the proton. This makes the proess of the transition fromsaling to saturated form perturbative and gives a hope that this proess an bedesribed by perturbative QCD. The role of the ritial line is disussed froma di�erent point of view in Setion (3.2.5).The same analysis an be performed for the longitudinal ross setion. Inthe saling region, Q2R20 � 1, the leading ontribution omes only from the
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3.2. Saturation model 573.2.3 Inlusive harm produtionIn formula (3.7) whih we use for the desription of inlusive DIS at small xthe summation is performed over quark avours, inluding the harm quarkontribution. Di�erent avours are distinguished by a quark mass and eletriharge in the photon wave funtion. The dipole ross setion has the same formfor eah avour, with the modi�ation (3.33) of the Bjorken-x. When the �tto DIS data on F2 is done, the harm ontribution will result as a preditionof the model for the inlusive harm prodution whih an be ompared withdata.In order to understand the harm prodution we perform the qualitativeanalysis similar to that in Setion 3.2.1. Sine we annot neglet the harmmass, m � 1:5 GeV, our starting formula (3.14) now takes the following form��T � Z 10 dr2 Z 10 dz [z2 + (1� z)2℄ �̂(x; r)r2 � �(z(1 � z)Q2 +m2)r2 < 1� ;(3.36)plus the term proportional to m2 , oming from the transverse wave funtion(3.8), whih leads to the same features as the leading term presented above.As before, we want to perform �rst the integration over z. In this asewe solve the quadrati relation in z imposed by the theta funtion. If r <2=pQ2 + 4m2 there is no restrition on the z-integration and we obtain sym-metri on�guration. For 2=pQ2 + 4m2 � r < 1=m aligned jet on�gurationis enfored (z � 0; 1). In ontrast to the massless analysis, the quark mass intro-dues a ut-o� on the maximal size of the � dipole: rmax = 1=m. Colletingthese results, we �nd��T � 4=(Q2+4m2)Z0 dr2r2 �̂(x; r)| {z }symmetri + 1=m2Z4=(Q2+4m2) dr2r2 � 1Q2r2� �̂(x; r)| {z }aligned jet ; (3.37)that should be ompared to the massless relation (3.15).In the saturation model, as a result of the �t to data, we have in the entireHERA kinemati domain 1=m < 2R0(x) (3.38)Therefore, inlusive harm prodution probes mostly the olour transparenypart of the dipole ross setion: �̂ = �0 r2=4R20. In other words, the harmquark mass restrits the � dipole size to the perturbative values for whihunitarization e�ets are not yet important.The sale given by 4m2 leads to a di�erent behaviour of ��T as a funtionof Q2, similar to the already disussed behaviour of the inlusive ross setion.If Q2 � 4m2 , after substituting the olour transpareny form of �̂ into (3.37),we obtain ��T � �0Q2R20 + �0Q2R20 log(Q2=4m2) : (3.39)The logarithmi enhanement omes from the aligned jet integral. In the oppo-site ase, when Q2 � 4m2 , only the symmetri on�guration ontributes, and
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60 Chapter 3. Inlusive DIS at small x3.2.5 Twist expansionFollowing the approah in [94℄ we express the �p ross setion in the saturationmodel in the Mellin representation whih is partiularly suitable for the analysisof the twist expansion. In the massless limit we �nd [94℄�T;L = �0 Z 1�1 d�2� � 1Q2R20(x)�1=2+i� ~HT;L(�) ; (3.43)where~HT (�) = 3�em16 e2 �9=4 + �21 + �2 �� �h���2�sh���� � �(3=2 + i�); (3.44)~HL(�) = 3�em8 e2 �1=4 + �21 + �2 �� �h���2�sh���� � �(3=2 + i�) (3.45)and we denote e2 = Pf e2f .Using this representation, we onstrut the expansion in powers of 1=Q2(twist expansion) or Q2. The qualitative results of Setion 3.2.1 are on�rmedin suh an analysis.The ross setion (3.43) is given by the Mellin-Barnes type integral whihexists for any value of the parameter 1=Q2R20, exept for 0 and 1. In pratie,the integration an be performed numerially or omputed in terms of the sumover residues. A loser look at eq. (3.44) reveals that we deal with multiplepoles in the omplex �-plane at� = �i(2n+ 1)=2 ; n = 0; 1; 2::: (3.46)If the integration ontour in (3.43) is losed in the upper half-plane and theresidues of the poles at � = i(2n+1)=2 are omputed, we obtain a representationin terms of positive powers of Q2R20, with an in�nite radius of onvergene. ForQ2R20 < 1 the �rst pole � = i=2 gives a reasonable approximation�(0)T = �em� e2 �0 �log(1=Q2R20)� E + 7=6� ; (3.47)�(0)L = �em� e2 �0 : (3.48)For Q2R20 > 1 it is more pratial to onstrut an expansion in powers of1=(Q2R20), by omputing the residues at � = �i(2n + 1)=2. It an be proventhat the obtained expansion is only asymptoti. The integration ontour annotbe losed in the lower half-plane beause the integral over the lower semi-irleis divergent for the in�nite radius. The saling ontribution is given by the �rstpole at � = �i=2�(2)T = �em� e2 �0Q2R20 �log(Q2R20) + E + 1=6� ; (3.49)�(2)L = �em� e2 �0Q2R20 ; (3.50)
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62 Chapter 3. Inlusive DIS at small xthe ritial line Q2R20(x) = 1 we hange the behaviour from �T;L � 1=Q2 to�T;L � �0. For Q2R20(x) < 1 the approximation based on the twist expansionquikly deteriorates.3.2.6 Relation to the gluon distributionWe derive the relation between the ordinary gluon distribution g(x;Q2) whihappears in the leading twist desription of DIS based on ollinear fatoriza-tion, and the unintegrated gluon distribution f(x;Q2) introdued by the kT -fatorization formula (2.92).In the double logarithmi approximation, when the summation of the lead-ing powers of �s log(1=x) logQ2 � 1 is performed, the following twist-2 resultis obtained from the DGLAP evolution equations in the small-x limit�F2(x;Q2)� lnQ2 = �s3� e2 xg(x;Q2) : (3.53)We will �nd a similar result for the twist-2 omponent of the struture funtionF2, omputed using the kT -fatorization formula. By the omparison with(3.53), the relation between the two gluon distributions an be found.The Mellin representation of F2, omputed in the kT -fatorization sheme isthe basis for our onsiderations. The omputations are similar to those leadingto eq. (3.43), but now we need the result for a general form of the dipole rosssetion or the unintegrated gluon distribution, see eq. (3.10). Applying themethod desribed in [94℄, we �ndF2(x;Q2) = e216 Z 1�1 d�2� �11=4 + 3�21 + �2 �� �h���2�sh���� �� Z 10 dl2l2 �sf(x; l2)� l2Q2��1=2+i� : (3.54)The logarithmi derivative of F2 has the additional fator (1=2� i�) under theintegral�F2(x;Q2)� lnQ2 = e216 1Z�1 d�2� �11=4 + 3�21 + �2 �� �h���2�sh���� � (1=2� i�)�(Z Q20 dl2l2 �sf(x; l2)� l2Q2��1=2+i� + Z 1Q2 dl2l2 �sf(x; l2)� l2Q2��1=2+i�) ;where we split the integration over the gluon transverse momentum into thel2 < Q2 and l2 > Q2 parts. Twist-2 ontribution is found after losing theintegration ontour in the lower half-plane for l2 � Q2, and omputing theresidue at � = �i=2. Thus, we �nd�F (2)2 (x;Q2)� lnQ2 = �s3� e2 Z Q20 dl2l2 f(x; l2) : (3.55)



3.2. Saturation model 63A diret omparison with the DLLA formula (3.53) gives the result we arelooking for xg(x;Q2) = Z Q20 dl2l2 f(x; l2) : (3.56)Relation (3.56 )is valid in the limit of small x and large Q2. Additionally,it has to be taken with are sine the integration over l2 is performed in thenonperturbative region of small l2. Unless we have some model for this region,the found relation should be interpreted asxg(x;Q2) = xg(x;Q20) + Z Q2Q0 dl2l2 f(x; l2) ; (3.57)where the both sales are perturbative and large, and xg(x;Q20) is known, e.g.from a �t to data.The renormalization group approah, presented in Setion 2.3.1, tells usthat �s in the DLLA formula (3.53) should be evaluated at the sale given byQ2. On the other hand, the sale for �s in eq. (3.55) is not determined sinethe radiative orretions leading to running �s are beyond the leading log(1=x)approximation in whih this result was derived. Thus, the same sale Q2 as forthe DLLA result an only be postulated for �s in eq. (3.55).We �nish our onsiderations by alulating the twist-2 part of the logarith-mi slope of F2 in the saturation model. From (3.49), we have�F (2)2 (x;Q2)� logQ2 = e24�3 �0R20(x) ; (3.58)and by the omparison with eq. (3.53) we �nd the following gluon distributionfor large Q2 xg(x;Q2) = 34�2�s(Q2) �0R20(x) : (3.59)The found gluon distribution depends on Q2 only through the ouplingonstant �s. Thus, the proper DGLAP evolution in the large Q2 limit is notinluded in the onstruted model. This may be improved by modifying thebehaviour of the dipole ross setion at r � 2R0(x). Indeed, approximatingin eq. (3.10) (1 � J0(lr)) � (lr)2=4, whih is valid for l2 < 1=r2 up to a fewperent, and using eq. (3.56), we �nd that for small enough r (for an alternativederivation see [101℄ and referenes therein)�̂(x; r) ' �23 �s(1=r2) r2 xg(x; 1=r2) ; (3.60)where xg(x; �2) is the gluon distribution whih evolves in �2 = 1=r2 aordingto the DGLAP evolution equations. The physis of saturation, however, is nota�eted by suh a modi�ation at small transverse sizes. Additionally, a betteragreement with the data is obtained for large values of Q2 [102℄.



64 Chapter 3. Inlusive DIS at small x3.3 Transition to low Q2 in other approahesWe briey desribe other approahes to the desription of the transition to lowQ2 of the proton struture funtion F2 whih use oneptually di�erent ideasfrom ours.A. Donnahie-Landsho� approahIn this approah [103℄ F2 is postulated in the form ditated by Regge theory,assuming three ontributions given by di�erent Regge trajetories.F2(x;Q2) = f0(Q2)x��0 + f1(Q2)x��1 + f2(Q2)x��2 ; (3.61)where the powers �i are related to interepts of the Regge trajetories:�i = �i(0)� 1 : (3.62)The values �1 = 0:08 and �2 = �0:45, whih orrespond to the soft pomeron and(�; !; f; a) trajetories, respetively, were �xed. The value �0 � 0:4 was foundfrom a �t to the small-x data. The form fators fi(Q2) were parameterized inthe following wayf0(Q2) = A0 � Q2Q2 +Q20�1+�0 �1 + Q2Q20��0=2 ; (3.63)f1(Q2) = A1 � Q2Q2 +Q21�1+�1  1 +sQ2Q2S!�1 ; (3.64)f2(Q2) = A2 � Q2Q2 +Q22�1+�2 : (3.65)The small Q2 behaviour was onstrained by the requirement that F2 � Q2 whenQ2 ! 0 for �xed W 2. The parameters: A0�2; Q20�2; Q2S were found from a �tto the data in the range of x < 0:07 and Q2 = 0 to 2000 GeV2.The soft pomeron form fator f1(Q2) dominates at low Q2, whereas at largeQ2 > 10 GeV2 it falls o� as 1=Q. The hard pomeron form fator f0(Q2) slowlydeparts from zero at small Q2 to rise rapidly as Q2 � Q�0 for Q2 > 10 GeV2. Inthis way the soft{hard pomeron transition is enfored by the data. Let us reallthat a similar e�et is realized in the saturation model without introduing thetwo pomeron onept.It should be mentioned that in the DL model the strong rise in x is nottamed, leading to violation of unitarity when x! 0.B. Badelek-Kwiei�nski modelIn this model [104℄ F2 is a sum of two ontributions whih interpolate be-tween the region of low Q2 where F2 is well desribed by the Vetor DominaneModel (VDM) [105℄, and the region of large values of Q2 where the leading twistformula obtained from the DGLAP �t to the data dominates, see e.g. [100℄,F2(x;Q2) = F V DM2 (x;Q2) + FQCD2 (x;Q2) (3.66)



3.3. Transition to low Q2 in other approahes 65and F V DM2 (x;Q2) = Q24� XV=�;!;� M4V �V (W 2)2V (Q2 +M2V )2 ; (3.67)FQCD2 (x;Q2) = Q2Q2 +Q20 FAS2 (�x;Q2 +Q20) ; (3.68)where the sum over vetor meson ontributions is performed in whih MV ismass of the vetor meson V . The vetor meson{proton ross setion �V (W 2)is determined from the �p and Kp total ross setions using the additive quarkmodel and 2V is found from the leptoni width of the vetor meson V . Thevariable �x in FAS2 is given by�x = Q2 +Q20W 2 +Q2 �M2p +Q20 ; (3.69)where the parameter Q20 = 1:2 � 1:5 GeV 2. This is the only parameter in themodel, exept those �xed independently in the VDM and DGLAP analyses. Adi�erent realization of the same idea an be found in [106℄. Similarly to the DLapproah, the unitarity ondition (2.97) is violated in this model.There exist several other e�etive parameterizations of F2 whih interpolatebetween the small and large Q2 behaviour of the proton struture funtion. Anextensive disussion of them is given in [107℄. More reent parameterizations anbe found in [108℄. The most omprehensive overview of the nuleon struturefuntions, both from the theoretial and experimental side, is given in [109℄.



Chapter 4Di�rative DISA signi�ant fration (around 10%) of deep inelasti sattering events observedat HERA at small x are di�rative events [86, 87℄. For these events the inom-ing proton stays intat despite inelastiity of the reation, losing only a smallfration xIP of its initial momentum. The �nal state proton is well separated inrapidity from the rest of the system whih looks like a typial DIS event. Thusthe large rapidity gap is a harateristi feature of di�rative DIS. In partonilanguage, a olour neutral luster of partons fragments independently of thesattered proton. The ratio of the di�rative to all DIS events is to a goodapproximation onstant as a funtion of Bjorken-x and Q2. The latter ondi-tion suggests the leading twist nature of DIS di�ration. For reent reviews ondi�ration see [110, 111, 112℄.Historially, the �rst desription of di�rative DIS was provided in termsof the Ingelman{Shlein (IS) model [113℄. The model is based on Regge the-ory in whih di�rative proesses are due to the exhange of a soft pomeron,see Setion 2.4.1. In other words, the proton stays intat due to the exhangewith vauum numbers. The novelty of the IS model lies in the assumptionthat the pomeron has a partoni struture as do real hadrons. The di�rativestruture funtion fatorizes into a \pomeron ux" and a pomeron struturefuntion. The latter funtion is written in terms of the pomeron parton distri-butions, determined from a �t to data with the help of the standard DGLAPevolution equations [86, 87, 114, 115, 116℄. In the alternative method, the phe-nomenology of soft hadroni reations has been used [117, 118, 119℄. Despiteoneptual diÆulties (the pomeron is not a partile) this idea turned out tobe very useful in the desription of the DIS di�rative data, provided a hardervalue of the interept of the pomeron trajetory is assumed. The IS approahwas generalized by onsidering the exhange of subleading reggeons (and alsopions) [120, 121, 122, 86℄ to explain the di�rative data olleted by the H1ollaboration at HERA. We desribe the IS based approah in detail in Setion4.2, following [117, 114, 115, 120, 121, 122℄.An alternative approah to di�rative proesses in DIS is represented by adetailed modelling of the di�rative state as well as of the mehanism leading todi�ration, starting from perturbative QCD. In suh an approah the di�rativestate is formed by the Fok omponents of the light-one virtual photon wave66



67funtion: j > = j q�q> + j q�q g> + ::: : (4.1)The q�q omponent was onsidered in [123, 124, 125, 126℄. A higher orderontribution represented by the q�q pair with an additional gluon g emitted wasstudied in [127, 128, 129, 130, 95℄. The q�q and q�qg omponents subsequentlyinterat with the proton through the net olourless exhange. The way in whihthis exhange is realized distinguishes between the models. In the simplestase, the olourless exhange responsible for the rapidity gap is modelled bytwo perturbative gluons oupled to the proton with some form fator [131, 132,88, 89℄ or to a heavy onium whih serves as a model of the proton [133℄. Higherorder orretions are inluded by the BFKL summation of gluon ladders [134℄or using the olour dipole approah [135℄. The di�rative proesses have alsobeen desribed with the help of the interation with a semilassial olour �eldof the proton [126, 130℄.The immediate problem faed in the above modelling is the strong sensitiv-ity to nonperturbative e�ets due to the dominane of aligned jet on�guration(to be disussed in Setion 4.3.2). Thus, we need a desription of the intera-tions in the soft regime. The model of the dipole ross setion based on theideas of partoni saturation, presented in the previous hapter, provides suh adesription. The parameters of this model were determined from the analysisof inlusive DIS [94℄. Now, it an be diretly applied to di�rative DIS withouttuning additional parameters [95℄. The main result whih we present in Setion4.3, based on the analysis [95℄, is a very good desription of the data. In par-tiular, the onstant ratio �diff=�tot is naturally explained. Also harder thanthe soft pomeron value of an e�etive pomeron interept is predited in perfetagreement with the data.The leading twist nature of DIS di�ration brings the issue of ollinear fa-torization and di�rative parton distributions. By this we mean the onsistentfatorization of the di�rative ross setions into a onvolution of hard rosssetions and the di�rative parton distributions, see Setion 2.3 for the disus-sion in the inlusive ase. The Ingelman{Shlein approah assumes ollinearfatorization, imposing an additional assumption, alled Regge fatorization,on the xIP -dependene of the di�rative parton distributions. The form in �is usually �tted to the data. On the other hand, in the perturbative QCDapproah the di�rative parton distributions an be diretly omputed. In par-tiular, if the saturation model is used, the Regge fatorization results fromthis model. Another important aspet, whih annot be addressed in the ISapproah, is the role of higher twist ontributions. It appears that di�rativeDIS is an example of the proess for whih twist-4 (given by the q�q omponentfrom longitudinal photons) dominates over leading twist in the kinemati rangeof small di�rative mass [127, 128℄. In Setion 4.4 we disuss these issues, basedon the results from [155℄.
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tFigure 4.1: Kinemati invariants in DIS di�ration.4.1 Di�rative struture funtionsWe have several dimensional sales in di�rative DIS satteringe+ p ! e0 + p0 +X ; (4.2)where X is a di�rative system. In addition to these known from inlusive DIS:Q2 and W 2, the mass of the di�rative system M2, and the invariant four-momentum transfer from the proton into the di�rative system, t = (p� p0)2,ome into the game, see Fig. 4.1. The following dimensionless variables arebuilt out of them.The lost fration of the inident proton momentumxIP = Q2 +M2 � tQ2 +W 2 : (4.3)In the pomeron model interpretation it is a fration of the proton momentumarried by the pomeron. The variable� = Q2Q2 +M2 � t (4.4)is the Bjorken variable related to the di�rative system M2. In the pomeronmodel of di�ration � is a fration of the pomeron momentum arried by thestruk quark. The ordinary Bjorken variablex = xIP � : (4.5)In the following we neglet t in the de�nition of the variables xIP and � sineusually jtj � Q2;M2.The di�rative struture funtions are de�ned analogous to the inlusivease. They depend on the four invariant variables (x;Q2; xIP ; t) and are de�nedthrough the di�rative DIS ross setiond4�Ddx dQ2 dxIP dt = 2��2emxQ4 ��1 + (1� y)2� dFD2dxIP dt � y2 dFDLdxIP dt� : (4.6)



4.2. The Ingelman{Shlein model 69For simpliity of notation, we introdue the followingFD(4)2 (x;Q2; xIP ; t) � dFD2dxIP dt(x;Q2; xIP ; t) ; (4.7)FD(4)L (x;Q2; xIP ; t) � dFDLdxIP dt(x;Q2; xIP ; t) ; (4.8)where we expliitly indiate that the di�rative struture funtions depend onfour variables. As usual FD(4)2 = FD(4)T + FD(4)L : (4.9)Notie that the introdued di�rative struture funtions have dimension GeV�2beause of the di�erential dt in the de�nition of the ross setion (4.6).We also de�ne the struture funtions integrated over t sine they are mea-sured when the �nal state proton momentum is not deteted. In this aseFD(3)T;L (x;Q2; xIP ) = Z 0�1 dt FD(4)T;L (x;Q2;xIP ; t) (4.10)is dimensionless. The di�rative struture funtions are related to the di�rativephoton-proton ross setionsFD(4)T;L = Q24�2�em d�T;L(�p! p0X)dxIP dt ; (4.11)where T;L denote the virtual photon polarization.4.2 The Ingelman{Shlein modelIn the Ingelman{Shlein model [113℄ the di�rative struture funtion F (4)2 isgiven by the following fatorized formF (4)2 (x;Q2; xIP ; t) = fIP (xIP ; t) F IP2 (�;Q2) ; (4.12)where we remind that � = x=xIP is the analogue of the Bjorken variable. Thephysial interpretation of the above fatorization, whih we all the Reggefatorization, is as follows. The di�rative sattering ours through the ex-hange of the pomeron with the momentum pIP = xIP � p, desribed by theux f(xIP ; t), and a subsequent hard sattering of the virtual photon on thepartoni onstituent of the pomeron whih arries a fration � of the pomeronmomentum. The latter interation is haraterized by the pomeron struturefuntion F IP2 (�;Q2). The struture funtion (4.12) is shematially shown inFig. 4.2.The pomeron exhange is desribed by the ux fatorfIP (xIP ; t) = N16� x1�2�IP (t)IP B2IP (t) ; (4.13)



70 Chapter 4. Di�rative DIS
PPFigure 4.2: Di�rative struture funtion in the Ingelman{Shlein model. Thespring-like lines represent the pomeron.where the pomeron trajetory is assumed to have the \soft" values of the pa-rameters found in the analysis of hadroni reations�IP (t) = 1:08 + 0:25 GeV�2 � t : (4.14)It appears that for DIS di�ration the value of the interept �IP (0) has to beinreased to �IP (0) � 1:13 � 1:20.BIP (t) desribes the pomeron oupling to the proton. Phenomenologially, ithas been established that the pomeron trajetory ouples to the proton throughthe Dira elasti form fator [21℄BIP (t) = 4m2 � 2:79 t4m2 � t � 11� t=0:71�2 : (4.15)The normalization N = 2=� in eq. (4.13) follows the Donnahie{Landsho�onvention [136℄.The pomeron struture funtion is expressed through the quark distributionsin the pomeron qIP (�;Q2) in a full analogy to the proton aseF IP2 (�;Q2) = 2 Xf e2f � qIPf (�;Q2) ; (4.16)where f distinguishes di�erent avours. The fator 2 results from the assump-tion that the distribution of quarks and antiquarks in the pomeron are idential,qIPf (�;Q2) = �qIPf (�;Q2) ; (4.17)for eah avour f , sine the pomeron is the vauum quantum number exhange.The Q2-dependene of the pomeron parton distributions is governed by theDGLAP evolution equations, whih lead to the logarithmi saling violationof the di�rative struture funtion. We have to allow for the pomeron gluondistribution gIP (�;Q2) whih is automatially generated by the the evolutionequations from the quark distributions. The initial form in � of the pomeronparton distributions an be obtained in two di�erent ways. In the �rst method,



4.2. The Ingelman{Shlein model 71used in the analysis of DIS data, the initial form is given with the help of severalparameters. Then the parameters are determined from the �t to available data.This proedure was suessfully applied to DIS di�rative data [86, 87, 114, 115,116℄. In the ase of the pomeron a di�erent method exists. The initial pomeronparton distributions an be estimated from soft pomeron phenomenology ofhadroni reations [117, 118, 119℄.In the next setion we present an example of suh an estimation, followingthe analysis [117℄.4.2.1 Pomeron parton distributionsAt �rst we shall speify the details of the parton distributions in the pomeronat the referene sale Q20 = 4 GeV2. At small � both the quark and gluondistributions are assumed to be dominated by the pomeron exhange,� qIPf (�;Q20; t) = aIPf (t) �1��IP (0) ; (4.18)� gIP (�;Q20; t) = aIPg (t) �1��IP (0) : (4.19)The funtions aIPf (t) and aIPg (t) an be estimated from the fatorization ofpomeron ouplings [137, 138, 139℄ :aIPf (t) = r(t) af ; aIPg (t) = r(t) ag ; (4.20)where the parameters af and ag are the pomeron ouplings ontrolling thenormalization of the small x behaviour of the sea quark and gluon distributionsin the proton i.e.xqf (x;Q20) + x�qf (x;Q20) = 2 af x1��IP (0) ;xg(x;Q20) = ag x1��IP (0) ; (4.21)and the funtion r(t) is r(t) = �2 GIPIPIP (t)B(0) : (4.22)The oupling GIPIPIP (t) is the triple pomeron oupling (see Fig. 4.3 a) and itsmagnitude an be estimated from the ross setion of the di�rative produtionp + �p ! p + X in the limit of large mass MX of the di�ratively produedsystem X. We negleted the (weak) t dependene of the funtion r(t) and haveestimated its magnitude from the Tevatron data [140℄ as r(t) � r(0) = 0:089.The parameters af were estimated assuming that the sea quark distributionsin the proton an be parameterized as:xqf(x;Q20) + x�qf (x;Q20) = 2 af x1��IP (0) (1� x)7 ; (4.23)and �xing the onstants af from the requirement that the average momentumfration whih orresponds to those distributions is the same as that whihfollows from the parameterization of parton distributions in the proton [141℄.
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a) b)Figure 4.3: Contribution to di�rative struture funtion for small � (a) andlarge � (b). The spring-like lines represent the pomeron.The momentum sum rule has also been used to �x the parameter ag i.e. weassumed xg(x;Q20) = ag x1��IP (0) (1� x)5 ; (4.24)and imposed the ondition that the gluons arry 1/2 momentum of the proton.We extrapolated the pomeron dominated quark and gluon distributions in thepomeron (see (4.19)) to the region of arbitrary values of � by multiplying thefator �1��IP (0) by (1� �) [138℄.We have also inluded the term proportional to �(1� �) in both the quarkand gluon distributions [138℄. The normalization of this term in the quarkdistributions has been estimated in [136℄ assuming that it is dominated by thequark-box diagram with the non-perturbative ouplings of pomeron to quarks,shown in Fig. 4.3 b. In this model one gets:� qIP (�;Q20) = C�3 � (1� �) ; (4.25)where C � 0:17 [136℄. We found that the fairly reasonable desription of dataan be ahieved provided that the onstant C is enhaned by a fator equal to1.5. We have also assumed that the relative normalization of the quark distri-butions in the pomeron orresponding to di�erent avours is the same as thatof the sea quark distributions in the proton [141℄. Finally the normalization ofthe term proportional to �(1� �) in the gluon distribution in the pomeron hasbeen obtained by imposing the momentum sum rule. Following the approxi-mations disussed above we have negleted the t dependene in those partondistributions.As the result of the estimates and extrapolations disussed above, the pa-rameterization of parton distributions in the pomeron at the referene saleQ20 = 4 GeV2 looks as follows:� gIP (�;Q20) = (0:218 ��0:08 + 3:30 �) (1� �) (4.26)



4.2. The Ingelman{Shlein model 73for the gluon distribution, and� dIP (�;Q20) = � uIP (�;Q20) = 0:4 (1� Æ) SIP (�)� sIP (�;Q20) = 0:2 (1� Æ) SIP (�)� IP (�;Q20) = Æ SIP (�) ; (4.27)for the quark distributions. The funtion SIP (�) is parameterized as belowSIP (�) = (0:0528 ��0:08 + 0:801 �) (1� �) (4.28)and Æ=0.02 [141℄. The analysis of the pomeron struture funtions based ondi�erent parameterizations of parton distributions in the pomeron has also beenpresented in Refs. [139, 118℄.The parton distributions de�ned above were next evolved up to the valuesof Q2 for whih the data exist using the LO DGLAP evolution equations with� = 0:255 GeV. The results of the omparison with the H1 data is shown inFig. 4.5 (solid urves).From the presented pomeron parton distributions the pomeron struturefuntion F IP2 follows. For example, at small �F IP2 (�;Q2) = AIP (Q2) ��0:08 ; (4.29)where the oeÆient AIP (Q2) , as shown above, is a produt of the IPIPIPoupling and the Q2 dependent oupling of the pomeron to the virtual photons,see Fig. 4.3 a. From the presented parameterization AIP = 0:03 for Q2 =4 GeV2.4.2.2 Subleading reggeonsThe subleading reggeons an desribe the nonpomeron part of the di�rativesattering whih leads to breaking of the Regge fatorized form of the di�ra-tive struture funtion (4.12). Stritly speaking we annot all suh proessesdi�rative sine di�ration is usually assoiated with the leading pomeron ex-hange. However, for simpliity we use the same terminology for the non-pomeron reggeon exhanges, inluding proesses with fast forward neutron inthe �nal state whih orrespond to isospin I = 1 exhange.Thus we postulate the following extension of the Ingelman{Shlein model[120℄F (4)2 (x;Q2; xIP ; t) = fIP (xIP ; t)F IP2 (�;Q2) + XR fR(xIP ; t)FR2 (�;Q2) ; (4.30)where the additional terms desribe reggeon exhanges. Note, that in suh anapproah the Regge fatorization is broken { F (4)2 is no longer a produt of twofators with a partiular dependene on kinematial variables like in (4.12). Asa onsequene, there is no a simple and universal xIP -dependene: F (4)2 � x�nIP .The last result is suggested by the H1 Collaboration data in whih a di�erentvalue of n seems to be predominant for larger values xIP (> 0:01) [86℄.
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Figure 4.4: The reggeon-reggeon-pomeron ontribution to di�rative struturefuntion.The Regge fatorization breaking an be explained by the exhange of sub-leading reggeons, isosalar (f2; !) and isovetor (a2; �). The reggeon ux fatorsin (4.30) are parameterized in analogy to the pomeron uxfR(xIP ; t) = N16� x1�2�R(t)IP B2R(t) j�R(t)j2 ; (4.31)where the funtion �R(t) is a signature fator:j�R(t)j2 = 8<: 4 os2[��R(t)=2℄ for even signature reggeons (f2; a2)4 sin2[��R(t)=2℄ for odd signature reggeons (�; !) ; (4.32)and �R(t) is the reggeon trajetory. BR(t) desribes the oupling of the reggeonto the proton.We assume that BR(t) = BR(0) exp(t=2�2R) with �R = 0:65 GeV, as knownfrom the reggeon phenomenology of hadroni reations. From the same analysiswe obtain the parameters of the reggeon trajetory�R(t) = 0:5475 + 1 GeV�2 � t : (4.33)Moreover, the following relations between the reggeon-proton ouplings arefound [120, 121℄ B2f2(0) > B2!(0) � B2a2(0) � B2�(0) : (4.34)This result shows that the isovetor reggeons (a2; �) an safely be negletedin the presented analysis. These reggeons are ruial, however, for the di�ra-tive proess with fast forward neutron in the �nal state, see [121℄ for detaileddisussion.The reggeon struture funtion FR2 at small �, whih is relevant for the H1data analysis, an be found in a similar way as for the pomeronFR2 (�;Q2) = AR ��0:08 ; (4.35)



4.2. The Ingelman{Shlein model 75where now AR is determined by the triple Regge vertex RRIP (see Fig. 4.4). Inour analysis we introdue the ratioCenh = ARAIP ; (4.36)whih is related to the ratio of the \triple-Regge" RRIP and IPIPIP ouplings.It should be muh bigger than one, as suggested by the analysis [142℄ of softhadroni interations. The data from the H1 ollaboration [86℄, presented interms of the struture funtion FD(3)2 , prefer Cenh � 10 in whih ase reason-able agreement of our desription with the data is obtained for � � 0:4. This isillustrated in Fig. 4.5, reprodued from [122℄, where the pure pomeron ontri-bution from the analysis [117℄ (solid lines) and the e�et of the reggeon terms(dashed lines) is shown.We have also heked how the QCD evolution of the reggeon struture fun-tion (4.35) inuenes the results. We found that it was not important, espeiallyin view of the triple-Regge oupling unertainties. More details on the sublead-ing reggeon ontribution, as well as on the pion ontribution whih is relevantfor xIP > 0:1, an be found in [120, 121℄.The fat that the presented desription deteriorates for large values of �, i.e.in the region of small di�rative mass, is not aidental. To be more preise,the desription falls signi�antly below data for � > 0:4, whih is shown inthe two rightmost olumns in Fig. 4.5. A loser inspetion reveals that theonly way to ure this problem, within the desription based on the Ingelman{Shlein model, is to assume that the gluon distribution in the pomeron is largelyonentrated at � � 1 [86, 114, 115℄. Our gluon distribution (4.26) is modeledkeeping in mind the situation in the proton, where the gluon distribution isstrongly suppressed for large �. Thus a suitable modi�ation of the pomerongluon distribution would be neessary.We will not pursue, however, the analysis in this diretion sine we thinkthat it does not lead to better understanding of DIS di�ration. Instead, wehange to a desription based diretly on QCD, in whih the di�rative stateis formed by the omponents of the photon wave funtion (4.1). In this de-sription, supplemented by the dipole ross setion desribed in the previoushapter, all essential features of the Ingelman{Shlein model are present andnaturally explained. In addition, the problem with the desription of the re-gion of large � is ured by areful analysis of the longitudinal virtual photonontribution. This ontribution, found to be onentrated at � � 1, is formallyhigher twist and of ourse annot be treated by the leading twist pomeronparton distribution analysis in the Ingelman{Shlein model.
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4.3. QCD based desription 774.3 QCD based desriptionLet us onsider the di�rative system formed by the �rst Fok omponent of thevirtual photon wave funtion{the q�q pair (see eq. (4.1)). The elasti satteringon the proton ours through the oupling of two gluons in singlet state withthe transverse momenta �l, and the longitudinal momentum frations x1 andx2 whih obey xIP = x1 � x2 : (4.37)We onsider the zero momentum transfer t = 0. There are four amplitudes forthis proess in whih the two gluons ouple to the quarks in all possible ways,one of them is shown in Fig. 4.6.The �nal state quark momenta are deomposed in the base whih onsistsof two light-like vetors q0 = q+x p and p, and two spae-like transverse vetorsorthogonal to the previous ones. Thus we havek1 = z q0 + k2 +m2fs z p + kT (4.38)k2 = (1� z) q0 + k2 +m2fs (1� z) p � kT ; (4.39)where s = 2q0 � p and mf is the quark mass. In the frame in whih the virtualphoton and the proton are ollinear along the z-axis, the transverse momentumkT = (0;k; 0). The di�rative mass of the q�q system is given byM2 = (k1 + k2)2 = k2 +m2fz (1� z) : (4.40)In the �IP enter-of-mass frame (pIP = xIP � p) z is related to the quark sat-tering angle os � = 1� 2 z : (4.41)For the symmetri on�guration with z = 1=2 the quarks satter at � = �=2.Aligned jet on�guration with z � 0 orresponds to � � 0.
lT lT
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pFigure 4.6: Di�rative prodution of the q�q pair.



78 Chapter 4. Di�rative DIS4.3.1 Basi ross setionsThe ross setions for di�rative sattering from transverse and longitudinalphotons � + p! q �q + p0 (4.42)are omputed analogously to the inlusive ase. Assuming the two-gluon ex-hange mehanism, the amplitude is the sum of two subamplitudes, with rossedand unrossed exhanged gluons. In the high energy limit, the real parts of thetwo subamplitudes anel, and we are left only with the imaginary part of theunrossed amplitude whih dominates the proess. After squaring that ampli-tude we obtain for the transverse ross setion [90℄d �DTd2k dz dt j t=0 = �em6� Xf e2f Z d2ll4 Z d2l 0l 04 �sf(xIP ; l2) �sf(xIP ; l 02)��[z2 + (1� z)2℄ � kD(k) � k + lD(k + l)� � � kD(k) � k+ l 0D(k+ l 0)�+ m2f � 1D(k) � 1D(k + l)�� 1D(k) � 1D(k+ l 0)�� (4.43)and for the longitudinal ross setiond �DLd2k dz dt j t=0 = �em6� Xf e2f Z d2ll4 Z d2l 0l 04 �sf(xIP ; l2) �sf(xIP ; l02) (4.44)� 4 Q2 z2(1� z)2 � 1D(k) � 1D(k + l)�� 1D(k) � 1D(k+ l 0)� ;where D(k) = k2 + z(1� z)Q2 +m2f . The four terms whih arise after omput-ing the produts under the integral orrespond to four possible ways in whihthe two gluons ouple to the q�q pair. Suh ouplings are neessary for gaugeinvariane and �niteness of the ross setions integrated over k.Notie that we use the same unintegrated gluon distribution funtion f(xIP )as in the inlusive ase, now taken at xIP instead of at Bjorken-x. In generalthis funtion should depend on the gluon longitudinal momentum frationsf(x1; x2; l2) where xIP = x1 � x2. In the high energy limit, however, when theleading powers of log(1=x) are taken into aount, the asymmetry x1 6= x2 anbe negleted and the indiated approximation is legitimate. The role of thisasymmetry for high-p? jet photoprodution was analyzed in [143℄ with the helpof the o� diagonal parton distributions [144, 145, 146℄.Eqs. (4.43) and (4.44) an be easily rewritten in the dipole representation,using relations (B.1) and (B.3) from Appendix B. After some rearrangements



4.3. QCD based desription 79we obtaind �DTd2k dz dt j t=0 = 3�em32�3 Xf e2f Z d2r12� d2r22� �̂(xIP ; r1) �̂(xIP ; r2) ek�(r1�r2)��[z2 + (1� z)2℄ r1 � r2r1 r2 Q2 K1(Qr1)K1(Qr2) + m2f K0(Qr1)K0(Qr2)�(4.45)and d �DLd2k dz dt j t=0 = 3�em32�3 Xf e2f Z d2r12� d2r22� �̂(xIP ; r1) �̂(xIP ; r2) ek�(r1�r2)� 4Q2 z2 (1� z)2 K0(Qr1)K0(Qr2) ; (4.46)where Q2 = z(1 � z)Q2 +m2f . The inlusive di�rative ross setion (at t = 0)is obtained after the integration over momenta of the �nal state quarksd �DT;Ldt j t=0 = Z d2k dz d �DT;Ld2k dz dt j t=0 : (4.47)It has a remarkably simple form in the dipole representation. When the inte-gration over k in (4.46) is done, we obtain the delta funtion Æ(r1 � r2) whihallows to perform one of the two integrations over r. Thus we �nd the followingresult d �DT;Ldt j t=0 = 116� Z d2r dz Xf j	fT;L(r; z)j2 �̂2(x; r) ; (4.48)where 	fT;L is the photon wave funtion whih appears in the inlusive DISross setion (3.7). Notie that the dipole ross setion appears squared in thedi�rative ross setion. In order to obtain (4.48) we hanged the argument in�̂ from xIP to x during the k-integration. It is legitimate in the high energyapproah as long as the dominant ontribution is not onentrated at small� = x=xIP . As we will see, this is the ase for the di�rative q�q prodution.The formula (4.48) is a realization of the old idea of Good and Walker[147℄ (see also [148℄) that di�ration ours due to di�erent absorption of theinteration matrix eigenstates. In the small-x DIS ase these are the q�q dipoleswith de�nite r and z. The projetile, the virtual photon in our ase, is asuperposition of these states eah of whih is elastially sattered with di�erentprobability.The total di�rative ross setions are obtained after an additional inte-gration over t. Assuming a fatorizable exponential dependene on t with thedi�rative slope BD, we have�DT;L = Z 0�1 dt eBDt d �DT;Ldt j t=0 = 1BD d �DT;Ldt j t=0 : (4.49)



80 Chapter 4. Di�rative DIS4.3.2 Saturation and DIS di�rationDIS di�ration is a good test of the saturation model. The three parameters ofthis model were obtained from the �t to inlusive small x data. Determined inthis way the dipole ross setion has been applied to eqs. (4.45) and (4.46) inthe region of moderate values of � where the q�q omponent of the di�rative�nal state dominates. For small values of � the q�qg state should additionallybe onsidered. The result is a very good desription of di�rative data formHERA, see [95℄.The idea that the dipole ross setion saturates with the x-dependant radiusis partiularly important for di�ration. It allows to explain in a natural waythe onstant ratio �D=�in as a funtion of x and Q2 whih is observed atHERA. As a onsequene, the di�rative ross setion has the same leadingtwist behaviour and energy dependene as the inlusive DIS ross setion. Toprove these results, let us perform the qualitative analysis of the transverse rosssetion (4.48), using the approximate formula (3.15) with the squared dipoleross setion (3.21).In the saling region, Q2 � 1=R20, we �nd for transverse photons�DT � 4=Q2Z0 dr2r2 ��0 r24R20 �2| {z }symmetri + 4R20Z4=Q2 dr2r2 � 1Q2r2���0 r24R20 �2| {z }aligned jet + 1Z4R20 dr2r2 � 1Q2r2��20| {z }aligned jetwhih after the integration gives the following leading ontributions�DT � �20Q4R40| {z }r<2=Q + �20Q2R20| {z }2=Q<r<2R0 + �20Q2R20| {z }r>2R0 : (4.50)Notie that in ontrast to inlusive DIS ross setion (3.23), the leading twist-2result omes only from aligned jet on�guration. The symmetri ontributionis higher twist. Therefore, the perturbative ontribution is largely suppressedin di�rative DIS. This situation is illustrated in Fig. 4.7 where we show thedistribution d�T =dr for inlusive (3.7) and di�rative (4.48) ross setions. Thesuppression of the ontribution with r < 2=Q for di�rative dissoiation (DD)is learly visible.In DIS di�ration the proton struture is probed with a large q�q probe, andthe orresponding sizes r are in the saturation region of the dipole ross setion(3.18). The fat that di�ration has a signi�ant soft omponent (r � 2R0)is to be expeted. Here we �nd that the semi-hard region 2=Q < r < 2R0signi�antly ontributes (detailed analysis gives around 50%). This shows thatDIS di�ration is ideally suited to study the transition from `soft' to `hard'physis.The analysis performed for the longitudinal ross setion gives a higher twist
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84 Chapter 4. Di�rative DISdipole ross setion is spherially symmetri, �̂(r) = �̂(r).In this ase the angular integration with respet to the angles between k andr1, r2 an be performed with the help of the relation (B.5) from Appendix B.Thus we obtaind �DTd2k dz dt j t=0 = 3�em32�3 Xf e2f n[z2 + (1� z)2℄ Q2 �21(k; z) +m2f �20(k; z) ;o(4.57)d �DLd2k dz dt j t=0 = 3�em32�3 Xf e2f 4Q2 z2 (1� z)2 �20(k; z) ; (4.58)where the \impat fators"�i(k; z) = Z 10 dr r Ki(Qr)Ji(kr) �̂(xIP ; r) (4.59)for i = 0; 1. Let us reall that Q2 = z(1� z)Q2 +m2f , and Ki and Ji are theBessel funtions.The di�rative mass spetrum of the q�q pair is found after integratingover the �nal state quark momenta orresponding to a di�rative mass M ,eq. (4.40)), and over t aording to (4.49). Thus we haved�DT;LdM2 = Z d2k dz Æ M2 � k2 +m2fz(1� z)! 1BD d �DT;Ld2k dz dt j t=0 : (4.60)It is easy to hek that after the integration of the above relation over M2, thetotal di�rative ross setions (4.49) are obtained.The di�rative struture funtions (4.10) are diretly related to the di�ra-tive ross setions. From relation (4.11) we easily �nd the general relationxIPFD(3)T;L (�;Q2; xIP ) = 14�2�em Q4� d�DT;LdM2 ; (4.61)where we swith to � = Q2=(Q2 +M2) as an independent variable whih is ananalogue of the Bjorken-x for DIS di�ration. The presented formulae an beused for numerial analysis with the dipole ross setion given by the saturationmodel, see the omparison with the data in Fig. 4.9. It is instrutive, however,to try to analyze them analytially.4.3.4 Mass spetrum in ertain limitsWe an analyze the derived formulae analytially in ertain limits of the di�ra-tive mass M . For this purpose we perform the integration over k in (4.60) to�nd d�DT;LdM2 = 2� Z 1=2zmin dz z(1� z) 1BD d �DT;Ld2k dz dt j t=0 ; (4.62)



4.3. QCD based desription 85where zmin = (1�q1� 4m2f=M2)=2 and k2 = z(1� z)M2�m2f on the r.h.s of(4.62). If, for simpliity, we set mf = 0, we arrive at the �nal formulae whihwill serve as the starting point for the analysis presented in this setiond�DTdM2 = 3�em32�2BD Xf e2f Q2 Z 10 dz z2(1� z)2 [z2 + (1� z)2℄ �21(z) ; (4.63)d�DLdM2 = 3�em32�2BD Xf e2f Q2 Z 10 dz z3(1� z)3 �20(z) ; (4.64)where the impat fators (4.59) take the form�0;1(z) = Z 10 dr rK0;1�pz(1� z)Qr� J0;1�pz(1� z)Mr� �̂(xIP ; r) :(4.65)In the following we will disuss our results mainly in terms of the struturefuntions (4.61) whih are related to the above ross setions by a simple mul-tipliative fator.In the limit M = 0, only �0 in eq. (4.65) has a nonzero value sine Ji(0) =Æi0. Thus we expet that at the low mass edge of the spetrum, M2 � Q2 or� ! 1, the longitudinal ontribution (although higher twist) dominates overthe transverse one. Indeed, the analysis done for the saturation model in thespirit of the estimations from the previous setions, gives the following dominantontributions for � ! 1,xIPFD(3)Tqq � �20BDR20(xIP ) (1� �) ; (4.66)xIPFD(3)Lqq � �20BDR20(xIP ) � 1Q2R20� :As expeted, the longitudinal struture funtion is suppressed by the additionalpower of 1=Q2 but it dominates over FDT when � � 1. Let us notie that thevanishing of FDT at � = 1 is independent of the form of the dipole ross setion.It is interesting to note that the leading behaviour of the transverse rosssetion is given by aligned jet on�guration (z < 1=R20Q2) whih involves largedistanes, r � R0. In the small mass limit this omponent, as well as the wholetransverse ross setion, are strongly suppressed. For the longitudinal polar-ization, the symmetri on�guration (z � 1=2) gives the main ontribution. Insuh a ase the large sizes are strongly suppressed, and the perturbative re-gion r � R0 mainly ontributes to the ross setion. This observations leadto the expetation that the di�rative ross setion is nearly saturated by theprodution of the longitudinally polarized vetor mesons in the limit M2 � Q2.The same analysis performed for the saturation model in the triple Regge



86 Chapter 4. Di�rative DISlimit, M2 � Q2 or � ! 0, gives to the following resultxIPFD(3)Tqq � �20BDR20(xIP ) � ; (4.67)xIPFD(3)Lqq � �20BDR20(xIP ) � 1Q2R20� �3 ;where now � � Q2=M2. Both ontributions are due to aligned jet on�guration(z < 1=R20M2). The higher twist nature of FDL for �xed � and xIP is evident.This struture funtion is also suppressed stronger than the transverse one.The fat that the struture funtions (4.67) vanish when � ! 0 is indepen-dent of the the form of the dipole ross setion, but depends on the photon wavefuntion. The saturation model, however, provides the normalization (togetherwith the di�rative slope BD) and the dependene on energy (xIP ) whih areessential elements for the omparison with data.In terms of the ross setions, relations (4.67) look as followsd�DTdM2 � 1M4 and d�DLdM2 � 1M8 ; (4.68)in the limit M2 ! 1, for �xed xIP and Q2. The experimental results fromHERA, however, do not on�rm suh strong di�rative mass suppression. ForM2 � Q2 the measured d�D=dM2 � 1=M2 whih is a strong indiation that wehave to onsider the next Fok state from the virtual photon wave funtion (4.1),the q�qg state. Indeed, after onsidering this ontribution in the on�gurationwhen the gluon is strongly separated from the q�q pair in the r-spae, we obtainagreement with the data. In terms of the di�rative struture funtion, themeasured and omputed FD(3)2 rises when � ! 0. E�etively (in the large Nlimit) the new on�guration may be viewed as the gg dipole.4.3.5 The q�qg ontributionThe detailed disussion of the q�qg ontribution is given in [129℄ and [95℄. Herewe only quote the �nal result in the dipole representation (see also eq. (23) in[95℄ for the representation with the unintegrated gluon distribution),xIPFD(3)q�qg (�;Q2; xIP ) = 81�256�4BD Xf e2f �s2� Z 1� dzz "�1� �z�2 +��z�2#� z(1� z)3 Z (1�z)Q20 dk2 log�(1� z)Q2k2 � �22(k; z) ; (4.69)where the new impat fator is given by�2(k; z) = k2 Z 10 dr r K2�r z1� z kr� J2(kr) �̂(xIP ; r) : (4.70)The di�rative prodution from transverse photons is only onsidered. Notiethat an additional gluon radiation is a higher in �s orretion. The variable
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pFigure 4.10: Di�rative q�qg prodution.z desribes the relative momentum fration of the gluon with respet to thepomeron momentum xIPp. The ombination k2=(1 � z) whih enters the loga-rithm is its mean virtuality. The term in square brakets under the �rst integralis the Altarelli-Parisi splitting funtion g ! qq, whih results from the approxi-mation that the transverse momentum of the emitted gluon is smaller than thetransverse momentum of the quark. In the impat parameter representationthis orresponds to a large separation between the gluon and the q�q pair.In the triple Regge limit � ! 0, we obtain the following resultxIPFD(3)q�qg � �20BDR20(xIP ) (1� 32�) ; (4.71)whih gives the mass spetrum d�DTdM2 � 1M2 : (4.72)Thus, although this is a higher in �s orretion, the proess with a gluon radi-ated o� in the q�qg di�rative state dominates over the pure q�q ontribution inthe large di�rative mass limit. For a small di�rative mass, FD(3)qqg is stronglysuppressed, and the q�q ontributions (4.66) is important. The presented resultsare supported by the exat numerial analysis, see [95℄ for details.In summary, we have disussed the three ontributions to the di�rative DIS,the q�q pair from the transverse and longitudinal photon and the q�qg system,FD(3)2 = FD(3)Tq�q + FD(3)Lq�q + FD(3)q�qg : (4.73)These ontributions have distint regions of � in whih they dominate. For� � 1 or M2 � Q2 the longitudinal q�q omponent is the most important.In the intermediate range, � � 1=2 or M2 � Q2, the q�q prodution from thetransverse photon prevails. Finally, for � � 0 or M2 � Q2 the q�qg produtiondominates. The three ontributions are shown in Fig. 4.11, reprodued from[95℄. Note very good agreement with data.
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4.4 Di�rative parton distributionsThe di�rative struture funtions FD(4) were introdued in Setion 4.1 in afull analogy to the inlusive DIS ase. They haraterize the hadroni tensorfor di�rative DIS: W�� = W��(p; p0; q)W�� = 14� XX < pjJem� (0)jp0X >< p0XjJem� (0)jp > (2�)4 Æ4(p� p0 � pX)= ��g�� + q�q�q2 �FD(4)1 + 1p�q �p� � q� p�qq2 ��p� � q� p�qq2 �FD(4)2 :Notie the di�erene to the inlusive hadroni tensor (2.6). In the summationover the �nal states only those with loosely sattered inident proton are re-tained. Thus, the �nal states in the di�rative hadroni tensor onsist of thesattered proton p0 and the di�rative system X over whih the summationis performed. This introdues two variables (xIP ; t), de�ned in Setion 4.1, inaddition to those known from the inlusive ase (x;Q2).



4.4. Di�rative parton distributions 89The momentum p0 of the sattered proton an also be used to build thetensor struture of the hadroni tensor (4.74). It is not neessary, however, aslong as the azimuthal angle of the sattered proton is not measured [124℄. Thusonly two struture funtions are needed to haraterize the hadroni tensor:FD(4)i = FD(4)i (x;Q2; xIP ; t) ; (4.74)where i = 1; 2. In the following we will be interested in the struture funtionsintegrated over t, FD(3)i (�;Q2; xIP ), see eq. (4.61). The struture funtions(4.74) are idential to those in Setion 4.1.As in inlusive DIS, the di�rative struture funtions are deomposed intothe leading and higher twist ontributionsFD(3)i (�;Q2; xIP ) = FD(3)LTi (�;Q2; xIP ) + FD(3)HTi (�;Q2; xIP )Q2 + ::: : (4.75)The leading twist part is related to di�rative parton distributions (DPD) [149,150, 151, 152℄ in analogy to inlusive DISFD(3)LT2 (�;Q2; xIP ) = Xf e2f � �qDf (�;Q2; xIP ) + �qDf (�;Q2; xIP )	 ; (4.76)In addition to the di�rative quark distributions, qDf and �qDf , the di�rativegluon distribution gD(�;Q2; xIP ) is de�ned. Usually, it is assumed that thequark and antiquark distributions are equal,qDf (�;Q2; xIP ) = �qDf (�;Q2; xIP ) ; (4.77)to be in aord with the piture of the pomeron exhange with vauum quantumnumbers. All distributions obey the DGLAP evolution equations in whih xIPis a parameter independent of the evolution.The DPD have a probabilisti interpretation. They are onditional proba-bilities to �nd in a fast moving proton a parton with the momentum fration�, under the ondition that proton remains intat after the sattering losing asmall fration xIP of its momentum. The momentum fration � is de�ned withrespet to the lost proton momentum xIPp.The possibility to de�ne the di�rative parton distributions results from theproof that ollinear fatorization holds for di�rative DIS [153℄. This allowsto separate the leading twist ontribution into short and long distane parts,and then absorb ollinear singularities into the latter part. As a result theparton distributions aquire dependene on the sale, governed by the evolutionequations.In inlusive DIS parton distributions are universal, i.e. the same distri-butions an be used in the desription of both lepton-hadron DIS and hadron-hadron hard reations sine ollinear fatorization is valid for the two proesses.Collinear fatorization, however, is violated in di�rative hadron-hadron sat-tering [154, 153℄. Thus, unlike the inlusive sattering, the di�rative partondistributions are no universal quantities. They an safely be used, however, to



90 Chapter 4. Di�rative DISdesribe hard di�rative proesses involving leptons. A systemati approah todi�rative parton distributions, based on quark and gluon operators, is givenin [152, 133℄.Disussing di�rative parton distributions, it is very important to distin-guish between di�erent types of fatorization. Collinear fatorization allows tode�ne these distributions. The other fatorization, alled Regge fatorization,is a hypothesis on a fatorized form of DPD. Namely,qDf (�;Q2; xIP ) = f(xIP ) qIPf (�;Q2) : (4.78)The funtion f(xIP ) is ommon for both the quark and gluon DPD. If f(xIP )is given by (4.13) (integrated over t) we arrive at the Ingelman{Shlein model.In this ase qIPf (�;Q2) oinide with the pomeron parton distributions.Let us emphasize that the issue of di�rative parton distributions is inti-mately related to the leading twist-2 ontribution to di�rative struture fun-tions. In partiular, the assumption that the longitudinal struture funtion isleading twist, as in inlusive DIS, is not supported in the two-gluon exhangemodel. The leading twist vanishes and FDL is twist-4 with the behaviour pro-portional to 1=Q2.4.4.1 DPD in the saturation modelThe di�rative parton distributions an be de�ned in the two-gluon exhangemodel. In order to �nd the quark distribution we have to extrat the leadingtwist part from FD(3)T , eq. (4.61). The gluon distribution is extrated fromFD(3)q�qg given by (4.69). The longitudinal struture funtion FD(3)L , as highertwist, does not ontribute to di�rative parton distributions.In order to extrat the quark DPD, we write FD(3)T , given by (4.61) with(4.62), in the form in whih the z-integration is performed �rst. After that we�nd the following form of the transverse q�q ontribution in the limit mf = 0,xIPFD(3)Tqq = 364�4BD Xf e2f �2(1� �)3 Q2(1��)=4�Z0 dk2 1� 2�1� � k2Q2s1� 4�1� � k2Q2 �21(k)(4.79)where now�1(k) = k2 Z 10 dr r K1 s �1� � kr! J1(kr) �̂(xIP ; r) : (4.80)The leading twist part of (4.79) is obtained by negleting the powers k2=Q2under the integral and integrating over k2 up to in�nity. Stritly speaking,energy onservation is violated in suh a ase, but the orretions are of thehigher twist nature. With the new limit the integral is �nite and we an write



4.4. Di�rative parton distributions 91the leading twist part of (4.79) asFD(3)LTTqq = 2 Xf e2f � qDf (�; xIP ) ; (4.81)where the di�rative quark distribution is given byqDf (�; xIP ) = 3128�4BD xIP �(1� �)3 Z 10 dk2 �21(k; �; xIP ) ; (4.82)for any avour f . Notie a lak of the fatorization sale �2 = Q2 on theright hand side of (4.81). This may be viewed as a onsequene of not havinginluded ultraviolet divergent orretions whih would require a uto�. Withthose orretions the parton distributions beome �2-dependent and evolutionwould relate the distributions at di�erent Q2 values. However, we may useqDf (�) as input distributions for the Altarelli-Parisi evolution with an initialsale related to the physis involved, e.g. �2 = 1=R20(xIP ) for the saturationmodel. Of ourse, the hoie of the initial sale introdues an unertainty forthe predition. As we will see in the next subsetion, the xIP dependene in(4.82) fatorizes and does not inuene the evolution.The gluon distribution an be found from (4.69). In the alulation ofthis ontribution it was assumed that the transverse momenta or virtualitiesof the quark and the gluon are strongly ordered. In this approximation theintegration over the transverse momentum of the quark loop gives a logarithmiontribution whih has a natural lower uto�, the virtuality of the gluon. Atthe same time the virtuality of the gluon should not exeed Q2. This is theorigin of the logarithmi term in (4.69). Collinear fatorization means that wean pull that logarithm out of the integral over the gluon transverse momenta,and add to it an arbitrary sale Q20. Thus we an write (4.69) in the followingform (we set z = ~� there)FD(3)LTg�gg = 2 Xf e2f � �s2� log Q2Q20 1Z� d~�~� 12 "�1� �~��2 +��~��2# gD( ~�; xIP )(4.83)where the di�rative gluon distribution is given bygD(�; xIP ) = 81256�4BD xIP �(1� �)3 Z 10 dk2 �22(k; �; xIP ) (4.84)and �2 is given by eq. (4.70). As in the ase of the quark distribution (4.82),the found gluon distribution does not depend on Q2, and serves as the initialdistributions at some �xed sale Q20.The motivation for the above identi�ation of the di�rative gluon distri-butions is the struture in the urly brakets on the r.h.s of eq. (4.83). It isidential to the struture resulting from the DGLAP evolution with one split-ting of the gluon into the q�q pair.The ombined initial parton distributions (4.82) and (4.84), depited inFig.4.12, allow omplete desription of the leading twist part of di�rative
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0 0.2 0.4 0.6 0.8 1Figure 4.12: The di�rative quark distribution (4.82) and the gluon distribution(4.84) (multiplied by x = xIP �) from the saturation model as a funtion of �for xIP = 0:0042 at the initial sale Q20.DIS. They serve as the initial onditions for the DGLAP evolution equations.DGLAP evolution in this ase means that the di�rative system beomes moreompliated due to additional parton emissions.The longitudinal, higher twist ontribution requires a separate treatment. Itbeomes important for large values of �, where the q�q and the q�qg produtionfrom transverse photons is negligible. Thus we add this ontribution to theevolved leading twist part. The omplete expression of the struture funtionreads FD(3)2 = FD(3)(LT )2 + FLq�q : (4.85)where FD(3)LT2 is given byFD(3)(LT )2 = 2 Xf e2f � qD(�;Q2; xIP ) ; (4.86)with the full DGLAP evolution. The longitudinal struture funtion FLq�q isfound using relations (4.61) and (4.62) in whih the integration over z is doneFLq�q = 316�4BD xIP Xf e2f �3(1� �)4 Z Q2(1��)4 �0 dk2 k2=Q2s1� 4�1� � k2Q2 �20(k) ;(4.87)with �0 de�ned as in eq. (4.80) with the Bessel funtions K1; J1 replaed byK0; J0. From the above expression we see that FLq�q is one power down in Q2with respet to the transverse ounterpart F Tq�q, see eq. (4.79), being higher twistontribution.In summary, Eqs. (4.82) and (4.84) may serve as initial onditions for theevolution equations in the analysis of di�rative DIS with the di�rative stru-ture funtion given by (4.85). For the omparison with the data see [155℄.



4.4. Di�rative parton distributions 934.4.2 Regge fatorizationThe saling property of the dipole ross setion, i.e. that �̂ is a funtion ofthe dimensionless ratio r=R0(x), has the remarkable onsequene for the xIP -dependent of the found di�rative parton distributions.Introduing the dimensionless variables k̂ = kR0(x) and r̂ = r=R0(x) in(4.82) and (4.84), and assuming Q20 to be a �xed sale, we �nd the followingfatorization qDf (�; xIP ) = 1xIPR20(xIP ) qIPf (�) ; (4.88)gD(�; xIP ) = 1xIPR20(xIP ) gIP (�) : (4.89)We have introdued a notation similar to that in (4.16) for the �-dependentfators. This type of fatorization is similar to Regge fatorization but in fathas no onnetion with Regge theory. It merely results from the saling prop-erties of the saturating ross setion �̂. Sine the evolution does not a�et thexIP -dependene of the DPD, the fatorized form will be valid for any sale Q2.Now, we an rewrite eq. (4.86) asFD(3)(LT )2 = 1xIPR20(xIP ) 2 Xf e2f � qIPf (�;Q2) (4.90)in whih the xIP -dependene is fatored out. The Q2-dependene of the distri-butions qIPf is introdued by the evolution equations.In the saturation model the parameter � = 0:29 in the relation R0(x) � x�=2was determined from a �t to inlusive DIS data only [94℄. The same valueholds for di�rative interations, thus we �nd a de�nite predition for the xIP -dependene of the leading twist di�rative struture funtionFD(3)(LT )2 � x�1��IP : (4.91)At present, the bulk of di�rative data in DIS support the fatorized form(4.91). They are usually interpreted [86, 87℄ in terms of the t-averaged pomeroninterept �IP , i.e. FD(3)2 � x1�2�IPIP : (4.92)Suh a dependene has been introdued in the spirit of the Ingelman{Shleinmodel, with the t-integration performed, FD(3)2 � R dt f(xIP ; t) � x1�2�IPIP .Thus, aording to (4.91) and (4.92) we �nd�IP = �2 + 1 � 1:15 ; (4.93)whih is in remarkable agreement with the values found at HERA, �IP =�IP (0) � 0:03 = 1:17 by H1 [86℄ and �IP = 1:13 by ZEUS [87℄. More de-tailed analysis, see [95℄, allows to predit �IP � �IP (eff) as shown in Fig. 4.13for the two values of the di�rative mass.
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2Figure 4.13: The e�etive pomeron slope as predited in the saturation modelas a funtion of Q2 for two values of the di�rative mass MX . The data arefrom the ZEUS ollaboration.FD(3)2 in the saturation model ontains more than leading twist. This meansthat the dependene (4.91) is not generally valid. It is espeially importantfor � ! 1, i.e. in the small di�rative mass region. From the analysis ofSetion 4.3.3 we know that the twist-4 longitudinal struture funtion dominatesthere. Thus the expeted dependene on xIP for � � 1 is stronger than in theintermediate range of the di�rative mass M2 � Q2,FD(3)2 � FD(3)L � 1xIPR40(xIP ) = x�1�2�IP ; (4.94)whih learly violates the universality of the e�etive pomeron interept indi�erent regions of di�rative mass. The �rst indiation of that e�et wasindeed observed at HERA [87℄, and the saturation model gives a satisfatoryexplanation, see Fig. 4.13 and [95℄ for more details.At this point we do not agree with the Ingelman{Shlein model in whiha universal pomeron interept behaviour resulting from Regge fatorization isassumed. The lak of universal Regge fatorization should be distinguishedfrom the possible violation of the xIP -fatorization due to subleading reggeonexhanges [86℄, disussed in Setion 4.2.2. This e�et is not desribed by thesaturation model, and is important for higher values of xIP than those onsideredin the high energy limit in whih the analyzed formulae were derived.The large twist-4 omponent also o�ers an alternative to the strongly on-entrated at � � 1 gluon distribution, found in the purely leading twist DGLAPanalysis of DIS di�ration [86℄.Fig. 4.14 summarizes our studies of DIS di�ration based on the relation(4.73) with the saturation model for the dipole ross setion. This �gure shouldbe ompared to Fig. 4.5 in whih the results from the model with the softpomeron and reggeon exhanges were shown. We see that a good desriptionof data is obtained with the saturation model, inluding the region of large �(the two rightmost olumns in Fig. 4.14).These results were obtained withouttuning additional parameters to those found in the inlusive data analysis. Ofourse, the reggeon ontribution annot be desribed by the saturation model.
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Chapter 5Summary and outlookIn this dissertation we have presented a desription of DIS at small x whih usesthe ideas of parton saturation. The presentation is based on the ten publishedartiles listed in Introdution.Before the main results are disussed, the bakground material on deepinelasti sattering is provided in Chapter 2. This inludes the standard de-sription with the help of the QCD parton model with the DGLAP evolutionequations [12, 13, 14℄ as well as the disussion of the small-x limit of DIS. Inthis limit, the notion of a hard pomeron is introdued based on onsiderationsleading to the BFKL equation [25℄. This equation replaes the DGLAP evolu-tion equations. Also a di�erent fatorization formula [25, 33℄ for the alulationof the nuleon struture funtions exists at small x, whih uses the unintegratedgluon struture funtion desribing the hard (BFKL) pomeron. The struturefuntions in suh a desription strongly rise with dereasing x, thus they ulti-mately violate unitarity. The unitarization orretions whih tame the strongrise are realized by onsidering additional interations between gluons in thenuleon. This mehanism leads to a piture of parton saturation in whih thegluons form a strongly orrelated system [39℄. In this ase the linear DGLAP orBFKL evolution equations are modi�ed by nonlinear terms. The preise formof these orretions is still under the investigation.The urrent experiments on small-x DIS performed at HERA all for an-swering the question about the role of parton saturation (unitarization) e�etsfor the measured proesses. We have analyzed this problem in the dipole pi-ture of inlusive DIS at small x in Chapter 3. In this piture the unitarityonditions are naturally formulated. The main element of the desription is thephenomenologial parameterization of the dipole{proton ross setion whih in-orporates the main features of parton saturation [94℄. The three parametersof suh a model are determined from a �t to all available data on lepton-protonsattering at small x < 0:01. In the disussed approah a good desription ofboth the DIS data and the transition to low Q2 region is obtained. By a arefulanalysis of the role of the light quark mass in the q�q dipole, the photoprodu-tion limit an formally be ahieved with a good agreement with the data. Theheavy avour inlusive prodution in DIS is also analyzed. The saturation ef-fets in the dipole-proton ross setion parameterization are ruial for good96



97desription of the data in a broad range of Q2. They are also responsible fora new saling law in inlusive ��p ross setion at small x, whih is preditedby the model and suessfully onfronted with the data [98℄. The onstruteddesription allows to study more formal aspet of the QCD based desription ofDIS suh as the twist expansion of the struture funtion F2 [99℄. We providean explanation for the observed in other analyses small size of the the highertwist orretions and estimate the region of validity of the twist expansion atsmall x.A ruial test for the developed desription is provided by di�rative pro-esses in ep DIS. In these proesses the inoming proton stays intat after thesattering, losing a small fration of its initial momentum. As we explainedin detail in Chapter 4, the dipole piture with the saturation e�ets is verysuessful in providing explanation of DIS di�ration. In this ase the proessis viewed as elasti sattering of the q�q or gg dipole o� the proton. The samedipole{proton ross setion as in inlusive DIS an be used. Thus, we do notneed to tune any further parameters. In this sense we obtain a uni�ed for-mulation of inlusive and di�rative DIS with a very good agreement with thedata [144℄. The basi feature that di�rative DIS has the same dependeneon Q2 and x as inlusive eletroprodution is naturally explained in our ap-proah due to the saturation features. This approah an be onfronted to thatwhih uses Regge theory with the onept of the soft pomeron and subleadingreggeon exhanges [117, 114, 115, 120, 121℄. The subleading reggeon exhangesannot be desribed by the saturation model, but the soft pomeron aspet anbe analyzed by looking at di�rative parton distributions [99℄. We �nd Reggefatorization property for them as the predition of the saturation model withthe orret energy dependene measured at HERA. In ontrast, in the Reggeapproah these features are postulated. We also quantify the role of the twist-4q�q ontribution from longitudinal photons for the desription of the di�rativedata at small values of the di�rative mass (� � 1). This ontribution violatesthe universality of Regge fatorization in the large � region and also providesa natural alternative to the strongly onentrated at � � 1 di�rative gluondistribution found in the Regge based models.The future work should be onentrated on the analysis of nonlinear unita-rization orretions to the linear QCD evolution equations. The new equationsare expeted to provide the basis for the proposed parameterization of the dipoleross setion. With respet to this program, the most promising is the analysisperformed by Kovhegov [66, 67℄ after the saturation model was formulated.In this approah, the BFKL equation, formulated in the dipole representation,is generalized by taking into aount multipomeron exhanges in the large Nlimit. The resulting nonlinear equation has a solution whih ontains essentialfeatures of our parameterization of the dipole ross setion. The future analysiswill onentrate on the appliation of this formalism to desription of the DISdata [156℄.



Appendix ASolution to the BFKLequationWe are looking for the spherial symmetri solution of eq. (2.82) written for thedimensionless funtionf(!; k1; k2) � k21 F (!; jk1j; jk2j; 0) : (A.1)After performing the angular integration in eq. (2.82) usingZ 2�0 d�(a� b os�) = 2�pa2 � b2 (A.2)for a > b > 0, the following spherially symmetri form of the BFKL equationis found!f(!; k1; k2) = k21 Æ2(k1 � k2) (A.3)+ N�s� 1Z0 dk02k02 k21 (f(!; k0; k2)� f(!; k1; k2)jk02 � k21 j + f(!; k1; k2)p4k04 + k41) :This equation an be diagonalized using the Mellin transform of f with respetto k1 f̂(!; ) = Z 10 dk21k21 �k21k22�� f(!; k1; k2) ; (A.4)where the inverse relation readsf(!; k1; k2) = 12�i ZC d �k21k22� f̂(!; ) (A.5)and the integration ontour C is to be hosen to the right of all singularites off̂(!; ) in the -plane. 98



99Integrating both sides of eq. (A.3) over k21 with a fator as in (A.4), we �nd!f̂(!; ) = 1� + ��s 1Z0 dk02k02 1Z0 dk21 (A.6)�k21k22�� (f(!; k0; k2)� f(!; k1; k2)jk02 � k21 j + f(!; k1; k2)p4k04 + k41) ;where ��s = N�s=�. Now, we hange the integration variable: k02 ! v =k02=k21 , and perform the integration over k21 to obtain!f̂(!; ) = 1� + ��sK() f̂(!; ) ; (A.7)where K() is the Lipatov kernelK() = Z 10 dvv �v � 1jv � 1j + 1p4v2 + 1�= 2 (1) �  () �  (1� ) (A.8)and  () is the digamma funtion. We use the following representation of  ()to obtain the last equality, valid for Re  > 0 () � dd ln �() = �E � Z 10 dv v�1 � 11� v (A.9)with E = � (1) � 0:57721 being Euler's onstant. K() an be analytiallyontinued onto the whole omplex plane, exept the points  = 0;�1;�2:::where simple poles our.From (A.7) the solution in the (!; )-spae an easily be foundf̂(!; ) = 1=�! � ��sK() : (A.10)The solution in the (s; k)-spae,F(s; k1; k2; 0) = 1�k21 ZC d2�i �k21k22� ZC0 d!2�i � ss0�! 1! � ��sK() ; (A.11)is obtained using eq. (A.5) and the inverse Mellin transform,F(s; k1; k2; 0) = 12�i ZC0 d!� ss0�! F (!; k1; k2; 0) ; (A.12)where the ontour C 0 is to the right of all !-plane singularities of F (!; � ).



Appendix BDipole transformationsHere we prove two basi relations whih are ruial for the dipole piture rep-resentation of inlusive and di�rative �p ross setions. We start from� kD(k) � k+ lD(k+ l)� = Z d2r2� e�ik�r �1� e�ir�l� i rr Q K1(Qr); (B.1)where K1 is the Bessel{M Donald funtion and D(k) = k2 +Q2. In order toprove the above relation let us write the l.h.s of eq. (B.1) asZ d2k1 Æ2(k1 � k)� k1D(k1) � k1 + lD(k1 + l)� == Z d2k1 Z d2r1(2�)2 eir�(k1�k) � k1D(k1) � k1 + lD(k1 + l)� == Z d2r2� e�ir�k Z d2k12� eir�k1 � k1D(k1) � k1 + lD(k1 + l)� :The r.h.s of eq. (B.1) is found after integration over k1 with the help of therelation Z d2k2� expfik � rg kD(k) = i Q rr K1(Qr): (B.2)In the same way we an prove the seond basi formula� 1D(k) � 1D(k+ l)� = Z d2r2� e�ik�r �1� e�ir�l� K0(Qr); (B.3)where the relation analogous to (B.2) looks as followsZ d2k2� expfik � rg 1D(k) = K0(Qr) : (B.4)100



101with K0 being the Bessel{M Donald funtion.Eq. (B.2) an be obtained from eq. (B.4) as a result of di�erentiation withrespet to r and the relation K 00(x) = �K1(x). Therefore, we only need toprove relation (B.4).This an easily be done by performing the angular integration on the l.h.sof eq. (B.4) with the help of the well known relationexpfikr os�g = J0(kr) + 2 1Xn=1 inJn(kr) osn� ; (B.5)where Jn are the Bessel funtions. Thus, we �ndZ d2k2� eik�r 1D(k) = Z 10 k dkk2 +Q2 Z 2�0 d�2� expfikr os�g == Z 10 k dkk2 +Q2 Z 2�0 d�2� (J0(kr) + 2 1Xn=1 inJn(kr) os n�) == Z 10 dk k J0(kr)k2 +Q2 � K0(Qr) :
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