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Chapter 1Introdu
tionIn this dissertation we present a des
ription of intera
tions in deep inelasti
s
attering (DIS) of ele
trons and protons at small values of the Bjorken variablex. Su
h pro
esses are 
urrently studied experimentally at the DESY ep 
olliderHERA. DIS experiments established Quantum Chromodynami
s (QCD) as theunderlying theory of strong intera
tions. Quarks and gluons, the basi
 quantaof this theory, a

ount for the revealed point-like stru
ture of the proton downto distan
es of about 10�16 
m. The small-x kinemati
 domain explored atHERA is parti
ularly interesting from the point of view of QCD studies.The basi
 feature of QCD intera
tions is asymptoti
 freedom. At distan
esmu
h smaller than the typi
al hadroni
 size (� 1 fm) quarks and gluons behaveas very weakly intera
ting free parti
les (partons). The manifestation of su
ha behaviour is s
aling of the proton stru
ture fun
tion F2 with logarithmi
violation explained by perturbative QCD (pQCD). With the rising distan
e,the intera
tions be
ome stronger and eventually quarks and gluons are boundin dire
tly observed hadrons. This phenomenon, 
alled 
on�nement, has beenextensively studied sin
e the advent of QCD. Despite these e�orts, however,the full understanding of 
on�nement is yet to be a
hieved. In the 
on�nementregion pQCD breaks down and new nonperturbative methods are ne
essary.The latti
e formulation of QCD serves as an example.The QCD studies of DIS at small x (� 1) are lo
ated between the regionsof asymptoti
 freedom and 
on�nement. The physi
al pi
ture of the protonwhi
h emerges from these studies suggests that the proton stru
ture at small xis dominated by dense gluoni
 systems with a large number of low momentum(wee) gluons. As a result, the proton stru
ture fun
tion F2 strongly in
reaseswith de
reasing x. The strong rise, however, 
annot go on inde�nitely due tointera
tions between gluons in the dense systems. This e�e
t, 
alled partonsaturation, tames the strong rise of F2 in agreement with the 
ondition of uni-tarity of the des
ription. Thus, at small x gluons in the proton form a strongly
orrelated system of intera
ting parti
les. Let us re
all that the �xed targetDIS experiments, performed for x � 1, revealed a dilute system of free par-tons. Thus in DIS at small x, a new (semi-hard ) regime of QCD is studiedin whi
h the strong 
oupling 
onstant is small but the intera
tions betweenpartons 
annot be negle
ted. 7



8 Chapter 1. Introdu
tionThe question whether parton saturation is relevant in the kinemati
 range ofHERA has intrigued physi
ists sin
e the beginning of this experiment. Due tothe large ep 
enter-of-mass energy, the Bjorken variable x � 10�5 at s
ales forwhi
h pQCD is still appli
able. The des
ription whi
h we are going to presentstrongly suggests the positive answer to this question.The physi
al interpretation of DIS at small x is provided in the proton restframe. In this frame, the virtual photon 
� 
u
tuates into a quark-antiquarkpair long time before the pair intera
ts with the proton. Thus, the pair forma-tion and its subsequent intera
tion are 
learly separated. In this interpretation,
� is a linear superposition of partoni
 
omponents, being the q�q dipoles 
har-a
terized by the transverse size r (with respe
t to the 
�p 
ollision axis) andlongitudinal momentum z. The dipole{proton intera
tion does not mix these
omponents, i.e. r and z are good quantum numbers 
onserved by the intera
-tion. Therefore, DIS at small x 
an be viewed as the sum over independent q�qdipole s
atterings on the proton target. In this sense, the DIS pro
ess is similarto hadron{hadron s
attering, with the advantage that the stru
ture of one ofthe proje
tiles is 
ompletely known.The dipole{proton intera
tion depends on the dipole size. For small sizes(r � 1 fm), pQCD is appli
able and the intera
tion is realized by a singlegluon ex
hange a

ompanied by an additional gluon radiation. For large sizes(r � 1 fm), 
on�nement for
es are important, 
hanging the intera
tion to a oneresembling hadron{hadron intera
tions with a weak dependen
e on energy. Thise�e
t 
annot be 
omputed in pQCD and has to be modelled, but the onset of thetransition between the QCD radiation at small sizes and hadroni
 intera
tionsfor large sizes is within the rea
h of pQCD means. In the intermediate rangeof the dipole sizes, multi-gluon ex
hanges with additional intera
tions betweenthe gluons are important, leading to the pi
ture of parton saturation.The detailed QCD des
ription of the above pro
esses has not been a
hievedyet. We propose a phenomenologi
al approa
h and postulate a parameterizationof the dipole{proton intera
tions whi
h in
orporates the des
ribed features.With this parameterization we a
hieved a very good des
ription of the DIS dataat small x (mainly from HERA), in
luding the transition to low Q2 values. Themain ingredient of this model is a saturation radiusR0(x), related to the size of agluon system in the proton. R0(x) sets the s
ale for the dipole 
on�gurations. Inparti
ular, r � R0 
orresponds to the transition region where saturation e�e
tsare important. The saturation radius de
reases when x ! 0, thus, for smallenough x, saturation e�e
ts 
an be des
ribed by pQCD, making the approa
h
onsistent. We �nd that it happens in the HERA kinemati
 range sin
e R0 �0:2 fm (whi
h 
orresponds to the saturation s
ale Qs(x) = 1=R0(x) � 1 GeV)for x � 10�4. Parton saturation allows to des
ribe the transition of the 
�p
ross se
tion, �
�p � F2=Q2, to low Q2 values. Namely, if the wavelength ofthe virtual probe is smaller than the saturation radius, 1=Q � R0, Bjorkens
aling (with logarithmi
 violation) is found, �
�p � 1=Q2. In the opposite
ase, when 1=Q� R0, the virtual probe 
annot resolve the gluoni
 system and�
�p saturates to a 
onstant value.A very stringent test of the postulated model of the dipole-proton intera
-tions is provided by di�ra
tive DIS at small x. In a �rst approximation, these



9pro
esses 
an be interpreted as elasti
 s
attering of q�q dipoles o� the protonwith the net 
olourless ex
hange. As a result, the proton stays inta
t, losingonly a small fra
tion of its initial momentum. The most striking feature of DISdi�ra
tion, measured at HERA, is a 
onstant ratio (� 10%) between the di�ra
-tive and total 
ross se
tions as a fun
tion of x and Q2. The understanding ofthis feature, as well as the entire pro
ess, is a great 
hallenge for QCD.The parameters of the dipole{proton intera
tions were determined in theanalysis of in
lusive DIS. With these parameters a good des
ription of di�ra
tiveDIS is also obtained. In parti
ular, the 
onstant ratio �diff=�tot is naturallyexplained. The key element for the su

ess of this approa
h is in
orporation ofparton saturation e�e
ts with the intrinsi
 saturation s
ale R0(x). A distin
tivefeature of DIS di�ra
tion is the suppression of the small size dipole 
on�guration(r � R0), making di�ra
tive pro
esses dire
tly sensitive to the range of r �R0 in whi
h parton saturation e�e
ts dominate. The relative hardness of thesaturation s
ale, 1=R0 � 1 GeV, suggests that DIS di�ra
tion is a semi-hardrather than soft pro
ess as Regge theory (used traditionally in the des
riptionof hadron-hadron high energy s
attering) would require.In the following we des
ribe in
lusive and di�ra
tive pro
esses in DIS atsmall x from the uni�ed point of view imposed by the dipole pi
ture presentedabove in whi
h parton saturation plays the dominant role. An extensive 
om-parison with the 
urrent data from HERA is also presented. The dissertationis based on the following original arti
les (in the 
hronologi
al order).I K. Gole
{Biernat and J. Kwie
i�nski, QCD analysis of di�ra
tive DIS atHERA, Phys. Lett. B353 (1995) 329, [117℄.II K. Gole
{Biernat, Partoni
 stru
ture of the pomeron, A
ta Phys. Polon.B27 (1996) 134, [115℄.III K. Gole
{Biernat and J.P. Phillips, QCD: Quantum 
hromodynami
 di�-ra
tion, J. Phys. G22 (1996) 92, [114℄.IV K. Gole
{Biernat and J. Kwie
i�nski, Subleading reggeons in deep inelasti
di�ra
tive s
attering at HERA, Phys. Rev. D55 (1997) 3209, [120℄.V K. Gole
{Biernat, J. Kwie
i�nski and A. Sz
zurek, Reggeon and pion 
on-tributions in semi{ex
lusive di�ra
tive pro
esses at HERA, Phys. Rev.D56 (1997) 3955, [121℄.VI K. Gole
{Biernat and M. W�ustho�, Saturation e�e
t in deep inelasti
s
attering at low Q2 and its impli
ation on di�ra
tion, Phys. Rev. D59(1999) 014017, [94℄.VII K. Gole
{Biernat and M. W�ustho�, Saturation in di�ra
tive deep inelasti
s
attering, Phys. Rev. D60 (1999) 114023 [95℄.VIII J. Bartels, K. Gole
{Biernat and K. Peters, An estimate of higher twistat small x and low Q2 based upon a saturation model, Eur. Phys. J. C17(2000) 121, [99℄.



10 Chapter 1. Introdu
tionIX A. Sta�sto, K. Gole
-Biernat and J. Kwie
i�nski, Geometri
 s
aling for thetotal 
�p 
ross se
tion in the low x region, Phys. Rev. Lett., 86 (2001)596, [98℄.X K. Gole
{Biernat and M. W�ustho�, Di�ra
tive parton distributions fromthe saturation model, Eur. Phys. J. C20 (2001) 313 , [155℄.The outline of the presentation is the following. In Chapter 2 we providebasi
 elements of the QCD des
ription of deep inelasti
 pro
esses, mainly forpedagogi
al reason, following the literature on this subje
t in the past 30 years.A parti
ular attention is paid to the des
ription of DIS at small x. From thepoint of view of Regge theory, used traditionally in the des
ription of highenergy hadroni
 s
attering, the small x limit 
orresponds to Regge limit inwhi
h a pomeron ex
hange with soft dependen
e on energy dominates. Theanalysis of this limit in pQCD leads to the 
on
ept of a hard pomeron withmu
h stronger dependen
e on energy. The hard pomeron 
alls for unitarization
orre
tions. They are realized in terms of parton saturation e�e
ts whi
h leadto nonlinear modi�
ations of the standard evolution equations.In Chapter 3, based on the results from Refs. [VI,VIII,IX℄, we present ades
ription of in
lusive DIS in the dipole pi
ture. In this pi
ture, the parame-terization of the dipole{proton intera
tions in
orporates in a phenomenologi
alway both the hard pomeron 
on
ept and its unitarization done with the help ofthe idea of parton saturation [VI℄. We determine few parameters of this modelfrom a �t to all available data at small x. As a result, a very good des
riptionof in
lusive DIS data at small x is obtained, in
luding the transition region tosmall Q2 values. In addition, a new s
aling law at small x is predi
ted and
onfronted with the data [IX℄. We dis
uss also heavy 
avour produ
tion andanalyze more formal aspe
t related to the twist expansion in DIS at small x[VIII℄. We �nish this part by presenting two 
on
eptually di�erent approa
hesto the des
ription of the transition to small Q2 values in DIS.In Chapter 4 we des
ribe di�ra
tive DIS following the results obtained inRefs. [I-V,VII,X℄. In the �rst part, these pro
esses are des
ribed using Reggetheory, modi�ed to allow for a partoni
 stru
ture of the di�ra
tive system [I-V℄.This is ne
essary in order to a

ount for the measured leading twist 
hara
ter ofthe di�ra
tive stru
ture fun
tion. In the se
ond part, we present an alternativedes
ription in whi
h the di�ra
tive system and its intera
tion with the protonare modelled starting from perturbative QCD [VII℄. The dipole{proton 
rossse
tion found in the in
lusive DIS analysis is naturally applied in this approa
h.In DIS di�ra
tion, the idea of saturation is even more important, allowing forexplanation of the most striking experimental fa
t from HERA of the 
onstantratio between the di�ra
tive and in
lusive 
ross se
tions. We dis
uss in detailvarious aspe
ts of the des
ription, presenting an extensive 
omparison with thedata The relation between the two approa
hes to DIS di�ra
tion is dis
ussedin the part on di�ra
tive parton distributions [X℄. We point out that manyfeatures of these pro
esses whi
h are postulated in the Regge-like approa
h �ndan explanation in the pQCD des
ription 
ombined with the idea of saturation.Con
lusions and outlook are presented in Chapter 5. The derivation of some
ru
ial relations for the main stream presentation is moved to Appendi
es.



Chapter 2Basi
s2.1 DIS 
ross se
tion and stru
ture fun
tionsIn the ele
tron-proton deep inelasti
 s
attering (DIS), shown s
hemati
ally inFig. 2.1, the in
oming ele
tron 
ouples to the ele
troweak 
urrent whi
h probesthe stru
ture of the proton. In the following we will 
on
entrate on the kine-mati
 range in whi
h ele
tromagneti
 part of the 
urrent dominates. In su
h a
ase a virtual photon is ex
hanged with virtuality1Q2 = �q2 = �(e� e0)2 > 0 ; (2.1)where e and e0 are in
oming and s
attered ele
tron momenta. Q2 determinesthe resolution power with whi
h the proton is probed by the photon. The otherimportant quantity is the dimensionless Bjorken variablex = Q22p � q = Q2Q2 +W 2 ; (2.2)where p is the in
oming proton momentum and W 2 is the square of 
enter-of-mass energy of the virtual photon{proton (
�p) system,W 2 � (p+ q)2 = Q2 �1x � 1� : (2.3)In proton's rest frame 2p � q = 2M�, with � = E�E0 being the energy transferfrom the ele
tron to the proton. Both quantities, x and Q2, 
an be determinedby measuring energy E0 and s
attering angle �0 of the s
attered ele
tron. Other
omplementary methods involve the �nal hadroni
 state X. From the 
on
ep-tual point of view, however, the observation of the s
attered ele
tron suÆ
esto reveal the proton stru
ture. The de�ned kinemati
 variables, x and Q2, areparti
ularly useful for a physi
al interpretation of DIS.The di�erential 
ross se
tion for unpolarized ep DIS in one photon ex
hangeapproximation reads d�dx dQ2 = 2� �2emx2s2Q2 L�� W�� ; (2.4)1It is 
onvenient to 
hange the sign of the spa
e{like photon virtuality.11
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Figure 2.1: Kinemati
 invariants in DIS.where �em � 1=137 and s = (p + e)2 is the ep system 
enter-of-mass energysquared. The negle
ted W and Z boson ex
hanges are important for Q2 �M2W;Z , 
orresponding to mu
h larger values of x than those we 
onsider.L�� is the leptoni
 tensor, fully determined from QED 
oupling of the virtualphoton to the ele
tron,L�� = 12 Trf6e 0 
� 6e 
�g = 2 fe 0�e� + e0�e� � g��e 0 �eg : (2.5)W �� is the hadroni
 tensor, related to the ele
tromagneti
 
urrent J�, whi
hgives the hadroni
 part of unpolarized DIS 2,W��(p; q) = 14� Z d4z eiq�z <p jJ�(z)J�(0)j p> (2.6)= 14� XX <p jJ�(0) jX >< X jJ�(0) j p> (2�)4 Æ4(p+ q � pX) :The se
ond line is obtained after inserting the 
omplete set of �nal states be-tween the two ele
tromagneti
 
urrents, and using the translation invarian
eproperty of the 
urrent. The Lorentz stru
ture of W�� is found from the
onservation of the ele
tromagneti
 
urrent, q�W�� = 0, and the symmetryW�� = W�� due to parity 
onservation,W��(p; q) = ��g�� + q�q�q2 �F1 + 1p�q �p� � q� p�qq2 ��p� � q� p�qq2 �F2 ;(2.7)The unknown s
alar stru
ture fun
tions F1(x;Q2) and F2(x;Q2), 
hara
terizethe hadron stru
ture revealed in unpolarized DIS with Z and W boson ex-
hanges negle
ted.The hadroni
 tensor W�� is related to the imaginary part of the forward2We use the notation <p j:::j p>= 1=2P� <p� j:::j p�> where the summation is performedover the proton polarization, and p is the proton momentum.



2.2. Partons and their distributions 13
�p s
attering amplitude T�� ,W�� = 12� ImT�� ; (2.8)where T�� = i Z d4z eiq�z <p jT(J�(z)J�(0)) j p> : (2.9)With some 
are with respe
t to the de�nition of the virtual photon 
ux andusing the opti
al theorem, the stru
ture fun
tions 
an be related to the 
�p
ross se
tions for the transverse and longitudinal polarized virtual photon, �Tand �L, respe
tively, 2xF1 = Q24�2�em �T � FT ; (2.10)F2 � 2xF1 = Q24�2�em �L � FL : (2.11)Thus, the newly de�ned transverse and longitudinal stru
ture fun
tions obeyF2 = FT + FL : (2.12)The �nal form of the DIS 
ross se
tion (2.4) is obtained after 
ontra
tingthe tensors (2.5) and (2.7),d�dx dQ2 = 2� �2emxQ4 �(1 + (1� y)2) F2(x;Q2) � y2 FL(x;Q2)� (2.13)where y � p � qp � e = Q2x s (2.14)is another useful variable used in the DIS des
ription. In the proton rest framey is a fra
tion of in
oming ele
tron energy transfered into the hadroni
 system.Both x and y obey: 0 < x; y < 1.The stru
ture fun
tions des
ribe the proton stru
ture as measured in in
lu-sive DIS. From the theoreti
al point of view the major task is to provide anexplanation or predi
tion for their form.2.2 Partons and their distributionsIn the key experiment, performed at SLAC, ep DIS was studied in the Bjorkenlimit: Q2; 2p � q !1 and x �xed. In this limit, the stru
ture fun
tions exhibitBjorken s
aling [1℄, i.e. they approximately depend only on the dimensionlessvariable x, Fi(x;Q2) � Fi(x) ; i = 1; 2 : (2.15)To a good approximation the Callan-Gross relation is ful�lled, F2 � 2xF1 =FL � 0. As we will see, this relation has a physi
al meaning.
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Figure 2.2: Deep inelasti
 s
attering in the parton model.The interpretation of s
aling is due to Feynman [2, 3℄. He envisaged theproton as a 
olle
tion of point-like, non-intera
ting among themselves parti
les,
alled partons. In the in�nite-momentum frame in whi
h the proton movesvery fast, the relativisti
 time dilation slows down the rate at whi
h partonsintera
t. As a result, the virtual photon intera
ts with an individual partonwithout disturbing the rest of the system. The total 
ross se
tion is a sum overin
oherent 
�-parton intera
tions, weighted by the probability f(�) to �nd aparton in a fast moving proton with a fra
tion � of the proton momentum,d�dx dQ2 = Z 10 d� f(�) d~�(�)dx dQ2 : (2.16)In this way the distribution of partons in a proton, f(�), is introdu
ed. Theabove formula re
e
ts fa
torization of the DIS 
ross se
tion into a short distan
eintera
tion, des
ribed by the partoni
 
ross se
tion d~�(�), and a long distan
estru
ture, des
ribed by the parton distribution f(�).Assuming that partons are Dira
 fermions with spin 1=2 
arrying the fra
-tion � of the proton's momentum, the following result is found in the partonmodel [4℄F2(x) = 2xF1(x) = Xi e2i Z 10 d� Æ(x � �) �fi(�) = Xi e2i x fi(x) : (2.17)where ei is the ele
tri
 
harge. Additionally, the parton transverse momentawith respe
t to the proton dire
tion are negle
ted. The Callan-Gross relationresults from the spin 1=2 assumption.S
aling is explained by the parton model. Moreover, Bjorken-x is equal tothe momentum fra
tion of the stru
k parton sin
e from the momentum 
onser-vation at the 
�-parton vertex, see Fig. 2.2, we have(� p+ q)2 = 0 ) � = �q2=2p � q = x : (2.18)Thus, the stru
ture fun
tion F2(x) \measures" the parton distributions of theproton. Let us emphasize that partoni
 interpretation is inherent to the in�nite-momentum frame in whi
h DIS is viewed.



2.3. Parton model justi�
ation 152.3 Parton model justi�
ationThe justi�
ation of the parton model 
omes from Quantum Chromodynami
s(QCD) [5, 6℄. QCD is the unbroken SU(3) gauge theory of strong intera
tionswith fermioni
 quark �elds and bosoni
 gluon �elds. Both types of �elds 
arryquantum number related to lo
al gauge group, 
alled 
olour.The most important property of QCD is asymptoti
 freedom [6℄. The e�e
-tive 
oupling 
onstant �s(Q2), des
ribing the strength of intera
tions betweenquarks and gluons, vanishes when the s
ale Q2 ! 1. The Q2-dependen
e isgoverned by the renormalization group equation. In the lowest order�s(Q2) = 1b0 ln(Q2=�2) ; (2.19)where b0 = (33 � 2Nf )=12� is positive (for a reasonable number Nf of quark
avours) and � is the basi
 mass parameter of QCD (of the order 200 MeV)introdu
ed by the renormalization pro
edure. The above formula is valid forQ2 � �2, when �s(Q2) � 1 and perturbative des
ription in terms of intera
t-ing weakly quarks and gluons makes sense. For Q2 ! �2 the strong 
oupling
onstant be
omes large and perturbative methods break down. It means thatthe region of 
on�nement is rea
hed in whi
h quarks and gluons form stronglybound 
olourless systems, observed as asymptoti
 hadroni
 states.It is natural to interpret partons as the quarks and gluons. Asymptoti
 free-dom means that QCD is asymptoti
ally free, i.e. it approa
hes free-�eld theoryat short distan
es with logarithmi
 modi�
ations. This leads to the observedexperimentally logarithmi
 violation of Bjorken s
aling for matrix elements ofele
tromagneti
 
urrents between on-mass-shell states [7℄. In 
ontrast to thenaive parton model, in QCD the stru
k quark 
an a
quire large transverse mo-mentum by emitting a gluon whi
h e�e
t gives s
aling violation.There are two approa
hes to des
ribe DIS in the Bjorken limit using QCD.The �rst approa
h is based on the operator produ
t expansion (OPE) of theprodu
t of two ele
tromagneti
 
urrents. The se
ond one relies on dire
t 
al
u-lations using Feynman diagrams, 
ombined with a fa
torization theorem whi
hallows to separate the short and long distan
e stru
ture.2.3.1 Operator produ
t expansion for DISHistori
ally, the �rst justi�
ation of the parton model 
ame through the oper-ator produ
t expansion (OPE) of the ele
tromagneti
 
urrents in the hadroni
tensor W�� , eq. (2.6). In the Bjorken limit, the dominant 
ontribution to W��
omes from the region of integration 
lose to the light 
one, see e.g. [8℄,0 � z2 � 
onst=Q2 ; (2.20)Thus, the OPE around the light 
one is relevant when Q2 !1. Ignoring, forsimpli
ity, the ve
tor 
hara
ter of the 
urrent, we have [9℄J(z)J(0) = 1Xn=0 XA CAn (z2) z�1 � � � z�n OAf�1����ng(0) : (2.21)
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sThe expansion is singular at z2 = 0, and W�� is determined from the singularitystru
ture, 
ontained entirely in the 
oeÆ
ient fun
tions CAn 
alled also Wilson
oeÆ
ients. The operators OA are well behaved lo
al 
omposite operators,symmetri
 and tra
eless in Lorentz indi
es (whi
h is indi
ated by the 
urlybra
kets). In this 
ase n is the value of spin of the 
omposite operator, and Adistinguishes operators with the same spin.From naive dimensional 
ounting in the units of mass, the Wilson 
oeÆ
ientsbehave in the following way in the limit z ! 0CAn (z2) � � 1z2�dJ�(dO�n)=2 ; (2.22)where dJ (= 3) and dO are 
anoni
al dimensions of the 
urrent J and the 
om-posite operator OA, respe
tively. Relation (2.22) is true for free �eld theorywhile in QCD it obtains logarithmi
 modi�
ations. The di�eren
e� � dO � n (2.23)is 
alled twist of the 
omposite operator, and its value determines the singularitystru
ture of the 
oeÆ
ient fun
tions. The most singular (dominant) term in(2.21) is given by the lowest twist operators. These are the operators with� = 2, whi
h give Bjorken s
aling in free �eld theory. The higher twist termsare suppressed by additional powers of 1=Q2.From now on we limit our dis
ussion to the leading twist-2 operators. Therelevant QCD operators are: the quark 
avour nonsinglet ONS;in , quark singletO Sn , and gluon OGn operators,ONS;if�1����ng = � �f 
f�1 i$D�2 � � � i$D�ng  ; (2.24)O Sf�1����ng = � 
f�1 i$D�2 � � � i$D�ng  ; (2.25)OGf�1����ng = Ff�1� i$D�2 � � � i$D�n�1F��ng ; (2.26)where i = 1; 2; � � � ; N2f � 1, �f are the generators of the 
avour group SU(Nf )and the 
ovariant derivative $D= (!D �  D)=2. The tra
e over 
olour indi
esin the above is impli
it. There is an in�nite tower of the twist-2 operatorsenumerated by spin n.Plugging (2.21) (with the tensor stru
ture modi�
ations for ve
tor 
urrents)into the forward Compton s
attering tensor T�� , eq. (2.9), we obtain the ana-lyti
 expansion in the unphysi
al region of ! = 1=x < 1 in the Bjorken limit.S
hemati
ally, T��(!) = Pn a��;n !n; where a��;n involve produ
ts of the Wil-son 
oeÆ
ients CA and matrix elements of the 
omposite operators < pjOAjp >.The analyti
al stru
ture of T��(!) in the 
omplex !-plane is given by 
uts along(�1;�1) and (1;1) on the real axis. Therefore, using analyti
ity we 
anrewrite a��;n in the form of the integrals over dis
ontinuities of T��(!) alongthe 
uts, i.e. in the physi
al region of j! = 1=xj > 1. These dis
ontinuities, inturn, are related to the hadroni
 tensor W�� , eq. (2.8), and hen
e to the DIS
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ture fun
tions Fi. Finally, the following relation is found for the Mellinmoments of the stru
ture fun
tions [10℄Z 10 dx xn�2 Fi(x;Q2) = XA CAn;i(Q2) MAn ; (2.27)where i = 2; L and the Wilson 
oeÆ
ient CAn;i(Q2) are the Fourier transforms ofthe z2-dependent 
oeÆ
ient fun
tions in eq. (2.21), see [10℄. The 
oeÆ
ientsMAnparameterize the diagonal matrix elements of the 
omposite operators betweennu
leon states <p j OA(�1 ����n) j p> = MAn p(�1 � � � p�n) : (2.28)Noti
e that the tensor stru
ture on the r.h.s of (2.28) is unique sin
e we onlyhave the nu
leon momentum p� at our disposal.Up to now, we have negle
ted the ne
essity of renormalization. The matrixelements of the operators appearing in the OPE are divergent and need tobe renormalized. This pro
edure introdu
es a renormalization s
ale � intothe problem. The 
hange of � 
an be absorbed by the 
hange of parametersof a theory, that leads to the renormalization group (RG) equation for therunning parameters and matrix elements of the 
onsidered operators. Applyingthis method to the OPE (2.21) for a massless theory, we �nd as a 
onsisten
y
onditionXA ���2 ���2 + �(�s) ���s� ÆAB + (
n(�s))AB� CAn;i(Q2=�2; �s) = 0 ;(2.29)where we indi
ated the presen
e of the renormalization s
ale � in the Wilson
oeÆ
ient. �(�s) is the Gell-Mann-Low fun
tion, and 
n(�s) is the matrix ofanomalous dimensions of the 
omposite operators OA with spin n. They mixunder renormalization if they have the same quantum numbers. The quarksinglet and gluon operators (2.25) and (2.26) are examples of su
h operators.Both �(�s) and 
n(�s) are 
omputed in pQCD as a series in powers of �s:�(�s) = ��2s b0 + �3s b1 + � � � ; (2.30)
n(�s) = ��s2�� 
(0)n + ��s2��2 
(1)n + � � � ; (2.31)where b0 is de�ned in eq. (2.19), and 
(0)n were found for the operators (2.24)-(2.26) in Ref. [7℄. The famous minus sign in the expansion of the � fun
tionleads to asymptoti
 freedom of QCD. The running 
oupling 
onstant (2.19) isa solution of the equationQ2 d�s(Q2)dQ2 = �(�s(Q2)) ; (2.32)with �(�s) in the lowest order approximation.
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sThe solution to the RG equation (2.29) is given in terms of the running
oupling 
onstant. In the lowest order approximation for � and 
n, we �ndCn;i(Q2=�2; �s(�2)) = Cn;i(1; �s(Q2)) � �s(�2)�s(Q2)� 
(0)n2�b0 ; (2.33)where the matrix notation is assumed, and �s is given by (2.19).When the renormalization pro
edure is performed, the 
oeÆ
ients CAn;i andMAn in eq. (2.27) a
quire the �-dependen
e. Now, we haveZ 10 dx xn�2 Fi(x;Q2) = Cn;i(Q2=�2; �s(�2))Mn(�2) ; (2.34)where the solution (2.33) is substituted. The l.h.s in the above is a measuredquantity and obviously does not depend on a renormalization point �. There-fore, di�erentiating both sides with respe
t to �, we �nd the following RGequation for the 
oeÆ
ients MAn�2 dMAn (�2)d�2 = �s(�2)2� XB �
(0)n �AB MBn (�2) : (2.35)The renormalization s
ale � is arbitrary, thus, we are free to 
hoose � = Q� �.In su
h a 
ase (2.34) be
omesZ 10 dx xn�2 Fi(x;Q2) = XA CAn;i(1; �s(Q2)) MAn (Q2) ; (2.36)where i = 2; L. In this way the logarithmi
 s
aling violation for the stru
turefun
tions is found [7℄ due to the running 
oupling 
onstant �s, and the evolutiongoverned by the anomalous dimensions of the twist-2 operators (2.24)-(2.26).We have to keep in mind that our dis
ussion 
on
erns the leading behaviourof the stru
ture fun
tions, therefore, it applies to large Q2, when QCD is asymp-toti
ally free. In general, the OPE leads to the following expansion in powersof 1=Q2 in the Bjorken limit3F2;L(x;Q2) = F (�=2)2;L (x;Q2) + F (�=4)2;L (x;Q2) �2Q2 + � � � ; (2.37)where the twist-2 part is found by inverting the Mellin moments (2.36). Thetwist-4 (and higher) 
ontribution has to be analyzed independently by 
onsid-ering twist-4 operators and their logarithmi
 in Q2 evolution [11℄.In summary, QCD predi
ts the breakdown of Bjorken s
aling, des
ribed byeq. (2.36). The Wilson 
oeÆ
ients CAn;i are 
omputed in pQCD. The 
oeÆ-
ients MAn (Q2), however, are not determined until initial 
onditions at somes
ale Q20 � �2 are provided for eqs. (2.35). Thus, despite the evolution isdriven by the perturbatively 
omputed anomalous dimensions, the nonpertur-bative aspe
t is en
oded in the initial 
onditions for the evolution. This is amanifestation of the short- and long-distan
e fa
torization present in the OPE.3Other sour
es of 1=Q2 
orre
tions are provided by target mass 
orre
tions, relevant atlarge x, or resummation e�e
ts like renormalons.



2.3. Parton model justi�
ation 19
1 1 1

y y y

1-y 1-y 1-y

Figure 2.3: The elementary pro
esses des
ribed by the splitting fun
tions Pqq(y),PqG(y) and PGG(y) from the left to the right, respe
tively. Additionally,PGq(y) = PqG(1� y).2.3.2 The Altarelli-Parisi formulationIn [12℄ Altarelli and Parisi reinterpreted the main results of the previous se
tionon the s
aling violation in terms of parton distributions and basi
 intera
tionsbetween partons being quarks and gluons.They identi�ed the Mellin moments of the parton distributions fA(x;Q2)with the 
oeÆ
ients MAn (Q2) from eq. (2.28),Z 10 dx xn�1 fA(x;Q2) = MAn (Q2) ; (2.38)where we denote 
olle
tively fA = (qNS; qS; g), the quark 
avour nonsinglet,singlet and gluon distributions, respe
tively. Let us re
all that MAn 
hara
terizematrix elements of the twist-2 QCD operators OA, see eq. (2.28). Choosing anadditional light-like ve
tor n̂� su
h that n̂ � p = 1, we �nd the following relationZ 10 dx xn�1 fA(x;Q2) = n̂�1 � � � n̂�n <p j OA(�1����n) j p>�=Q ; (2.39)The matrix elements in the above 
annot be 
omputed in pQCD, only their
hange with Q is governed by the RG equation. Thus, the parton distributionsare of nonperturbative nature, and their determination 
an be attempted inlatti
e formulation of QCD or, indire
tly, with the help of experimental data.The next step is the identi�
ation of the anomalous dimension (
(0)n )AB ,eq. (2.31), with the moments of the splitting fun
tions PAB(y)Z 10 dy yn�1 PAB(y) = (
(0)n )AB : (2.40)The splitting fun
tions were 
omputed in [12℄ from basi
 verti
es of QCD, usingthe generalization of equivalent photon method. They des
ribe the elementarypro
esses, shown in Fig. 2.3, independent of the quark 
avour.Relation (2.38) 
an be inverted, and after that the evolution equations (2.35)are rewritten in the following form4Q2 �fA(x;Q2)�Q2 = �s(Q2)2� Z 1x dyy PAB(y) fB�x=y;Q2� ; (2.41)4Using the property of the Mellin moments: AnBn $ (A
B)(x) = R 1x dy=y A(y)B(x=y)
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swhere the summation over B is impli
it and the splitting fun
tion matrix equalsPAB = 0� Pqq 0 00 Pqq PqG0 PGq PGG 1A :These are the Altarelli-Parisi evolution equations, derived for abelian theo-ries before the advent of QCD by Gribov and Lipatov [13℄ and independently,following the method of [13℄, by Dokshitzer for QCD [14℄. Noti
e that thequark nonsinglet distribution evolves independently of the quark singlet andgluon distributions. This o

urs be
ause the 
orresponding partoni
 operatorOf does not mix under renormalization with the operators OS and OG.The Altarelli-Parisi (DGLAP) equations have probabilisti
 interpretation.In the in�nite momentum frame, the parton distributions fA(x;Q2) des
ribeprobability to �nd quark or gluon in a hadron, 
arrying a fra
tion x of hadron'smomentum, as seen by the probe with a virtuality Q2. The evolution equationsdes
ribe the 
hange of this probability with the resolution power Q2, due to theemission of partons des
ribed by the splitting fun
tions.Relation (2.36) for the moments of the stru
ture fun
tions 
an also be in-verted. After that we �nd the following formula for the stru
ture fun
tionsFi(x;Q2) = XA Z 1x dyy CAi (y; �s(Q2)) xfA �x=y;Q2� ; (2.42)where i = 2; L and 
oeÆ
ient fun
tions CAi (y) are related to the the Wilson 
o-eÆ
ients CAn;i from the previous se
tion through the Mellin transformation. For-mula (2.42) re
e
ts the short- and long-distan
e fa
torization, 
alled 
ollinearfa
torization, in whi
h the 
oeÆ
ient fun
tions are 
omputed in perturbativeQCD while the parton distributions 
ontain information about nonperturbativestru
ture of the nu
leon. In the lowest order in �s for the 
oeÆ
ient fun
tionsFL = 0 and F2(x;Q2) = Xf e2f fxq f (x;Q2) + x�q f(x;Q2)g : (2.43)where the sum over quark 
avours is performed. In order to �nd the partondistributions, we have to spe
ify initial 
onditions for the DGLAP evolutionequations at some s
ale Q20 � �2. In pra
ti
e, an analyti
al form in x of theinitial 
onditions is given in terms of several parameters. Then, the parametersare determined from a �t to DIS data.2.3.3 Evolution in diagramsBy summation over a 
lass of in�nitely many diagrams the DGLAP equations
an be dire
tly obtained from perturbative QCD [14℄. This method serves as astarting point for the 
omputations beyond the leading order.In brief, the DIS stru
ture fun
tions is 
omputed using the opti
al theo-rem (2.8). The relevant 
lass of diagrams are ladder diagrams, with the 
utstates being on mass-shell, see Fig. 2.4. We treat for a moment the lowest lying
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Figure 2.4: QCD ladder diagrams 
ontribution to DIS stru
ture fun
tions.in
oming parton as a hadron with a small virtuality �m2, whi
h serves as aregulator in the 
al
ulation. The diagrams with n 
ells amount the 
ontribution�ns logn(Q2=m2) � 1. Thus, the large logarithms log(Q2=m2) 
ompensate forthe smallness of �s in ea
h order n and have to be resummed. The key elementfor the dominan
e of the ladder diagrams is the 
hoi
e of the planar gauge forthe gluon �eld. As shown in [15℄, other diagrams, in
luding non-planar ones,are suppressed by additional powers of �s without a

ompanying logarithms,and are negle
ted. Su
h an approximation is 
alled leading-logarithmi
 approx-imation (LLA).The leading-logarithmi
 expression for the stru
ture fun
tions is obtainedafter the integration over ex
hanged parton momenta [15℄,ki = �i p0 + �i q0 + k?i ; (2.44)in the 
on�guration strongly ordered in the transverse momentam2 � jk2?1j � jk2?2j � � � � � jk2?nj � Q2 : (2.45)Here the Sudakov de
omposition of momenta is adopted with the null baseve
tors de�ned by q0 = q + xBp and p0 = p + (m2=s)q0, where p2 = �m2 and2p0 � q0 � s � Q2. The longitudinal momentum fra
tions are also ordered dueto mass-shell 
ondition imposed on the emitted gluons (
ut in Fig. 2.4),1 > �1 > �2 > � � � > �n � x : (2.46)The �i variables are small (� m2=s) and 
an be integrated out. Thus, thesu

essive parton emissions are in the proton momentum dire
tion p � p0.Condition (2.45) leads to the improved parton pi
ture. From the point ofview of the quark (i� 1), the upward quark (i) looks as a probing (bare) par-ti
le, with mu
h larger virtuality. As we move upwards, the quark (i) be
omes\dressed" (in 
loud of partons with smaller virtualities) for the quark (i + 1),whi
h now a
ts as a highly virtual probe. Therefore, in
reasing virtuality, thenumber of de
ays in
reases, and the 
loud of virtual parti
les is penetrated moredeeply (at shorter transverse distan
es). This is a physi
al pi
ture behind thes
aling violation in the LLA.
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sThe large logarithms 
ome from the integration over the ordered transversemomenta. Ea
h 
ell 
ontributes one power of �s and logarithmi
 integral. Thus,the integration over n 
ells gives�ns Z Q2m2 djk2?njjk2?nj Z jk2?njm2 djk2?n�1jjk2?n�1j � � � Z jk2?2jm2 djk2?1jjk2?1j = �nsn! logn Q2m2 : (2.47)The integration over the longitudinal variables �i leads to a 
onvolution of nsplitting fun
tions Pqq. After the transformation into the Mellin spa
e a simplefa
tor with anomalous dimension is obtained: (
(0)N =2�)n. Thus, we �nd for theMellin moments of the stru
ture fun
tion F2F2N�1(Q2) = 1Xn=0 �nsn! logn Q2m2  
(0)N2� !n = �Q2m2��s 
(0)N2� : (2.48)The small virtuality �m2 of the in
oming parton 
annot be set to zero dueto 
ollinear singularity whi
h appears when a massless parton de
ays into two
ollinear massless partons. The remedy is to assume that there exists a suÆ-
iently hard fa
torization s
ale5 �F � �. With this s
ale, the short-distan
epart, given by the integration over the transverse momenta �F < jk?j < Q,is safe from the point of view of perturbative 
al
ulations. The long-distan
epart, m < jk?j < �F , 
an be fa
tored out and absorbed into the unknown baredistribution of the parent parton in a nu
leon q0. Thus, we haveF2N�1(Q2) = �Q2�2F ��s 
(0)N2� ��2Fm2��s 
(0)N2� q0N| {z }qN (�F ) : (2.49)As a measured quantity, F2N�1(Q2) does not depend on the fa
torizations
ale. Thus we 
an write the RG equations for qN (�F ) by di�erentiation of bothsides of (2.49) with respe
t to �F . Choosing �F = Q, the evolution equationfor the Mellin moments of the parton distribution is foundQ2 dqN (Q2)dQ2 = �s2� 
(0)N qN (Q2) : (2.50)In the presentation, the 
oupling 
onstant was �xed, but the running �s 
anbe 
onsistently in
luded by 
onsidering the next-to-leading logarithmi
 approx-imation (NLLA), in whi
h the terms proportional to �s(�s log(Q2=m2))n aresummed up. In this 
ase, the splitting fun
tions P (�s; x) and 
oeÆ
ient fun
-tions C(�s; x) are 
omputed to a higher order in �s [16℄. In generalP (�s; x) = ��s2��P (0)(x) + ��s2��2 P (1)(x) + ��s2��3 P (2)(x) + � � � (2.51)C(�s; x) = C(0)(x) + �s C(1)(x) + �2s C(2)(x) + � � � ; (2.52)5In most 
al
ulations �F = �, the renormalization s
ale related to ultraviolet divergen
es.



2.4. DIS in Regge limit 23where (0) refers to LLA, (1) to NLLA, (2) to NNLLA and so on. The running
oupling 
onstant also has to be 
omputed to the appropriate order.The parton distributions are universal for a given hadron in a sense thatthe same distributions 
an be used in the 
ross se
tions for whi
h 
ollinearfa
torization holds. Usually, it is a matter of nontrivial proofs in whi
h infraredstru
ture of pQCD is 
arefully examined, see Collins et al. in Ref. [17℄.2.4 DIS in Regge limitExpansions (2.51) trun
ated at some order are good approximations away fromx = 0. In the limit x! 0, however, large logarithms log(1=x) appear in all or-ders ex
ept the lowest one 6. Thus, the perturbative expansion (2.51) be
omesslowly (or badly) 
onvergent be
ause of the presen
e of large logarithmi
 
or-re
tions. A systemati
 method of resummation of these 
orre
tions is ne
essaryin order to restore the reliability of QCD in the small x domain.In the standard DGLAP approa
h, the following hierar
hy of s
ales is as-sumed to assure that x � 1 W 2 � Q2 � �2 ; (2.53)where W is the 
�p 
enter-of-mass energy (2.3). The se
ond 
ondition justi�esthe use of perturbative QCD. For the �xed target DIS experiments 
ondition(2.53) holds true. With the advent of the ep 
ollider HERA, however, the studyof a new limit of DIS has started in whi
h W is mu
h bigger than any others
ale involved. In parti
ular,W 2 � Q2 � �2 : (2.54)This 
ondition 
orresponds to the Regge limit of DIS. In su
h a 
ase x � 1,and the �xed order DGLAP approa
h is in
omplete. The DIS pro
esses in thelimit (2.54) are 
alled semi-hard. They are similar to soft hadroni
 pro
esses inthe sense that energy is mu
h bigger than the `mass' of the proje
tile Q. On theother hand these pro
esses are hard sin
e �s(Q2) � 1 and pQCD is appli
able.In the leading twist des
ription of DIS at small x, the resummation of largelog(1=x) terms is ne
essary in the singlet and gluon splitting fun
tions (2.51),and in the 
oeÆ
ient fun
tions (2.52). The systemati
 method 
orresponds tothe resummation of terms proportional to �ks logk(1=x) in the leading logarith-mi
 approximation and subleading terms proportional to �n+ks logk(1=x) in thehigher order approximations. In generalxP (�s; x) = 1Xn=0 (�s)n " nXk=1 p(n)k logk(1=x)# + regular part (2.55)C(�s; x) = 1Xn=0 (�s)n " nXk=1 
(n)k logk(1=x)# + regular part : (2.56)6There are also large logarithms log(1� x) when x! 1. We are not dis
ussing them here.
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sIn the above, k = n 
orresponds to the leading 
ontribution whereas k < ngives subleading 
orre
tions. In this way an improved perturbative expansionfor (2.51) and (2.52) is obtained. In pra
ti
e, the leading 
ontribution is ob-tained using the k?-fa
torization formula [33℄, dis
ussed in se
tion 2.4.3, inthe 
ollinear limit. This formula 
an be extended beyond the leading order inagreement with 
ollinear fa
torization (2.42) by a 
areful examination of theregion of low transverse momenta for parton emissions [34℄.The large log(1=x) terms, however, are present in all twist 
ontributions tothe stru
ture fun
tions, making them as important as the leading twist 
ontri-bution. The k?-fa
torization formula also in
ludes these 
orre
tions by keepingthe Q2-dependen
e exa
t. Thus, the new way of 
omputation is a nontrivialextension of the leading twist formalism. Moreover, using the k?-fa
torization,it was shown [18℄ that for �xed Q2 � �2 the operator produ
t expansion breaksbelow some value of x due to nonperturbative e�e
ts. A problem whi
h arisesin the new approa
h is unitarity of the 
omputed 
ross se
tions. This is themain theoreti
al 
hallenge in QCD of semi-hard pro
esses, whi
h we addressphenomenologi
ally in Chapter 3.Before dis
ussing the small-x limit in QCD in detail, we des
ribe the highenergy limit of s
attering pro
esses using Regge theory whi
h dominated in thepre-QCD era. This introdu
es the 
on
ept of a pomeron in terms of whi
h thesemi-hard pro
esses are usually dis
ussed.2.4.1 Soft pomeronRegge theory [19℄ allows to study the high energy limit of s
attering rea
tions,based on general assumptions about the s
attering matrix S = 1 + iA, likeLorentz invarian
e, 
rossing, unitarity and 
ausality. From the last assumptionfollows the property of analyti
ity of the s
attering matrix as a fun
tion ofLorentz invariants regarded as 
omplex variables. The only singularities allowedare those imposed by unitarity 
onditions.For the two-to-two s
attering of spinless and massless parti
les the s
atteringamplitude A(s; t) is an analyti
 fun
tion of the Mandelstam variables7. A(s; t)des
ribes three di�erent rea
tions, depending on the domain of the kinemati
invariants. We are interested in the Regge limit of the s
attering amplitude,s!1; t = 
onst (2.57)for the s-
hannel rea
tion, a + b ! 
 + d, with s = (pa + pb)2 > 0 and t =(pa�p
)2 < 0. For this purpose we 
onsider s
attering in the 
rossed t�
hannel,a + �
 ! �b + d, with t = (pa + p�
)2 > 0 and s = (pa � p�b)2 < 0. The standardpartial wave de
omposition for this pro
ess readsA(s; t) = 1Xl=0 (2l + 1) a l(t)P l(
os �t) : (2.58)The above expression is 
onvergent for j 
os �tj = j1 + 2s=tj < 1, i.e. throughoutthe t�
hannel physi
al region, t > 0 and �t < s < 0, but it qui
kly breaks7The third Mandelstam variable u = �s� t.
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C

C’

Figure 2.5: Integration 
ontour C and its distortion in the 
omplex angularmomentum planedown when 
ontinued into the s�
hannel region s > 0 and t < 0. The appro-priate analyti
 
ontinuation of (2.58) is provided through the 
omplex angularmomentum plane l [20℄,A(s; t) = 12i IC dl 2l + 1sin�l n�(+)l a(+)l (t) + �(�)l a(�)l (t)o P l�1 + 2st � ; (2.59)where a(�)l are partial wave amplitudes with signature � = �1, and P l isthe Legendre polynomial, analyti
ally 
ontinued in l. The fun
tions �(�)l =1=2 (� + exp(�i�l)) are 
alled signature fa
tors. The 
ontour C en
ir
les thepole singularities at l = 0; 1; 2; :::, due to the denominator sin�l, see Fig. 2.5.By 
omputing residues of the poles en
ir
led by C, we 
he
k that (2.59) providesanalyti
 
ontinuation of (2.58). The two signatured partial wave amplitudes in(2.59) are ne
essary for uniqueness of the analyti
 
ontinuation. In this 
ase,a(+)l (t) is an analyti
 
ontinuation of a l(t) for even l and a(�)l (t) for odd l.The signature fa
tors allow to obtain (2.58) when the residues in (2.59) are
omputed.With the representation (2.59), the Regge limit 
an be a
hieved by distort-ing the integration 
ontour C as shown in Fig. 2.5. On the way to the new
ontour C 0, singularities of the partial wave amplitude a(�)l (t) appear (
uts orpoles), whi
h have to be 
ir
umvented by winding the 
ontour around. Theusefulness of Regge theory is based on the assumption that there are only iso-lated singularities, 
uts or poles. In the simplest nontrivial 
ase, one simplepole, 
alled Regge pole, is assumed,a(�)l (t) � �(t)l � �(t) ; (2.60)where the pole position �(t) is 
alled Regge traje
tory (with a de�nite signature),and �(t) is a residue. In this 
ase we �ndA(s; t) = 2�(t) + 1sin��(t) �(�)�(t) �(t) P�(t)�1 + 2st � + AC0(s; t) ; (2.61)where AC0 is the 
ontribution given by the integration along the 
ontour C 0.
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sA. Regge traje
toryWhen the Regge pole o

urs for an integer value of li = �(ti), then (2.61)has a pole at t = ti, be
ause of the denominator sin��(ti). This 
orrespondsto a physi
al meson bound state (or a resonan
e if Im �(ti) 6= 0), produ
ed inthe t�
hannel with mass mi = pti and spin li. It appears that most of theknown mesons form families with the same quantum numbers but spin whi
hlie on the straight line Regge traje
tories�(t) = �(0) + � 0 t ; (2.62)where �(0) is the inter
ept, and � 0 is the slope of the Regge traje
tory. Thesignature fa
tor ensures that parti
les lying on a Regge traje
tory di�er by twounits of angular momentum.The Regge traje
tory 
ontinued to negative values of t des
ribes the s
at-tering in the s�
hannel. In the Regge limit, AC0 = 0 in (2.61) and only theRegge pole 
ontributes. We �nd 8 for large sA(s; t) � ~�(t) s�(t) ; (2.63)where the residue �(t) and the signature fa
tor ��, were absorbed in ~�(t).Therefore, the produ
tion of parti
les in the t�
hannel 
an be `dete
ted' in thes�
hannel from the asymptoti
 behaviour of the 
orresponding amplitude. Itis usually said that the Regge traje
tory (reggeon) is ex
hanged.From the opti
al theorem, we have for large s�tot = s�1 ImA(s; 0) � s�(0)�1 : (2.64)Thus, the inter
ept of the Regge traje
tory �(0) determines the asymptoti
behaviour of the total 
ross se
tion for the s-
hannel rea
tion. If many reggeonsare ex
hanged, we add amplitudes with di�erent traje
tories. The dominant
ontribution is given by the traje
tory with the highest inter
ept (the rightmostsingularity in the l-plane).The slope of the Regge traje
tory �0 is found from the t-dependen
e ofelasti
 s
attering amplitude [21℄.B. PomeronHow useful are the presented 
on
epts ? Donna
hie and Landsho� per-formed a very e
onomi
al �t to the total 
ross se
tion data for various hadroni
rea
tions, assuming the form (2.64) with two powers of s [22℄. As a result, theyfound �tot = A (s=s0)�0:45 + B (s=s0) 0:08 ; (2.65)where s0 = 1 GeV. The two powers are universal, but the 
oeÆ
ients A and Bdepend on a hadroni
 rea
tion. The �rst term 
orresponds to the ex
hange ofthe (�; !; f; a)-meson Regge traje
tory�R(t) = 0:55 + 0:86 GeV�2 � t : (2.66)8Using the asymptoti
 formula Pl(z) / �(2l+1)�2(l+1) (z=2)l for large z.



2.4. DIS in Regge limit 27

  Figure 2.6: (�; !; f; a)-meson and soft pomeron traje
toriessee Fig. 2.6. The se
ond term in (2.65), responsible for the rise of the 
rossse
tions for large s, is attributed to the pomeron ex
hange.By de�nition, the pomeron traje
tory is the even signature (� = 1) Reggetraje
tory with the inter
ept �(0) � 1 
orresponding to the ex
hange of theva
uum quantum numbers9. In the Donna
hie and Landsho� analysis the softpomeron (IP ) traje
tory has the inter
ept slightly above one�IP (t) = 1:08 + 0:25 GeV�2 � t : (2.67)Noti
e that the pomeron slope �0IP = 0:25 GeV�2 is mu
h smaller than thereggeon slope. Thus, if there is a real parti
le (with spin l = 2) lying on thesoft pomeron traje
tory, it has mass around 2 GeV, see Fig. 2.6. A glueball isa 
andidate, see [23℄ for a re
ent review.However, there is a problem with the soft pomeron. If the energy dependen
es0:08 
ontinues as s!1, it will eventually 
ome into 
on
i
t with the Froissart-Martin bound [24℄, re
e
ting unitarity�tot � C log2 (s=s0) ; (2.68)where C = �=m2� � 60 mb. Thus, the des
ription with the help of the pomerontraje
tory with �(0) > 1 is in
onsistent and more 
ompli
ated singularities like
uts have to be 
onsidered. In the DL parameterization s0 = 1 GeV2, and thetotal 
ross se
tions lie mu
h below the unitarity bound for present energies.Nevertheless, for di�ra
tive pro
esses the problem of unitarity is more a
ute.C. Appli
ation to DISLet us apply the 
on
ept of Regge traje
tory ex
hanges to DIS at small x.Considering 
�p s
attering, we may write the Donna
hie-Landsho� parameter-9i.e. parities P = +1, C = +1, G = +1 and isospin I = 0.
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sization of the nu
leon stru
ture fun
tion F2 � Q2 �
�p asF2(x;Q2) = A(Q2)x1��IP (0) + B(Q2)x1��R(0) : (2.69)Having in mind partoni
 interpretation, we expe
t the pomeron 
ontributionto be given by 
avour singlet sea quarks, while the reggeon term is determinedby 
avour nonsinglet valen
e quarks. Thus, we �nd for the proton and neutronstru
ture fun
tionsF p2 � x�0:08 F p2 � F n2 � x0:5 (2.70)in the small x limit. However, the measured at HERA proton stru
ture fun
tion,F2 � x��(Q), has a bigger e�e
tive power �(Q) than the soft pomeron valuewhi
h additionally rises with Q2. Su
h a behaviour 
an be a

ounted for by theDGLAP evolution equations due to 
exibility in 
hoosing initial 
onditions forthe evolution. In parti
ular, the dependen
e (2.70) 
an be in
oporated in initialdistributions at the s
ale Q20 � 1 GeV2 where nonperturbative Regge theorymay be appli
able. The strong rise of F2 is also predi
ted by the analysis of theRegge limit of perturbative QCD.2.4.2 Hard pomeronIn this se
tion we present the main results on the Regge limit in QCD, basedon a seminal work of the BFKL group [25℄. The largest 
ontribution to thes
attering amplitude in this limit 
omes from leading logarithms in the 
enter-of-mass energy s in the kinemati
 region where�s � 1; �s log s � 1: (2.71)The approximation in whi
h terms proportional to (�s log s)n are summed is
alled the leading logarithmi
 approximation (LLA(s)).Let us 
onsider for illustration the elasti
 s
attering of two quarks, seeFig. 2.7. In the Regge limit, ex
hanges of the highest spin elementary quanta(gluons) dominate. The imaginary part of the qq ! qq amplitude is 
omputedfrom the unitarity 
ondition,ImsAR(s; t) = PR2 Xn Z d�n+2 A(p1; p2;n+ 2)A�(p01; p02;n+ 2) : (2.72)In su
h a 
ase, two produ
tion amplitudes for the pro
ess qq ! (ng)qq haveto be squared and integrated over the �nal state parti
le momenta. PR is the
olour proje
tor on a representation R of the gauge group. For the pomeron ex-
hange, the proje
tor on a singlet representation is relevant. The full amplitude
an be re
onstru
ted from the imaginary part using dispersion relations. In theLLA(s), whi
h we 
onsider from now on, the amplitude is purely imaginary.There are three key elements in the 
omputation of the r.h.s of eq. (2.72):the phase spa
e, reggeized gluon and new e�e
tive verti
es.
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,Figure 2.7: Pomeron ex
hange in QCD.� The large logarithms of energy are obtained in the LLA(s) assuming multi-Regge kinemati
s for phase spa
e of the �nal state parti
les. Parameter-izing their momenta with the help of the Sudakov variables,li = �i p1 + �i p2 + l?i ; (2.73)where p21 = p22 = 0 and 2p1 � p2 = s, the multi-Regge kinemati
s is de�nedby the 
onditions �i � �i+1 ; l?i � s0 ; (2.74)In 
ontrast to the DGLAP 
ondition (2.45), the transverse momenta arenot ordered but limited to the region around s0 whi
h does not in
reasewith energy ps. The s
ale s0 
annot be determined in the LLA(s). Strongordering in �'s leads to similar ordering in rapidityyi � yi+1 ; (2.75)sin
e yi � yi+1 ' log(�i=�i+1) in the 
ollinear frame for the in
identquarks.� The ex
hanged gluons in the ladder in Fig. 2.7 are reggeized. This is anontrivial property of nonabelian gauge theories, obtained in the LLA(s)as a result of summation of virtual 
orre
tions to the 
olour o
tet ex
hangein the high energy limit [26℄. Gluon reggeization means that the standardpropagator is repla
ed by 1ti �! 1ti � sis0�!(ti) ; (2.76)where ti = k2i ' �k2?i and si = (li�1 + li)2. The fun
tion10!(t) = �sN
 t Z d2k0?(2�)2 1k02?(k � k0)2? (2.77)10The integral is divergent and should be regularized, e.g. by introdu
ing infrared 
uto� �.
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Figure 2.8: The stru
ture of the amplitude A(!; t) in the high energy limit.de�nes the negative signature Regge traje
tory of the reggeized gluon�(t) = 1 + !(t). Noti
e that the traje
tory passes through 1 at t = 0,as expe
ted for spin-1 gluon.� There are two types of e�e
tive verti
es. The gauge invariant reggeon-reggeon-parti
le vertex �(ki; ki+1), denoted by a blob in Fig. 2.7, repla
esthe standard triple gluon 
oupling. Its expli
it form 
an be found e.gin [20℄. The 
oupling of the t-
hannel gluons into the external quarks isgiven by the eikonal vertex 2 p�1;2 Æ��0 ; (2.78)where the 
olour stru
ture has to be additionally supplied. The deltafun
tion re
e
ts heli
ity 
onservation in the high energy limit. In theLLA(s), the momentum stru
ture of eikonal vertex is also valid for gluonsas external parti
les, whi
h 
ould illustrate our 
onsiderations.A. BFKL equationUsing the presented elements, the total 
ross se
tion for the s
attering oftwo quarks in the Regge limit is derived from (2.72)�tot = ImsAI(s; 0)s : (2.79)The reader may 
onsult original arti
les [25℄ as well as ex
ellent reviews [20, 27,29℄ for details of the derivation. The �nal result looks as follows [20℄.Let us introdu
e the Mellin transform of the s-
hannel dis
ontinuity (2.72)A(!; t) = Z 11 d� ss0�� ss0��!�1 ImsAI(s; t)s : (2.80)
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ture of the amplitude A(!; t) is shown in Fig. 2.8. It is a 
onvolutionof the impa
t fa
tors �i(ki;q) and the fun
tion F (!;k1;k2;q) des
ribing QCDpomeron ex
hangeA(!; t) = G(2�)4 Z d2k1 d2k2k22 (k1 � q)2 �1(k1;q) �2(k2;q) F (!;k1;k2;q) ; (2.81)where t = �q2. For the quark-quark s
attering, G = (N2
 � 1)=4N2
 and theimpa
t fa
tors for slightly o�-shell quarks to regulate infrared divergen
e aregiven by �i = �s Æ��0 .The fun
tion F obeys the BFKL equation. In the forward limit t = 0,!F (!;k1;k2; 0) = Æ2(k1 � k2) + �s� Z d2k0(k1 � k0)2 (2.82)�F (!;k0;k2; 0) � k21k02 + (k1 � k0)2F (!;k1;k2; 0)� ;where �s = N
�s=�. The �rst term in the square bra
kets is related to realgluon emission while the se
ond one 
orresponds to virtual 
orre
tions leadingto reggeization of the ex
hanged gluons. Noti
e that the latter term 
an
elsinfrared divergen
e at k0 = k1 in the real emission part.Relation (2.80) 
an be inverted using the inverse Mellin transform. Afterthat the total 
ross se
tion (2.79) reads�tot = G(2�)4 Z d2k1k21 d2k2k22 �1(k1; 0) �2(k2; 0) F(s;k1;k2; 0) ; (2.83)where F(s; � ) is the inverse Mellin transform of F (!; � ) given by eq. (A.12) inAppendix A.The energy dependen
e of �tot is predi
ted by the solution of the BFKLequation. In Appendix A we present details of the 
omputations leading to thefollowing spheri
ally symmetri
 solutionF(s; k1; k2; 0) = 1�k21 ZC d
2�i �k21k22�
 ZC0 d!2�i � ss0�! 1! � �sK(
) ; (2.84)where the integration is done in the 
omplex 
- and !-planes, related to theMellin transformations in the variables k21 and s, respe
tively. K(
) is theLipatov kernel, de�ned in Appendix A.B. Asymptoti
 form of the solutionThe asymptoti
 form of solution of the BFKL equation for s!1 is foundafter the saddle point integration around 
 = 1=2 at whi
h point K0(1=2) = 0.In this 
ase, the integration 
ontour C is given by: 
 = 1=2+i�. The singularitystru
ture of the integrand in (2.84) is fully determined by its denominator, i.e.the equation ! = �sK(1=2 + i�) : (2.85)
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sK(1=2 + i�) is a real fun
tion, and when � runs from �1 to 1, ! goes from�1 to !0 = 4�s ln 2 (for � = 0) and then ba
k to �1. Thus we obtain a 
utfrom �1 to !0 in the 
omplex !-plane. This should be 
ontrasted with thesituation whi
h is usually assumed in Regge theory where we deal with polesin the 
omplex angular momentum plane l = ! + 1, see Se
tion 2.4.1.Now, the integration 
ontour C 0 in the !-plane is 
hosen to the right ofthe tip of the 
ut !0, and is 
losed in the left half-plane en
ir
ling the 
utsingularity. The integral over ! in (2.84) is given in terms of the dis
ontinuityof its integrand a
ross the 
ut. After 
omputing this dis
ontinuity, we �ndF(s; k1; k2; 0) = 1�k21 Z 1�1 d�2� �k21k22�1=2+i� � ss0��sK(1=2+i�) :After expanding the integrand around the saddle point � = 0 and performingthe �-integration, we �nd11 the asymptoti
 solutionF(s; k1; k2; 0) = 1�pk21k22 � ss0��sK(1=2) exp� � ln2(k21=k22)2�sK00(1=2) ln(s=s0)�p2��sK 00(1=2) ln(s=s0) : (2.86)The above formula has several interesting features.1. Strong rise with energy s, determined by!0 = �sK(1=2) = 4�s ln 2 : (2.87)Substituting �s � 0:2 we �nd: F � s 0:5. Be
ause of mu
h strongerdependen
e on energy than for the soft pomeron, the presented va
uumquantum number ex
hange is termed hard (or BFKL) pomeron,2. Di�usion pattern in ln(k?) with a rate determined by the se
ond deriva-tive of the Lipatov kernel �sK00(1=2) = 28�s �(3) and ln(s). The la
k ofstrong ordering in gluon transverse momenta is the origin of di�usion.The strong 
oupling 
onstant is �xed in the leading log(s) summation. Itsdependen
e on a hard s
ale is introdu
ed in the next-to-leading approximation.The strong rise of F is the sour
e of problems. It leads to the same leadingbehaviour of the total 
ross se
tion (2.83) in the high energy limit�tot � s�IP�1 = s 4�s ln 2; (2.88)whi
h ultimately violates unitarity bound (2.68).The la
k of unitarity is related to the problem of di�usion into the nonper-turbative region of small transverse momenta for large enough s, making theBFKL approa
h doubtful. One way to save this approa
h is to apply it only tothe situation in whi
h large s
ales of the same order in k? exist at the beginingand at the end of the evolution. In this 
ase di�usion into the low k?-region11With the help of the relation R1�1 d�=2� exp(�A�2=2 + iB�) = exp(�B2=(2A))=p2�A



2.4. DIS in Regge limit 33is minimized. Solving the unitarity problem, however, allows to avoid small k?di�usion due to the existen
e of a saturation s
ale [28℄.C. NLO 
orre
tions to the BFKL equationThe next-to-leading logarithmi
 approximation (NLLA) to the BFKL equa-tion is found by the resummation of terms proportional to �s(�s log s)n [29℄. Inthis approximation the linear stru
ture of the BFKL equation is retained. TheBFKL integral kernel, however, obtains 
orre
tions proportional to �s.The �rst sour
e of the NLL 
orre
tions are virtual 
ontributions to thereggeized gluon traje
tory !(t), eq. (2.77), and to the reggeon-reggeon-parti
levertex �. The most important 
orre
tions 
ome from the relaxation of thestrong ordering 
ondition (2.75) for the multi-Regge kinemati
s of the �nalstate parti
les. In the NLLA, two �nal state gluons 
an be 
lose to ea
h other.In addition, a �nal state q�q pair 
an also be emitted.The �rst analysis of the next-to-leading order BFKL equation revealed thatthe found 
orre
tions are very large [30℄. The value of the hard pomeron inter-
ept, �IP = 1 + !NLO, de
reases signi�
antly,!NLO = !0 (1 � 6:47�s) ; (2.89)where !0 is the leading order value (2.87). Therefore, for a reasonable value of�s � 0:2 we have !NLO < 0, and the inter
ept be
omes smaller than 1. The
ure of this problem is to additionally resum 
ollinear 
orre
tions to the BFKLequation to all orders. In su
h a 
ase the BFKL equation 
orre
tly reprodu
ethe 
ollinear limit, see [31℄ and referen
es therein. At the same time, the value of!NLO is stable with respe
t to the 
hange of �s, e.g. for �s = 0:2, !NLO = 0:27[31℄. This value is signi�
antly lower than the LO value. The unitarity bound,however, remains violated.2.4.3 k?-fa
torizationIn the appli
ation of the BFKL approa
h to DIS at small x, the gluon ladder
ouples to the proton on one side and to the q�q pair produ
ed by the virtualphoton on the other side, see Fig. 2.9. Thus, formula (2.83) takes the followingform �� = G(2�)4 Z d2k1k21 d2k2k22 ��(k1; 0) �p(k2; 0) F(x;k1;k2; 0) ; (2.90)where � = T;L denotes the virtual photon polarization and we repla
e s byx ' Q2=s . �� and �p are the virtual photon and proton impa
t fa
tors,respe
tively. From gauge invarian
e, ��(k1 = 0; 0) = �p(k2 = 0; 0) = 0, whi
hare the ne
essary 
onditions for the infrared �niteness of the 
ross se
tions.The photon impa
t fa
tor is the high-energy hard 
ross se
tion for the sub-pro
ess: 
� + g(k) ! q + �q, 
omputed in pQCD to the lowest order in �s asa fun
tion of the transverse momentum k of the in
oming o�-shell gluon withk ' xp + k? and k2 = �k2. The two relevant diagrams are are shown inFig. 2.9. In the NLLA, the diagrams 
ontain additional gluon in the �nal state
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Figure 2.9: The photon impa
t fa
tor graphs.or they are modi�ed by virtual 
orre
tions. The 
al
ulations of the photonimpa
t fa
tor in the NLLA are being pursued [32℄.The proton impa
t fa
tor is of a nonperturbative origin and 
an only bemodelled. We rewrite relation (2.90) in a di�erent way, by hiding the protonform fa
tor in the unintegrated gluon distributionf(x;k) = 1(2�)3 Z d2k2k22 �p(k2; 0) k2F(x;k;k2; 0) : (2.91)In su
h a 
ase eq. (2.90) be
omes�T;L(x;Q2) = Z d2kk4 �T;L(Q2;k) f(x;k) ; (2.92)where we absorbed the fa
tor G=(2�) in the de�nition of the photon impa
tfa
tor �T;L and indi
ated that it depends on the photon virtuality.Relation (2.92) is 
alled k?-fa
torization formula [33℄. In the small x limitthe DIS 
ross se
tions are 
omputed by the 
onvolution of the photon im-pa
t fa
tors and unintegrated gluon distribution, done over all values of thegluon transverse momentum k2. This re
e
ts the la
k of the ordering in gluontransverse momenta in the BFKL ladder in 
ontrast to the DGLAP approa
h.For large Q2, in the leading twist approa
h, formula (2.92) resums leading inlog(1=x) 
orre
tions to the splitting fun
tion Pgg and next-to-leading 
orre
-tions to the fun
tion Pqg [34, 35, 72℄.As dis
ussed in the previous se
tion, di�usion to the low k? region is a sour
eof problems. There is the danger that in the appli
ation to the des
ription of F2at small x, dominant 
ontribution will 
ome from the nonperturbative region.Extra
ting, however, the leading twist part for high Q2, the nonperturbativepart fa
torizes from the perturbative part, allowing for meaningful perturbative
al
ulations in the spirit of 
ollinear fa
torization [34, 35, 72, 20℄.By 
onsidering the 
ollinear limit in eq. (2.92), the following relation be-tween the unintegrated gluon distribution and the gluon distribution g(x;Q2)
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h is found for large Q2xg(x;Q2) = Z Q20 dk2k2 f(x; k) ; (2.93)where we assume spheri
al symmetry for k. The derivation of this relation ispresented in Se
tion 3.2.6.In the leading log(1=x) approximation, the unintegrated gluon distributionf(x; k) obeys the BFKL equation whi
h 
an easily be found from eq. (2.82)after the angular integration (see Appendix A for details)! �f(!; k) = �f0(k) +�s Z 10 dk02k02 k2� �f(!; k0)� �f(!; k)jk02 � k2j + �f(!; k)p4k04 + k4� ; (2.94)where the relation between the x-spa
e representation and the Mellin momentsis given by f(x; k) = ZC d!2�i x�! �f(!; k) : (2.95)The nonhomogeneous term f0(k) 
orresponds to the ex
hange of two perturba-tive gluons between the q�q pair and the proton. The higher order 
orre
tionsto this pro
ess, des
ribed by the se
ond term, lead to the BFKL gluon ladder.In the x-spa
e, the BFKL equation takes the form of the evolution equation inthe rapidity Y = log(1=x).The 
al
ulations of the photon impa
t fa
tor 
an be found in [25℄ or [20℄.They are organized in su
h a way that only the leading order 
ontribution(the q�q pair Fo
k 
omponent) to the photon impa
t fa
tor is 
onsidered. Thehigher order 
orre
tions are in
luded in the unintegrated gluon distribution.In an alternative way of 
al
ulations, performed in [36, 37, 38℄ in the dipolerepresentation, the BFKL e�e
ts are lo
ated in the photon wave fun
tion. Theparent q�q pair is dressed in the soft gluon 
ontribution, and the intera
tion withthe proton is realized by the ex
hange of two perturbative gluons. The expli
itform of the photon impa
t fa
tor 
an be read o� from formulae (3.1) and (3.4),presented in Se
tion 3.1.Following the presented method of 
onstru
ting the solution of the BFKLequation (2.94), we �nd the strong in
rease of the proton stru
ture fun
tionswhen x! 0, F2(x;Q2) � x�4�s ln 2 : (2.96)Thus, unitarization 
orre
tions are ne
essary whi
h would tame the rise in x.It is not 
lear whether an analogue of the Froissard-Martin bound (2.68) existsfor the 
�p s
attering, F2 � 
 log2(1=x) : (2.97)Although this 
ondition has not been proven a logarithmi
 bound in x is widelyexpe
ted.In order to ful�l unitarity in the des
ription of DIS di�erent methods havebeen proposed. The literature on this subje
t was initiated by the seminalwork of Gribov, Levin and Ryskin (GLR) [39℄ and 
ontinued over the yearsin [40℄-[64℄. The overall pi
ture whi
h emerges from these studies is related tosaturation in dense partoni
 systems.
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s2.4.4 Parton saturationIn the DGLAP approa
h in the double leading logarithmi
 approximation(DLLA), when x! 0 and Q2 !1, the number of gluons strongly rises [65℄,xg(x;Q2) � exp 2q�s log(Q2=Q20) log(1=x) ; (2.98)where the �xed 
oupling 
onstant �s = N
�s=� is assumed for simpli
ity. Thisfollows from the singular behavior of the splitting fun
tion Pgg(z) � 2N
=zwhi
h dominates in the evolution equation for the gluon distribution at smallx. The solution (2.98) 
orresponds to a 
at input distribution. For a singularinput, xg � x��, the power-like rise in x is 
onserved by the evolution in Q2.Through the 
oupling to the sea quarks, g ! q�q, the strong rise of the gluondistribution leads to a similar behaviour of the proton stru
ture fun
tion F2. Aswe have seen in the previous se
tion, the same result is obtained in the leading-and next-to-leading BFKL approa
h.The gluon distribution in
rease 
annot 
ontinue inde�nitely with de
reasingx. If the density of gluons be
omes too large anihilation or re
ombination ofgluons be
ome important, taming the strong in
rease. This e�e
t is 
alledparton saturation. A simple geometri
 estimation shows when these e�e
ts maybe
ome signi�
ant [40℄. In a frame in whi
h the proton momentum is large,xg(x;Q2) gives the number of gluons per unit of rapidity of transverse size ofthe order of 1=Q. The transverse area o

upied by gluons is given by the gluon-gluon 
ross se
tion �gg � �s(Q2)=Q2 times the number of gluons. If this areais 
omparable to transverse proton size,�s(Q2)Q2 xg(x;Q2) � � R2 ; (2.99)the gluons in the proton overlap and re
ombination o

urs [39℄.Condition (2.99) de�nes 
riti
al line (or better transition region) in the(x;Q2)-plane where parton saturation is important, see Fig. 2.10. With thisline, the saturation s
ale Qs(x) is also de�ned. The saturation s
ale in
reaseswith de
reasing x, thus we expe
t that for small enough x, the region aroundthe 
riti
al line 
orresponds to semi-hard QCD when �s is small and the par-toni
 system is dense. Below the 
riti
al line the linear evolution equationshold, above this line re
ombination e�e
ts 
annot be negle
ted and the evolu-tion equations obtain non-linear modi�
ations, 
alled shadowing or s
reening
orre
tions. Mu
h above the 
riti
al line the approa
h based on pQCD breaksdown. Thus, with de
reasing x and �xed Q2, the following transition is studied:perturbative QCD �! high density QCD �! nonperturbative QCDGribov, Levin and Ryskin found the following approximate modi�
ation ofthe DGLAP evolution equation for the gluon distribution in the DLLA [39℄,�2 xg(x;Q2)� ln(1=x) � ln(Q2=�2) = �s xg(x;Q2) � �2sR2Q2 �xg(x;Q2)�2 : (2.100)
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Figure 2.10: Parton distributions and 
riti
al line .Noti
e the fa
tor 1=Q2 whi
h in general suppresses the nonlinear term. Thenonlinearity, however, be
omes important 
lose to the 
riti
al line where theratio between the nonlinear and linear terms is of the order of �s. With su
ha modi�
ation, the gluon distribution saturates with de
reasing x, and so doesthe stru
ture fun
tion. A more re�ned analysis of Mueller and Qiu [40℄ extendsthe GLR result by in
luding nonlinear modi�
ations for the DGLAP equationsfor the sea quark distributions.The GLR equation e�e
tively resums `fan' diagrams where one gluon ladder,
orresponding to QCD pomeron in the DLLA, splits into two gluon ladders. Thenonlinear term in (2.100) des
ribes the basi
 one-to-two ladder splitting. In fa
t,the nonlinear term 
ontains the two-gluon distribution G(2), approximated bythe square of the gluon distribution [40℄G(2)(x; x;Q2; Q2) = 1�R2 �xg(x;Q2)�2 ; (2.101)where R is related to the 
orrelation length between gluons from di�erent lad-ders. If the two ladders 
ouple to di�erent quarks, the proton size is relevant,and R � 5 GeV�1. If the ladders 
ouple to the same quark, the 
onstituentquark radius R � 2 GeV�1 is more appropriate [43℄. In this 
ase, the strengthof the nonlinear term in eq. (2.100) is signi�
antly bigger.The GLR equation generated a lot of interest [40℄-[53℄. Phenomenologi
alstudies were 
on
entrated on estimation of the numeri
al signi�
an
e of thenonlinear 
orre
tions [41, 42, 45℄, espe
ially for the DIS experiments at HERA[43, 44, 47℄. The analysis performed with the help of the nonlinear evolutionequations of Mueller and Qiu showed that the e�e
t of nonlinearity may be
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shidden in the initial distributions for the linear DGLAP evolution equations, atleast for not too small Q2 (� 2 GeV2) [49℄. On the theoreti
al side, the studyof the four-gluon operator revealed that the evolution of the four gluon statein the DLLA is not simply the produ
t of two independent gluon ladders, butpro
eeds through the pairwise intera
tions of all four gluon lines [52℄. The e�e
tis not large but in order to estimate to what extent the GLR equation is a goodapproximation, more 
ompli
ated n-gluon operators should be analyzed [50, 51℄.The 
orresponding equations for them form the so-
alled BKP hierar
hy.A systemati
 program to study su
h operators beyond the DLLA, withthe aim to �nd unitary des
ription of DIS, was formulated by Bartels in [50℄and developed in [52, 53℄. The idea is to identify and resum a minimal set ofnonleading 
orre
tions to the leading BFKL summation whi
h leads to a unitaryamplitude. This set 
omprises 
ontributions with n gluons in the t-
hannel andin order to ful�l unitarity 
onditions in all sub
hannels any n is allowed. Theprogram was pursued up to n = 6. An interesting pattern, based on gluonreggeization and 
onformal symmetry, was revealed whi
h gives hope that thewhole set of unitarity 
orre
tions to the BFKL equation 
ould be formulatedas an e�e
tive 
onformal �eld theory in 2+1 dimensions [53℄. Lipatov withhis 
ollaborators were also trying to 
onstru
t an e�e
tive �eld theory for highenergy QCD [54℄. Independently, the problem of unitarization was studied inthe dipole pi
ture of Mueller in [56, 57℄ and in [58℄. A similar approa
h waspresented by Levin with 
oworkers [59℄. Unitarization has also been studiedusing renormalization group methods [60℄.A di�erent approa
h to unitary generalization of the BFKL equation wasproposed by Balitsky [61℄. By using the operator produ
t expansion for highenergy s
attering in QCD, he derived an in�nite set (hierar
hy) of 
oupledequations for n-point Wilson-line operators. Re
ently, Weigert managed tosimplify the form of these equations by writing them as a fun
tional evolutionequation for the generating fun
tional of the Wilson-line operators [62℄. The
onne
tion between the e�e
tive theory for the Colour Glass Condensate [63℄and the evolution equation found by Weigert has been established in [64℄.The Balitsky's equations de
ouple in the large N
 limit. In this limit, theequation for the 2-point fun
tion was independently derived by Kov
hegov [66℄in the dipole pi
ture. The equation generalizes the BFKL equation by in
ludinga quadrati
 term, and redu
es to the GLR equation in the DLA. The propertiesof this equation were investigated in [66, 66, 68℄, supporting the pi
ture ofparton saturation. The equation introdu
es an internal saturation s
ale Qs(x)below whi
h the nonlinear e�e
ts lead to saturation of the gluon density.The 
urrent status of the theoreti
al investigations of unitarization sug-gests further studies in order to obtain results whi
h 
ould be dire
tly ap-plied to the des
ription of high energy DIS. In Chapter 3 we des
ribe a semi-phenomenologi
al approa
h to unitarization where we propose an e�e
tive pa-rameterization of the DIS intera
tions 
ontaining essential features of partonsaturation, in parti
ular the saturation s
ale. As the main result of this analy-sis, the idea of saturation turned out to be very su

essful in the des
ription ofthe data from HERA.



2.4. DIS in Regge limit 39

Q2(GeV2)

lo
g

10
(1

/x
)

1

2

3

4

5

6

10
-1

1 10 10
2Figure 2.11: A

eptan
e region at HERA. Additional 
onstraint 
omes from theangular 
ut on measured s
attered ele
tron. The maximal Q2 ' 105 GeV2.2.4.5 Small x limit at HERAAn ex
ellent review of experimental results obtained at HERA is presented in[69℄. Here we brie
y des
ribe the small x results. At this 
ollider, 27 GeVele
trons are brought into 
ollision with 820 GeV protons. Due to the large
enter-of-mass energy ps � 300 GeV, the range in the Bjorken variable x isextended by three orders of magnitude from 10�2 for �xed target experimentsdown to 10�5 at HERA (for Q2 = 1 GeV2). A part of the kinemati
 range ofHERA in the (x;Q2)-plane is shown in Fig. 2.11.The general situation 
on
erning the appli
ability of pQCD te
hniques tothe des
ription of DIS pro
esses is shown in Fig. 2.10. The DGLAP equationsevolve a known proton stru
ture at a s
ale Q20 up to a large Q2 at moderatevalues of x by the summation of strongly ordered in kT parton emissions. Atsmall x and moderate Q2, the BFKL equation evolves to smaller values of x,summing strongly ordered in rapidity gluon emissions. The two equations havea 
ommon limit (DLLA) at high Q2 and small x. At very small x, satura-tion e�e
ts 
ome into the game, restoring unitarity through nonlinear evolutionequations (e.g. the GLR equation). From this perspe
tive, the main problemat HERA is how to lo
ate the general s
heme from Fig. 2.10 in Fig. 2.11. Inparti
ular, the following questions have been addressed.1. For how low x is the DGLAP summation still a viable approximation?2. Are the values of x small enough for the BFKL approa
h to be applied?3. Has the region of parton saturation already been rea
hed?
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sThese problems are intimately 
onne
ted to the interplay between pertur-bative and nonperturbative aspe
ts of QCD. Thus, the studies at HERA arenot simple tests of perturbative QCD but, by pushing perturbative te
hniquesto the limit of appli
ability, they extend our knowledge about nonperturbativestru
ture of the proton and eventually about 
on�nement.A. BFKL sear
hesIn 
omparison to the �xed target experiments, the �rst most striking resultat HERA is the strong rise of the proton stru
ture fun
tion F2 � x��(Q2)with de
reasing x < 10�2 at �xed Q2, see Fig. 3.6. The measured valuesof � are mu
h bigger than for the soft pomeron ex
hange [70℄. The strongrise in x is predi
ted by the BFKL summation, and the question arises if theobserved behaviour is a genuine signature of this approa
h. The analyses basedon the BFKL equation and k?-fa
torization are su

essful in the explanationof F2 [71℄. A parti
ular attention in these analyses was paid to the infraredregion of small transverse momenta sin
e the integration in (2.92) is 
arriedover all values of l. In the most elaborate analysis [72℄, a uni�ed des
riptionis 
onstru
ted whi
h in
orporates both the BFKL and DGLAP resummationsand takes into a

ount a signi�
ant part of the next-to-leading 
orre
tions tothe BFKL equation. Other uni�ed approa
hes like CCFM s
heme [73℄, whi
hin
ludes 
oheren
e e�e
ts in gluon emission, were also extensively studied [74℄.However, the standard method based on the �t of initial distributions forthe DGLAP evolution equations is also su

essful in the des
ription of F2. Thereason is explained by the strong rise of the gluon distribution in the DLLA,see eq. (2.98), whi
h indu
es a similar behaviour of F2. Based on the double-logarithmi
 asymptoti
s, a s
aling low for F2 was proposed [75℄. The relationbetween the BFKL and DGLAP approa
hes was extensively studied in [76℄. Thepra
ti
al 
on
lusion drawn from these studies was that in the kinemati
 rangeof HERA, the in
lusive measurement of F2 is not able to dis
riminate betweenthe two approa
hes. For this purpose, ex
lusive pro
esses whi
h dire
tly probethe kinemati
 stru
ture of gluon emission would be more appropriate.The pro
esses that have been suggested are shown in Fig. 2.12. In theforward jet produ
tion in DIS at small x [77℄, see Fig. 2.12(a), the jet transversemomentum k2Tj � Q2 in order to minimize the DGLAP evolution and the BFKLdi�usion into the region of small transverse momenta of the gluons in the ladder.The longitudinal momentum of the jet xj � x to enhan
e the role of the BFKLsummation and isolate the (x=xj)�� behaviour. In su
h kinemati
s the jet isprodu
ed 
lose to the proton remnants making the measurement a 
hallenge.The measurement was performed, however, and the experimental results favourthe des
riptions with non-ordered in kT gluon emissions [78, 79℄.A hadroni
 variant of this pro
ess is shown in Fig. 2.12(
) where two hardjets in hadron-hadron 
ollision are strongly separated in rapidity. If the BFKLme
hanism populating the rapidity interval �y with no ordered in kT gluonsis used, the 
ross se
tion is proportional to exp (��y) [80℄. This idea is notfeasible, however, at �xed energy 
olliders. Instead, it is better to look at theangular 
orrelation of the dijets whi
h at leading (�xed) order are ba
k-to-
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Figure 2.12: BFKL footprintsba
k, but gluon radiation introdu
es de
orrelation [81℄. In DIS a similar e�e
tis observed in the pro
ess shown in Fig. 2.12(d) [82℄. The �rst experimentalresults were reported in [83℄.Due to the relaxation of strong ordering of the gluon kT 's in the BFKLapproa
h, more transverse energy ET should be emitted between the 
urrentjet and the proton remnants than would result from the DGLAP approa
h [84℄,espe
ially in the 
entral and forward region, see Fig. 2.12(b). Su
h an e�e
twas indeed observed at HERA [78, 85℄. The 
omparison of the predi
tionswith the data, however, is plagued by hadronization e�e
ts. The BFKL-based
al
ulation [84℄ a

ounts for ET at the partoni
 level, assuming an additional
onstant 
ontribution due to hadronization. Other models, formulated withthe help of Monte Carlo te
hniques, in
lude hadronization and after some �ne-tunning are able to des
ribe the observed ET .In 
on
lusion, although none of these pro
esses 
an be treated as proof ofBFKL e�e
ts, the measurements show that higher order QCD e�e
ts repre-sented by BFKL (or CCFM) 
on�guration for gluon emission are important inthe data des
ription.B. DIS di�ra
tionKinemati
ally, small x opens the possibility to observe DIS events with largerapidity gap in the �nal state between the photon and the proton fragmenta-tion regions. In fa
t, in most 
ases the s
attered proton stays inta
t losingonly a small fra
tion of its initial energy, see Fig. 2.13. In the pQCD approa
hbased on DGLAP emissions, the probability of su
h pro
esses are exponentiallysuppressed due to the fragmentation pro
ess driven by parton radiation. How-ever, the observed fra
tion of these events in DIS at HERA is of the order of10%, with the distribution fairly independent of Q2 and x [86, 87℄. This is ase
ond striking result in the small x region at HERA. Large rapidity gap is a
hara
teristi
 feature of di�ra
tive pro
esses in whi
h the pomeron ex
hange is
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Figure 2.13: DIS di�ra
tion.responsible for the s
attered proton being inta
t. With this interpretation, thenatural question is whether the BFKL pomeron is responsible for DIS di�ra
-tion.The most 
ompelling pi
ture of di�ra
tion is obtained in the proton restframe. In this frame, the virtual photon disso
iates into a q�q pair long beforethe intera
tion with the proton. Then the pair is elasti
ally s
attered formingdi�ra
tive system12 with the invariant mass M . The 
on�gurations whi
h dom-inate di�ra
tive 
ross se
tion are the ones with large (hadroni
) transverse sizesof the q�q pair (aligned jet 
on�guration). Small (perturbative) transverse sizes,giving e.g. di�ra
tively produ
ed large pT jets, are not pre
luded but are sup-pressed as higher twist. A signi�
ant part of the dominant 
ontribution is givenby intermediate (semi-hard) sizes. This region of the transverse sizes is boundto e�e
ts whi
h are at the border between perturbative and nonperturbativephases of QCD. In parti
ular, by suppressing pure perturbative 
omponent,DIS di�ra
tion is espe
ially sensitive to parton saturation sin
e a large part ofunitarization 
orre
tions 
ontributes to di�ra
tive disso
iation. Of 
ourse, bystudying ex
lusive di�ra
tive pro
esses like high-pT jet or J= ve
tor mesonprodu
tion, one 
an isolate the perturbative 
omponent, and suppress semi-hard and large 
on�gurations. In this 
ase a single BFKL pomeron ex
hangewould dominate.The presented pi
ture is 
on�rmed in the studies of di�ra
tive disso
iationbased on the BFKL approa
h [88℄. In in
lusive di�ra
tive DIS almost thewhole phase spa
e 
overed by the BFKL evolution is lo
ated in the infrareddomain of transverse gluon momenta where pQCD is not appli
able. This�nding 
on�rms the dominan
e of aligned jet 
on�guration. However, in thedi�ra
tive J= produ
tion at large t, where small size 
omponent dominates,the BFKL pomeron provides a good des
ription [89℄.The observed features of DIS di�ra
tion are intimately related to the prob-lem of unitarization 
orre
tions (with the intuitive pi
ture of parton saturation).In the following presentation we explore this problem in detail. The main ideabehind the presentation is that unitarization e�e
ts are already important in12The system 
an be generalized to q�q + n gluon �nal state.
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 range. In parti
ular, we suggest that the transition regionor 
riti
al line from Fig. 2.10 is lo
ated at Q2s = 1 � 2 GeV2 and x � 10�4.Thus for in
lusive DIS, saturation e�e
ts manifest themselves in the transitionof F2 to low Q2 values. Sin
e Qs is in the perturbative region, the onset ofsaturation 
an be des
ribed by means of perturbative QCD. In Chapter 3 wepresent details of the unitary des
ription of in
lusive DIS at small x.In di�ra
tive DIS, saturation is 
ru
ial even for higher values of Q2, due tosuppression of the perturbative 
omponent. The 
onstant ratio of the DIS 
rossse
tions �diff=�tot as a fun
tion of x and Q2 is a dire
t manifestation of thise�e
t. Using the parameterization of the 
�p intera
tions found in the in
lusivedata analysis, we obtain a good des
ription of di�ra
tive data. This and relatedissues on DIS di�ra
tion are dis
ussed in Chapter 4.



Chapter 3In
lusive DIS at small xIn this 
hapter we present the des
ription of in
lusive deep inelasti
 s
atter-ing at small x, based on the analysis [94℄. We start from presenting the kT -fa
torization formulae for the 
�p 
ross se
tions (2.92). We swit
h then to thedipole representation in whi
h a simple physi
al interpretation of the s
atteringexists in the proton rest frame. In this interpretation, the virtual photon splitsinto a q�q dipole long before the intera
tion with the proton takes pla
e. Thedipole-proton intera
tion is parameterized in the way whi
h leads to unitarityby using the idea of parton saturation. In parti
ular, an internal s
ale relatedto a dense partoni
 system in the proton is introdu
ed. We dis
uss qualita-tively the results of su
h a model of the intera
tion, emphasizing the transitionto low Q2 region of DIS. The other aspe
ts like the photoprodu
tion limit andheavy quark produ
tion are also analyzed. The presented model predi
ts a news
aling of the 
�p 
ross se
tions at low values of x, 
on�rmed by the analysisof the existing data [98℄. More formal aspe
ts of the des
ription are dis
ussedin the se
tion on the twist expansion. This problem 
ould be studied in moredetail, and interesting results on the 
an
ellation of the transverse and longi-tudinal twist-4 
omponents of the proton stru
ture fun
tion F2 are presented,following [94, 99℄. We �nish with the dis
ussion of the relation between thedipole formulation and the 
onventional DGLAP des
ription.3.1 Small x 
ross se
tionsThe 
ross se
tion for the 
�p s
attering from transverse and longitudinal polar-ized photons are 
omputed from the imaginary part of the forward Comptons
attering amplitude in the high energy limit, see Fig. 2.9 with k repla
ed by l.The virtual photon splits into a quark-antiquark pair that intera
ts elasti
allywith the proton through the ex
hange of two gluons in the 
olour singlet state.This intera
tion is des
ribed by the unintegrated gluon distribution f(x; l2),whi
h introdu
es the dependen
e on energy of the 
�p system. Stri
tly speak-ing, if only two perturbative gluons are ex
hanged whi
h dire
tly 
ouple toquarks in the proton, the pro
ess is energy independent and f(x; l2) = f0(l2).If two reggeized gluons intera
t with themselves, forming the 
ompound sys-tem (hard pomeron), f(x; l2) is a solution of the BFKL equation (2.94). The44



3.1. Small x 
ross se
tions 45intera
tion 
an also involve many gluon ex
hanges, like in the semi
lassi
al ap-proximation [91℄ in whi
h the basi
 k?-fa
torization stru
ture (2.92) is retained.For the transverse photons we have [90℄�T = �em� Xf e2f Z d2ll4 �sf(x; l2) Z d2kZ 10 dz([z2 + (1� z)2℄ � kD(k) � k+ lD(k+ l)�2 +m2f � 1D(k) � 1D(k + l)�2) ; (3.1)wheremf is a mass of the quark of 
avour f to whi
h the virtual photon 
ouples,D(k) = k2 +Q2 (3.2)and Q2 = z(1 � z)Q2 +m2f : (3.3)In the 
�p 
ollinear frame, �k are two-dimensional ve
tors of transverse momen-tum of the quarks and z; (1�z) are the fra
tions of the light-
one momentum ofthe photon 
arried by the quarks. The transverse momentum of the ex
hangedgluon l determines its virtuality, l2 = �l2.The 
ross se
tion for longitudinally polarized virtual photon takes the form�L = �em� Xf e2f Z d2ll4 �sf(x; l2) Z d2kZ 10 dz4Q2z2(1� z)2 � 1D(k) � 1D(k + l)�2 : (3.4)The relation between the stru
ture fun
tions FT;L and �T;L is given by eq. (2.10).The photon impa
t fa
tors, introdu
ed in Se
tion 2.4.3, 
an be found by
omparison of the above expressions with eq. (2.90) where k is repla
ed by l.The 
olour neutrality enfor
es the 
onditions �T;L(Q2; l = 0) = 0, importantfor the infrared �niteness of the 
ross se
tions.In the following we present an e�e
tive parameterization of the intera
tionsbetween the q�q pair and the proton, leading to unitary 
ross se
tions. The pa-rameterization 
ontains essential features of parton saturation. The dis
ussionwill be presented in a dipole representation whi
h is parti
ularly suitable for adis
ussion of unitarity issues.3.1.1 Dipole representationThe dipole representation of the in
lusive 
ross se
tions is obtained after sub-stitution relations (B.1) and (B.3) from Appendix B into (3.1) and (3.4), andintegration over k. In this representation the transverse quark momentum k istraded for the Fourier 
onjugate variable, the q�q transverse separation r. The
ru
ial element of the 
al
ulation is the observation that the k-integration givesthe delta fun
tion Æ2(r1�r2) whi
h allows to perform one of the two integrationsover r1;2 .
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Figure 3.1: S
hemati
 representation of the basi
 fa
torization in in
lusive DISat small x.We obtain for the transverse 
ross se
tion�T = �em� Xf e2f Z d2rZ 10 dz n[z2 + (1� z)2℄ Q2K21 (Qr) + m2fK20 (Qr)o� Z d2ll4 �sf(x; l2) (1� e�il�r) (1� eil�r) ; (3.5)and similarly for the longitudinal 
ross se
tion�L = �em� Xf e2f Z d2rZ 10 dz 4 Q2 z2(1� z)2 K20 (Qr)� Z d2ll4 �sf(x; l2) (1� e�il�r) (1� eil�r) ; (3.6)were K0;1 are the Bessel{M
 Donald fun
tions. Both 
ross se
tions 
an bewritten in the following 
ompa
t form [90, 36℄, shown s
hemati
ally in Fig. 3.1,�T;L(x;Q2) = Z d2rZ 10 dz Xf j	fT;L(r; z;Q2)j2 �̂(x; r) : (3.7)where the photon wave fun
tions 	fT;L des
ribe the splitting of the virtual pho-ton into the q�q pair [92℄,j	fT (r; z;Q2)j2 = 3�em2�2 e2f n[z2 + (1� z)2℄ Q2K21 (Qr) + m2fK20 (Qr)o ;(3.8)j	fL(r; z;Q2)j2 = 3�em2�2 e2f �4 Q2z2(1� z)2K20 (Qr)	 ; (3.9)and Q is de�ned in eq. (3.3). Formula (3.7) forms the basis of the followinganalysis.



3.1. Small x 
ross se
tions 47The dipole 
ross �̂(x; r) in eq. (3.7) 
hara
terizes the intera
tion of the q�qpair with the proton, and is 
onne
ted to the unintegrated gluon distributionf(x; l2), �̂(x; r) = 2�3 Z d2ll4 �sf(x; l2) (1� e�il�r) (1� eil�r)= 4�23 Z 10 dl2l4 �sf(x; l2) (1� J0(lr)) : (3.10)where in the last equation the angular integration was performed and J0 is theBessel fun
tion. The two terms in bra
kets in (3.10) are related to the waythe two ex
hanged gluons 
ouple to the quarks. 1 
omes from the diagramswith the gluons 
oupled to the same quark while the exponents exp(�il � r) aregiven by the 
oupling to di�erent quarks, see Fig. 2.9. Noti
e that due to thisstru
ture the dipole 
ross se
tion vanishes for r ! 0. This phenomenon, 
alled
olour transparen
y, is a 
hara
teristi
 feature of perturbative QCD.Formula (3.7) re
e
ts the k?-fa
torization theorem. The physi
al interpre-tation of this theorem is provided in the proton rest frame. The formation time(
alled Io�e time [93℄) of the q�q pair is related to the un
ertainty of energy ofthe pair, �q�q � 1=�E. In the small-x limit �E � xMP in the proton rest frame,see e.g. [20℄. Thus the formation time �q�q is mu
h larger than the intera
tiontime of the pair with the proton, �int � 1=MP ,�q�q � �int : (3.11)In summary, for a small enough x, the q�q pair is formed far upstream of theproton. This pro
ess is des
ribed by the photon wave fun
tion 	(r; z). Then,the pair s
atters o� the proton with the 
hara
teristi
s (r; z) frozen over thetime of the intera
tion. Consequently, �̂(x; r) 
an be interpreted as the 
rossse
tion for a s
attering of a q�q pair with transverse size r o� the proton.3.1.2 Approximate relationsThe dipole representation (3.7) is parti
ularly suitable for a qualitative analysissin
e the physi
al interpretation is transparent in this representation. In thisse
tion we derive approximate relations whi
h allow to perform su
h an analysis.For simpli
ity we set mf = 0.We start from the 
ross se
tion (3.7) for transversely polarized photons�T � Z 10 dr2 Z 10 dz [z2 + (1� z)2℄ z(1� z)Q2 K21�pz(1 � z)Qr� �̂(x; r) :(3.12)Its properties are determined by the behaviour of the Bessel fun
tion K1:K1(x) = 8<: 1=x for x� 1p�=2x exp (�x) for x� 1 : (3.13)
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lusive DIS at small xThus the main 
ontribution to �T 
omes from the arguments of K1 smaller than1, �T � Z 10 dr2 Z 10 dz [z2 + (1� z)2℄ �̂(x; r)r2 � �z(1� z)Q2r2 < 1� ; (3.14)where the fun
tion �(x < 1) equals 1, if x < 1, or 0, otherwise.If 0 � r � 2=Q, the theta fun
tion does not impose any restri
tion on thevalues of z. In this 
ase the z-integration fa
torizes and gives the fa
tor 2=3.For su
h a 
on�guration the distribution of z is rather uniform with the meanvalue < z >= 1=2. This is why we 
all this 
on�guration symmetri
.A di�erent 
on�guration o

urs for large transverse separations r � 2=Q.Now, the theta fun
tion heavily restri
ts z to small values: z < 1=(Q2r2). Thez-integration is performed before the r-integration, giving the leading result2=(Q2r2), where the fa
tor 2 arises from the symmetry z $ (1 � z). In this
on�guration, 
alled aligned jet, z � 0 or (1 � z) � 0. Thus, one of the quarksfollows the photon dire
tion while the other stays with the proton. Noti
e thatsu
h a 
on�guration o

urs for large values of the transverse separation, probingnonperturbative region.Summarizing, we obtain the following approximate form�T � Z 4=Q20 dr2r2 �̂(x; r)| {z }symmetri
 + Z 14=Q2 dr2r2 � 1Q2r2� �̂(x; r)| {z }aligned jet ; (3.15)where we have negle
ted multipli
ative numeri
al fa
tors, unimportant for thequalitative analysis. For 
onvenien
e, we have de�ned aligned jet 
on�gurationstarting from r = 2=Q when z = 1=2. Thus, we should have in mind that thealigned jet integral also 
ontains an intermediate region of r. Noti
e the fa
tor1=Q2r2 whi
h suppresses the integrand for r � 1=Q. Its signi�
an
e will bedis
ussed in detail in the following 
hapters.A similar analysis1 performed for the longitudinal 
ross se
tion gives�L � Z 4=Q20 dr2 Q2 �̂(x; r)| {z }symmetri
 + Z 14=Q2 dr2 Q2 � 1Q2r2�3 �̂(x; r)| {z }aligned jet : (3.16)In order to �nd the leading Q2 behaviour of the above formulae we have toprovide a form of the dipole 
ross se
tion. We do this in the next se
tionspe
ifying a model whi
h takes into a

ount unitarity requirements.3.2 Saturation modelThe saturation model was formulated and 
ompared at length to DIS datain [94℄. Here we des
ribe this model, dis
ussing some details whi
h were notpresented in the original formulation. For related approa
hes see [96℄.1The behaviour K0(x) � log(1=x) for x� 1 is important in this 
ase.
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ross se
tion for di�erent values of x.The intera
tion of the q�q pair with the proton is des
ribed by the dipole
ross se
tion �(x; r) whi
h is modelled in our analysis. The most 
ru
ial elementis the adoption of the x-dependent saturation radiusR0(x) = 1Q0 � xx0��=2 ; (3.17)whi
h s
ales the quark-antiquark separation r in the dipole 
ross se
tion�̂(x; r) = �0 g�r̂ = rR0(x)� : (3.18)Q0 = 1 GeV in eq. (3.17) sets the s
ale. The fun
tion g in eq. (3.18) is not
ompletely 
onstrained. Important is, however, the quadrati
 rise at small r̂and the 
onstant value at large r̂. The form whi
h we 
hooseg(r̂) = 1� exp (�r̂2=4) (3.19)obeys these 
onditions and turns out to be very su

essful in the data des
rip-tion. In our analysis we �t the three parameters of the model �0, � and x0to all available in
lusive DIS data with x < 0:01. For a detailed �t des
rip-tion see [94℄; here we only quote the values of these parameters for orientation:�0 = 23 mb, � = 0:29 and x0 = 3 � 10�4 in the �t without the 
harm 
ontribu-tion. We additionally assumed a 
ommon mass of 140 MeV for the three light
avour quarks, whi
h leads to a reasonable predi
tion in the photoprodu
tionregion, see se
tion 3.2.2.The main assumption about the form (3.19) 
on
erns saturation propertyof the dipole 
ross se
tion. For r̂ !1 we have g ! 1 so that �̂ ! �0. The fa
tthat the dipole 
ross se
tion is limited by the energy independent 
ross se
tion�0 may be regarded as a unitarity bound. It leads to the behaviour of the total
ross se
tion, �
�p � log(1=x), whi
h obeys the unitarity 
ondition (2.97). Inthe opposite limit, when r̂ ! 0, the fun
tion g � r̂2 and the dipole 
ross se
tionhas the pQCD property of 
olour transparen
y, dis
ussed in Se
tion 3.1.1.



50 Chapter 3. In
lusive DIS at small xThe saturation radius R0(x) distinguishes between the regions of 
olourtransparen
y and saturation for the dipole 
ross se
tion. The transition betweenthem is x-dependent, and o

urs for smaller dipole sizes r as x! 0, see Fig. 3.2.This is an essential feature of the model whi
h agrees with the pi
ture of partonsaturation. In parti
ular, R0(x) 
an be related to the saturation s
ale Qs(x) �1=R0(x), dis
ussed in Se
tion 2.4.4. For the dipoles with the sizes below R0,the standard single ladder ex
hange dominates, 
lose to R0 multiple intera
tions(saturation e�e
ts) be
ome important while for r � R0 nonperturbative e�e
tsdominate. This pi
ture has been qualitatively 
on�rmed by the QCD analysiswith the help of nonlinear evolution equations [66℄, done after the presentedmodel was proposed, see also [55℄.It is instru
tive to 
ontrast (3.18) with the dipole 
ross se
tion obtained fromthe BFKL equation. Negle
ting the exponential in (2.86) and using relation(3.10), we �nd for small r �̂(x; r) � x��s4 ln 2 r : (3.20)The linear in
rease in r is �nally tamed, but nothing prevents �̂ from violatingunitarity due to the power-like rise in x when x! 0. We solve this problem bythe x-dependent transition to saturation.3.2.1 Qualitative analysisNow, we are ready now to 
on
lude our qualitative analysis based on eqs. (3.15)and (3.16). In order to obtain the leading Q2 behaviour, we approximate thedipole 
ross se
tion (3.18) by�̂(x; r) = 8<: �0 r2=4R20(x) for r � 2R0(x)�0 for r > 2R0(x) : (3.21)This form 
ontains all essential features of the exa
t formula for the leading Q2analysis.In addition to the s
ale R0, whi
h we interpret as the mean distan
e in thetransverse plane between partons in the proton, there is another s
ale 1=Q, the
hara
teristi
 size of the q�q pair. The Q2-behaviour of �T;L depends on therelation between the two s
ales.If the 
hara
teristi
 size of the q�q pair is mu
h smaller than the mean dis-tan
e between partons, 1Q � R0(x) ; (3.22)the transverse 
ross se
tion (3.15) be
omes�T � 4=Q2Z0 dr2r2 ��0 r24R20 �| {z }symmetri
 + 4R20Z4=Q2 dr2r2 � 1Q2r2���0 r24R20 �| {z }aligned jet + 1Z4R20 dr2r2 � 1Q2r2��0 :| {z }aligned jet
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1 2Figure 3.3: The distribution d�T =dr as a fun
tion of the dipole size r (solidlines) for two values of Q2 and W = 245 GeV. The dipole 
ross se
tion (3.18)is shown as the dotted lines. The r-axis is in units of 2R0(x) = 0:37 fm for (a),and 2R0(x) = 0:26 fm for (b).After 
omputing the relevant integrals, we obtain s
aling behaviour of the stru
-ture fun
tion FT � Q2 �T with logarithmi
 violation�T � �0Q2R20| {z }r<2=Q + �0Q2R20 log(Q2R20)| {z }2=Q<r<2R0 + �0Q2R20| {z }r>2R0 (3.23)where we have suppressed similar numeri
al 
oeÆ
ients (of the order of �em=�)for ea
h 
ontribution2.Noti
e that both symmetri
 and aligned jet 
on�gurations 
ontribute tothe leading twist result. The intermediate 
ontribution, 2=Q < r < 2R0, isespe
ially enhan
ed due to the large logarithm. An important 
ontribution
omes also from the region r > 2R0 whi
h is dominated by nonperturbative sizeswith a large hadroni
 
ross se
tion �0. The smallness of the suppression fa
tor1=Q2r2, however, 
ompensates this e�e
t leading to the s
aling 
ontribution.This is a realization of the observation made by Bjorken and Kogut in [97℄.The qualitative results are illustrated in Fig. 3.3a, where d�T =dr as a fun
tionof r, 
omputed from (3.7), is shown by the solid lines. The dipole 
ross se
tion(3.18) is plotted as the dotted lines.The presented analysis of �T provides an additional motivation for thepower-like form of R0(x). In su
h a 
aseFT � x�� ; (3.24)whi
h re
e
ts the small-x in
rease of the DIS 
ross se
tion, similar to thatobtained from the BFKL equation. The pre
ise value of � is not predi
ted inour approa
h but it is �tted to the data. Thus, it 
an phenomenologi
ally takeinto a

ount the next-to-leading logarithmi
 
orre
tions to the BFKL equationwhi
h are known to be important for the value of �.2This analysis shows that 2=Q and 2R0 are better 
hara
teristi
 s
ales.
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lusive DIS at small xThe opposite relation, valid when the q�q pair size is mu
h larger than themean distan
e between partons, 1Q � R0(x) ; (3.25)leads to a di�erent behaviour from the point of view of the leading powers ofQ2. The transverse 
ross se
tion (3.15) takes now the form�T � Z 4R200 dr2r2 ��0 r24R20 �| {z }symmetri
 + Z 4=Q24R20 dr2r2 �0| {z }symmetri
 + Z 14=Q2 dr2r2 � 1Q2r2��0| {z }aligned jetwhi
h leads to �T � �0|{z}r<2R0 + �0 log� 1Q2R20�| {z }2R0<r<2=Q + �0|{z}r>2=Q : (3.26)Noti
e that even the region of small r, where the dipole 
ross se
tion features
olour transparen
y, leads to �T � �0. The energy dependen
e of �T is alsodi�erent, now it 
omes through the logarithmi
 term with the x-dependent R0.Thus we expe
t a smooth 
hange from the behaviour given by (3.24) to a milderdependen
e FT � Q2�0 log(1=x) ; (3.27)being in agreement with the unitarity bound (2.97).The dis
ussed 
ase is illustrated in Fig. 3.3b by showing d�T =dr as a fun
tionof r. Noti
e that d�T =dr does no longer peak around r = 2=Q, as it does inthe s
aling 
ase. In our interpretation, the limit 1=Q � R0 
orresponds tothe situation in whi
h the q�q pair 
annot resolve individual partons, and thepartoni
 system be
omes dense for the probe. As a result, the dipole 
rossse
tion be
omes large and multiple intera
tions are important.The transition from s
aling to the saturated behaviour is marked by the
riti
al line in the (x;Q2)-plane for whi
h the 
hara
teristi
 q�q size equals themean separation between partons,1Qs = R0(xs) : (3.28)In reality, the line may be
ome a strip marking the transition region. Whatmatters is the relation between Qs and xs. Sin
e R20(x) � x�, the saturations
ale Qs be
omes higher when xs ! 0, see Fig. 3.4. Therefore, with de
reasingBjorken-x one has to go to smaller distan
es (larger Q2) to resolve a denseparton stru
ture of the proton. This makes the pro
ess of the transition froms
aling to saturated form perturbative and gives a hope that this pro
ess 
an bedes
ribed by perturbative QCD. The role of the 
riti
al line is dis
ussed froma di�erent point of view in Se
tion (3.2.5).The same analysis 
an be performed for the longitudinal 
ross se
tion. Inthe s
aling region, Q2R20 � 1, the leading 
ontribution 
omes only from the
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riti
al line in the (x;Q2)-plane. The a

ep-tan
e regions of HERA (lower band) and the future TeV (upper band) 
ollidersare shown. S
aling region, Q2R20 � 1, is to the right, and saturation region,Q2R20 � 1, to the left of the line.symmetri
 in z and intermediate 
on�guration r < 2R0, see relation (3.16) forthe 
omparison, �L � �0Q2R20| {z }r<2=Q + �0Q2R20| {z }2=Q<r<2R0 + �0Q4R40| {z }r>2R0 : (3.29)Aligned jet 
on�guration for r > 2R0 is higher twist, suppressed by an ad-ditional power of Q2. The reason is the fa
tor z2(1 � z)2 in the longitudinalwave fun
tion (3.9) whi
h suppresses the end point (aligned jet) 
on�guration.Therefore, the longitudinal 
ross se
tion is dominated by the perturbative 
on-tribution. Noti
e also a la
k of a logarithmi
 enhan
ement of the leading twist
ontribution. Thus �L will be signi�
antly smaller than �T , see (3.23) for the
omparison. In the region, Q2R20 < 1, 
lose to the 
riti
al line, we have�L � �0 : (3.30)The result of the 
omparison of the saturation model with data for �
�p =�T + �L as a fun
tion of Q2 for �xed energy W of the 
�p system is shownin Fig. 3.5. The plot also illustrates the e�e
t of a light quark mass on theresults. It should be mentioned that at HERA the density of partons at thesaturation s
ale Q2s � 1-2 GeV 2 is not parti
ularly high. For this purpose thenext generation TeV 
olliders would be better (see Fig. 3.4). For the saturations
ale, however, the size of the virtual probe (� 0:3 fm) is large enough to seebla
kness of the proton, most probably due to the size of the 
onstituent quark
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�p 
ross se
tion for various energies. The solid lines showthe �t results with a light quark mass mf = 140 MeV. The dotted lines showthe same 
ross se
tions with mf = 0. The line a
ross the 
urves indi
ates theposition of the 
riti
al line.stru
ture. In Fig. 3.6 we show the stru
ture fun
tion F2 plotted as a fun
tionof x for di�erent values of Q2. Noti
e the 
hange of the slope in x with Q2 andgood agreement between the data and the results of the saturation model (solidlines).In summary, the saturation model naturally explains the transition froms
aling to saturation in the DIS 
ross se
tion measured in the experiments atHERA. This des
ription is related to the 
on
epts of a dense partoni
 systemand the 
riti
al line, whi
h are 
losely related to unitarization of the DIS 
rossse
tions at small x.3.2.2 Small Q2 limitIt is interesting to 
onsider a formal limit Q2 ! 0 in the saturation model.The analyzed 
ross se
tions are divergent in this limit if mf = 0. However, ifa non-zero quark mass is assumed the formal limit 
an be found. Performingthe analysis similar to that presented in the previous se
tion, we obtain the
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tion of x for di�erent Q2 values. The solid lines areresults of the saturation model. The data are from the H1 and ZEUS 
ollabora-tions.following result, valid when m2f � Q2 ! 0,�T � �0 log 1m2fR20(x)! (3.31)�L � �0 Q2m2f ; (3.32)where we additionally modify the Bjorken-x formula to allow for the photopro-du
tion limit x = Q2 + 4m2fW 2 : (3.33)As expe
ted, the longitudinal 
ross se
tion vanishes when Q2 = 0. We also seethat mf plays a 
ru
ial role for the value of the transverse 
ross se
tions. In
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tive pomeron inter
ept �P in �
�p � (W 2)�P�1 as a fun
-tion of Q2. The three 
urves illustrate di�erent methods of 
al
ulation, seeRef. [94℄ for more details.our analysis we set mf = 140 MeV to obtain good agreement with the HERAphotoprodu
tion data. For Q2 � m2f , the quark mass does not play a signi�
antrole.From eqs. (3.31)-(3.33) we see that for photoprodu
tion the energy be-haviour is given by �
�p � log(W 2) : (3.34)This should be 
ontrasted to the energy behaviour found in the DIS with Q2 �1=R20(x), see eq. (3.24), �
�p � (W 2)� : (3.35)These two extreme 
ases show a drasti
 
hange in the energy dependen
e withthe 
hange of Q2. It appears that for ea
h �xed value of Q2, in
luding photopro-du
tion region, we 
an e�e
tively parameterize the energy dependen
e throughthe power-like behaviour: �
�p � (W 2)�P (Q2)�1, see [94℄ for more details. The
hange with Q2 of the power �P (Q2) is shown in Fig. 3.7. Interestingly, �Pinterpolates between the soft and hard pomeron inter
ept values for small andlarge values of Q2, respe
tively.We should warn the reader that the results presented in this subse
tionshould only be interpreted as an observation about the e�e
tive parameteriza-tion whi
h 
an be extended down to photoprodu
tion region. We do not 
laimthat there is a perturbative way to a

ess that region. As emphasized by manystudies, at some low values of Q2 the 
hiral symmetry breaking e�e
ts 
omeinto play. A similar e�e
t appears in the presented parameterization as a de-penden
e on quark mass, whi
h is yet another parameter to be tuned. HavingQ2 even lower, 
on�nement e�e
ts are dominant and we 
an no longer talk ofquarks and gluons but rather about mesons and baryons.
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lusive 
harm produ
tionIn formula (3.7) whi
h we use for the des
ription of in
lusive DIS at small xthe summation is performed over quark 
avours, in
luding the 
harm quark
ontribution. Di�erent 
avours are distinguished by a quark mass and ele
tri

harge in the photon wave fun
tion. The dipole 
ross se
tion has the same formfor ea
h 
avour, with the modi�
ation (3.33) of the Bjorken-x. When the �tto DIS data on F2 is done, the 
harm 
ontribution will result as a predi
tionof the model for the in
lusive 
harm produ
tion whi
h 
an be 
ompared withdata.In order to understand the 
harm produ
tion we perform the qualitativeanalysis similar to that in Se
tion 3.2.1. Sin
e we 
annot negle
t the 
harmmass, m
 � 1:5 GeV, our starting formula (3.14) now takes the following form�
�
T � Z 10 dr2 Z 10 dz [z2 + (1� z)2℄ �̂(x; r)r2 � �(z(1 � z)Q2 +m2
)r2 < 1� ;(3.36)plus the term proportional to m2
 , 
oming from the transverse wave fun
tion(3.8), whi
h leads to the same features as the leading term presented above.As before, we want to perform �rst the integration over z. In this 
asewe solve the quadrati
 relation in z imposed by the theta fun
tion. If r <2=pQ2 + 4m2
 there is no restri
tion on the z-integration and we obtain sym-metri
 
on�guration. For 2=pQ2 + 4m2
 � r < 1=m
 aligned jet 
on�gurationis enfor
ed (z � 0; 1). In 
ontrast to the massless analysis, the quark mass intro-du
es a 
ut-o� on the maximal size of the 
�
 dipole: rmax = 1=m
. Colle
tingthese results, we �nd�
�
T � 4=(Q2+4m2
)Z0 dr2r2 �̂(x; r)| {z }symmetri
 + 1=m2
Z4=(Q2+4m2
) dr2r2 � 1Q2r2� �̂(x; r)| {z }aligned jet ; (3.37)that should be 
ompared to the massless relation (3.15).In the saturation model, as a result of the �t to data, we have in the entireHERA kinemati
 domain 1=m
 < 2R0(x) (3.38)Therefore, in
lusive 
harm produ
tion probes mostly the 
olour transparen
ypart of the dipole 
ross se
tion: �̂ = �0 r2=4R20. In other words, the 
harmquark mass restri
ts the 
�
 dipole size to the perturbative values for whi
hunitarization e�e
ts are not yet important.The s
ale given by 4m2
 leads to a di�erent behaviour of �
�
T as a fun
tionof Q2, similar to the already dis
ussed behaviour of the in
lusive 
ross se
tion.If Q2 � 4m2
 , after substituting the 
olour transparen
y form of �̂ into (3.37),we obtain �
�
T � �0Q2R20 + �0Q2R20 log(Q2=4m2
) : (3.39)The logarithmi
 enhan
ement 
omes from the aligned jet integral. In the oppo-site 
ase, when Q2 � 4m2
 , only the symmetri
 
on�guration 
ontributes, and
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�p 
ross se
tion (solid lines) from the �t with the 
harm quark
ontribution This 
ontribution is shown separately by the dotted lines.we �nd �
�
T � �04m2
R20 : (3.40)These results are illustrated by the dotted lines in Fig. 3.8, showing the 
harm
ontribution �
�
 whi
h undergoes the transition around 4m2
 � 10 GeV2. Thus,the transition of �
�
 to the saturated form is unrelated with the saturation ofthe dipole 
ross se
tion, but is di
tated by the relation between the s
ales Q2and 4m2
 . This is due to the relation (3.38), valid at HERA.3.2.4 Geometri
 s
alingLet us re
all our basi
 formula�T;L(x;Q2) = Z d2rZ 10 dz Xf j	fT;L(r; z;Q2)j2 �̂(r=R0(x)) : (3.41)where the photon wave fun
tions are given by eqs. (3.8) and (3.9). We expli
itlyindi
ated the basi
 s
aling property of our model, namely that �̂ depends on xand r through the dimensionless 
ombination r̂ = r=R0(x). This has profound
onsequen
es for the measured 
ross se
tion �
�p = �T + �L. If we negle
t thequark mass mf in the photon wave fun
tions we 
an res
ale the dipole sizer ! r̂ in (3.41) su
h that the integration variables are dimensionless. Thus,
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Figure 3.9: Experimental data on �
�p from the region x < 0:01 plotted versusthe s
aling variable � = Q2R20(x). The Q2 values are in the range between 0:045and 450 GeV2.after the integration �
�p be
omes a fun
tion of only one dimensionless variable:� = Q2R20(x), �
�p(x;Q2) = �
�p(�) : (3.42)This fa
t is expli
itly shown in the Mellin representation (3.43) of �
�p, pre-sented in the next se
tion. Sin
e our model des
ribes data well, the new s
alingis predi
ted for real data in a broad range of Q2 [98℄. The nonzero light quarkmass, introdu
ed to extrapolate the model down to photoprodu
tion, does notlead to a signi�
ant breaking of the s
aling. So does the 
harm 
ontribution.In Fig. 3.9, reprodu
ed from [98℄, we illustrate the s
aling (3.42) by showing�
�p as a fun
tion of � , for the small-x data with x < 0:01.In its essen
e, the new s
aling is a manifestation of the presen
e of the inter-nal saturation s
ale 
hara
terizing dense partoni
 systems, Qs(x) � 1=R0(x).This s
ale emerges from a pioneering work of [39℄, whi
h was subsequently an-alyzed and generalized in [56℄- [67℄. In the analysis [45℄, and more re
ently in[66℄, the s
aling properties similar to those postulated in (3.18) were found.An independent formulation [63℄ of the small x pro
esses, gives the same over-all pi
ture with the saturation s
ale. At a deeper level, the geometri
 s
alingfor small-x pro
esses may re
e
t self similarity or 
onformal symmetry of theunderlying dynami
s. More detailed studies are under way, see [61℄-[67℄.
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lusive DIS at small x3.2.5 Twist expansionFollowing the approa
h in [94℄ we express the 
�p 
ross se
tion in the saturationmodel in the Mellin representation whi
h is parti
ularly suitable for the analysisof the twist expansion. In the massless limit we �nd [94℄�T;L = �0 Z 1�1 d�2� � 1Q2R20(x)�1=2+i� ~HT;L(�) ; (3.43)where~HT (�) = 3�em16 e2 �9=4 + �21 + �2 �� �
h���2�sh���� � �(3=2 + i�); (3.44)~HL(�) = 3�em8 e2 �1=4 + �21 + �2 �� �
h���2�sh���� � �(3=2 + i�) (3.45)and we denote e2 = Pf e2f .Using this representation, we 
onstru
t the expansion in powers of 1=Q2(twist expansion) or Q2. The qualitative results of Se
tion 3.2.1 are 
on�rmedin su
h an analysis.The 
ross se
tion (3.43) is given by the Mellin-Barnes type integral whi
hexists for any value of the parameter 1=Q2R20, ex
ept for 0 and 1. In pra
ti
e,the integration 
an be performed numeri
ally or 
omputed in terms of the sumover residues. A 
loser look at eq. (3.44) reveals that we deal with multiplepoles in the 
omplex �-plane at� = �i(2n+ 1)=2 ; n = 0; 1; 2::: (3.46)If the integration 
ontour in (3.43) is 
losed in the upper half-plane and theresidues of the poles at � = i(2n+1)=2 are 
omputed, we obtain a representationin terms of positive powers of Q2R20, with an in�nite radius of 
onvergen
e. ForQ2R20 < 1 the �rst pole � = i=2 gives a reasonable approximation�(0)T = �em� e2 �0 �log(1=Q2R20)� 
E + 7=6� ; (3.47)�(0)L = �em� e2 �0 : (3.48)For Q2R20 > 1 it is more pra
ti
al to 
onstru
t an expansion in powers of1=(Q2R20), by 
omputing the residues at � = �i(2n + 1)=2. It 
an be proventhat the obtained expansion is only asymptoti
. The integration 
ontour 
annotbe 
losed in the lower half-plane be
ause the integral over the lower semi-
ir
leis divergent for the in�nite radius. The s
aling 
ontribution is given by the �rstpole at � = �i=2�(2)T = �em� e2 �0Q2R20 �log(Q2R20) + 
E + 1=6� ; (3.49)�(2)L = �em� e2 �0Q2R20 ; (3.50)
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1 10Figure 3.10: a): The 
ontribution of di�erent twists to the total 
ross se
tion.b): The 
ontribution to the longitudinal 
ross se
tion. The 
urves are normal-ized to the exa
t results whi
h 
orresponds to 1 on the perpendi
ular axes. Thevariable � = Q2R20.where 
E � 0:5772 is Euler's 
onstant. The next pole at � = �3i=2 gives thetwist-4 
ontribution�(4)T = 35 �em� e2 �0Q4R40 ; (3.51)�(4)L = �45 �em� e2 �0Q4R40 �log(Q2R20) + 
E + 1=15� : (3.52)The logarithms whi
h appear in the above formulas are due to multi-pole sin-gularity stru
ture, e.g. � = �3i=2 is a double pole for �L.Noti
e that the transverse and longitudinal twist-4 
ontributions have op-posite signs and their absolute values are of the same order. Separately, theyare not small in 
omparison to the twist-2 
omponents. However, the detailednumeri
al analysis performed in [99℄ shows that in the sum �(4) = �(4)T + �(4)Lthey 
an
el ea
h other in su
h a way that only a small (negative) addition tothe leading twist-2 result is produ
ed, see Fig. 3.10a. Thus, higher twist 
on-tributions to F2 are not large in DIS at small x down to Q2 � 1 GeV2 (
lose tothe 
riti
al line). A similar e�e
t was found in the QCD analysis of DIS dataat low x, based on the leading twist DGLAP evolution equations [100℄.In 
ontrast, �(4)L alone gives a signi�
ant negative 
orre
tion to the leadingtwist 
ontribution �(2)L , espe
ially for Q2R20 � 1, see Fig. 3.10b. This resultshould be taken into a

ount in an analysis of future experimental results onthe longitudinal stru
ture fun
tion.The 
riti
al line plays a very important role in the analysis of twist 
on-tributions in DIS at small x. It gives an estimate on the region of validity ofthe twist expansion. Comparing (3.49) with (3.47), we see that moving a
ross
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lusive DIS at small xthe 
riti
al line Q2R20(x) = 1 we 
hange the behaviour from �T;L � 1=Q2 to�T;L � �0. For Q2R20(x) < 1 the approximation based on the twist expansionqui
kly deteriorates.3.2.6 Relation to the gluon distributionWe derive the relation between the ordinary gluon distribution g(x;Q2) whi
happears in the leading twist des
ription of DIS based on 
ollinear fa
toriza-tion, and the unintegrated gluon distribution f(x;Q2) introdu
ed by the kT -fa
torization formula (2.92).In the double logarithmi
 approximation, when the summation of the lead-ing powers of �s log(1=x) logQ2 � 1 is performed, the following twist-2 resultis obtained from the DGLAP evolution equations in the small-x limit�F2(x;Q2)� lnQ2 = �s3� e2 xg(x;Q2) : (3.53)We will �nd a similar result for the twist-2 
omponent of the stru
ture fun
tionF2, 
omputed using the kT -fa
torization formula. By the 
omparison with(3.53), the relation between the two gluon distributions 
an be found.The Mellin representation of F2, 
omputed in the kT -fa
torization s
heme isthe basis for our 
onsiderations. The 
omputations are similar to those leadingto eq. (3.43), but now we need the result for a general form of the dipole 
rossse
tion or the unintegrated gluon distribution, see eq. (3.10). Applying themethod des
ribed in [94℄, we �ndF2(x;Q2) = e216 Z 1�1 d�2� �11=4 + 3�21 + �2 �� �
h���2�sh���� �� Z 10 dl2l2 �sf(x; l2)� l2Q2��1=2+i� : (3.54)The logarithmi
 derivative of F2 has the additional fa
tor (1=2� i�) under theintegral�F2(x;Q2)� lnQ2 = e216 1Z�1 d�2� �11=4 + 3�21 + �2 �� �
h���2�sh���� � (1=2� i�)�(Z Q20 dl2l2 �sf(x; l2)� l2Q2��1=2+i� + Z 1Q2 dl2l2 �sf(x; l2)� l2Q2��1=2+i�) ;where we split the integration over the gluon transverse momentum into thel2 < Q2 and l2 > Q2 parts. Twist-2 
ontribution is found after 
losing theintegration 
ontour in the lower half-plane for l2 � Q2, and 
omputing theresidue at � = �i=2. Thus, we �nd�F (2)2 (x;Q2)� lnQ2 = �s3� e2 Z Q20 dl2l2 f(x; l2) : (3.55)
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t 
omparison with the DLLA formula (3.53) gives the result we arelooking for xg(x;Q2) = Z Q20 dl2l2 f(x; l2) : (3.56)Relation (3.56 )is valid in the limit of small x and large Q2. Additionally,it has to be taken with 
are sin
e the integration over l2 is performed in thenonperturbative region of small l2. Unless we have some model for this region,the found relation should be interpreted asxg(x;Q2) = xg(x;Q20) + Z Q2Q0 dl2l2 f(x; l2) ; (3.57)where the both s
ales are perturbative and large, and xg(x;Q20) is known, e.g.from a �t to data.The renormalization group approa
h, presented in Se
tion 2.3.1, tells usthat �s in the DLLA formula (3.53) should be evaluated at the s
ale given byQ2. On the other hand, the s
ale for �s in eq. (3.55) is not determined sin
ethe radiative 
orre
tions leading to running �s are beyond the leading log(1=x)approximation in whi
h this result was derived. Thus, the same s
ale Q2 as forthe DLLA result 
an only be postulated for �s in eq. (3.55).We �nish our 
onsiderations by 
al
ulating the twist-2 part of the logarith-mi
 slope of F2 in the saturation model. From (3.49), we have�F (2)2 (x;Q2)� logQ2 = e24�3 �0R20(x) ; (3.58)and by the 
omparison with eq. (3.53) we �nd the following gluon distributionfor large Q2 xg(x;Q2) = 34�2�s(Q2) �0R20(x) : (3.59)The found gluon distribution depends on Q2 only through the 
oupling
onstant �s. Thus, the proper DGLAP evolution in the large Q2 limit is notin
luded in the 
onstru
ted model. This may be improved by modifying thebehaviour of the dipole 
ross se
tion at r � 2R0(x). Indeed, approximatingin eq. (3.10) (1 � J0(lr)) � (lr)2=4, whi
h is valid for l2 < 1=r2 up to a fewper
ent, and using eq. (3.56), we �nd that for small enough r (for an alternativederivation see [101℄ and referen
es therein)�̂(x; r) ' �23 �s(1=r2) r2 xg(x; 1=r2) ; (3.60)where xg(x; �2) is the gluon distribution whi
h evolves in �2 = 1=r2 a

ordingto the DGLAP evolution equations. The physi
s of saturation, however, is nota�e
ted by su
h a modi�
ation at small transverse sizes. Additionally, a betteragreement with the data is obtained for large values of Q2 [102℄.



64 Chapter 3. In
lusive DIS at small x3.3 Transition to low Q2 in other approa
hesWe brie
y des
ribe other approa
hes to the des
ription of the transition to lowQ2 of the proton stru
ture fun
tion F2 whi
h use 
on
eptually di�erent ideasfrom ours.A. Donna
hie-Landsho� approa
hIn this approa
h [103℄ F2 is postulated in the form di
tated by Regge theory,assuming three 
ontributions given by di�erent Regge traje
tories.F2(x;Q2) = f0(Q2)x��0 + f1(Q2)x��1 + f2(Q2)x��2 ; (3.61)where the powers �i are related to inter
epts of the Regge traje
tories:�i = �i(0)� 1 : (3.62)The values �1 = 0:08 and �2 = �0:45, whi
h 
orrespond to the soft pomeron and(�; !; f; a) traje
tories, respe
tively, were �xed. The value �0 � 0:4 was foundfrom a �t to the small-x data. The form fa
tors fi(Q2) were parameterized inthe following wayf0(Q2) = A0 � Q2Q2 +Q20�1+�0 �1 + Q2Q20��0=2 ; (3.63)f1(Q2) = A1 � Q2Q2 +Q21�1+�1  1 +sQ2Q2S!�1 ; (3.64)f2(Q2) = A2 � Q2Q2 +Q22�1+�2 : (3.65)The small Q2 behaviour was 
onstrained by the requirement that F2 � Q2 whenQ2 ! 0 for �xed W 2. The parameters: A0�2; Q20�2; Q2S were found from a �tto the data in the range of x < 0:07 and Q2 = 0 to 2000 GeV2.The soft pomeron form fa
tor f1(Q2) dominates at low Q2, whereas at largeQ2 > 10 GeV2 it falls o� as 1=Q. The hard pomeron form fa
tor f0(Q2) slowlydeparts from zero at small Q2 to rise rapidly as Q2 � Q�0 for Q2 > 10 GeV2. Inthis way the soft{hard pomeron transition is enfor
ed by the data. Let us re
allthat a similar e�e
t is realized in the saturation model without introdu
ing thetwo pomeron 
on
ept.It should be mentioned that in the DL model the strong rise in x is nottamed, leading to violation of unitarity when x! 0.B. Badelek-Kwie
i�nski modelIn this model [104℄ F2 is a sum of two 
ontributions whi
h interpolate be-tween the region of low Q2 where F2 is well des
ribed by the Ve
tor Dominan
eModel (VDM) [105℄, and the region of large values of Q2 where the leading twistformula obtained from the DGLAP �t to the data dominates, see e.g. [100℄,F2(x;Q2) = F V DM2 (x;Q2) + FQCD2 (x;Q2) (3.66)
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hes 65and F V DM2 (x;Q2) = Q24� XV=�;!;� M4V �V (W 2)
2V (Q2 +M2V )2 ; (3.67)FQCD2 (x;Q2) = Q2Q2 +Q20 FAS2 (�x;Q2 +Q20) ; (3.68)where the sum over ve
tor meson 
ontributions is performed in whi
h MV ismass of the ve
tor meson V . The ve
tor meson{proton 
ross se
tion �V (W 2)is determined from the �p and Kp total 
ross se
tions using the additive quarkmodel and 
2V is found from the leptoni
 width of the ve
tor meson V . Thevariable �x in FAS2 is given by�x = Q2 +Q20W 2 +Q2 �M2p +Q20 ; (3.69)where the parameter Q20 = 1:2 � 1:5 GeV 2. This is the only parameter in themodel, ex
ept those �xed independently in the VDM and DGLAP analyses. Adi�erent realization of the same idea 
an be found in [106℄. Similarly to the DLapproa
h, the unitarity 
ondition (2.97) is violated in this model.There exist several other e�e
tive parameterizations of F2 whi
h interpolatebetween the small and large Q2 behaviour of the proton stru
ture fun
tion. Anextensive dis
ussion of them is given in [107℄. More re
ent parameterizations 
anbe found in [108℄. The most 
omprehensive overview of the nu
leon stru
turefun
tions, both from the theoreti
al and experimental side, is given in [109℄.



Chapter 4Di�ra
tive DISA signi�
ant fra
tion (around 10%) of deep inelasti
 s
attering events observedat HERA at small x are di�ra
tive events [86, 87℄. For these events the in
om-ing proton stays inta
t despite inelasti
ity of the rea
tion, losing only a smallfra
tion xIP of its initial momentum. The �nal state proton is well separated inrapidity from the rest of the system whi
h looks like a typi
al DIS event. Thusthe large rapidity gap is a 
hara
teristi
 feature of di�ra
tive DIS. In partoni
language, a 
olour neutral 
luster of partons fragments independently of thes
attered proton. The ratio of the di�ra
tive to all DIS events is to a goodapproximation 
onstant as a fun
tion of Bjorken-x and Q2. The latter 
ondi-tion suggests the leading twist nature of DIS di�ra
tion. For re
ent reviews ondi�ra
tion see [110, 111, 112℄.Histori
ally, the �rst des
ription of di�ra
tive DIS was provided in termsof the Ingelman{S
hlein (IS) model [113℄. The model is based on Regge the-ory in whi
h di�ra
tive pro
esses are due to the ex
hange of a soft pomeron,see Se
tion 2.4.1. In other words, the proton stays inta
t due to the ex
hangewith va
uum numbers. The novelty of the IS model lies in the assumptionthat the pomeron has a partoni
 stru
ture as do real hadrons. The di�ra
tivestru
ture fun
tion fa
torizes into a \pomeron 
ux" and a pomeron stru
turefun
tion. The latter fun
tion is written in terms of the pomeron parton distri-butions, determined from a �t to data with the help of the standard DGLAPevolution equations [86, 87, 114, 115, 116℄. In the alternative method, the phe-nomenology of soft hadroni
 rea
tions has been used [117, 118, 119℄. Despite
on
eptual diÆ
ulties (the pomeron is not a parti
le) this idea turned out tobe very useful in the des
ription of the DIS di�ra
tive data, provided a hardervalue of the inter
ept of the pomeron traje
tory is assumed. The IS approa
hwas generalized by 
onsidering the ex
hange of subleading reggeons (and alsopions) [120, 121, 122, 86℄ to explain the di�ra
tive data 
olle
ted by the H1
ollaboration at HERA. We des
ribe the IS based approa
h in detail in Se
tion4.2, following [117, 114, 115, 120, 121, 122℄.An alternative approa
h to di�ra
tive pro
esses in DIS is represented by adetailed modelling of the di�ra
tive state as well as of the me
hanism leading todi�ra
tion, starting from perturbative QCD. In su
h an approa
h the di�ra
tivestate is formed by the Fo
k 
omponents of the light-
one virtual photon wave66



67fun
tion: j 
> = j q�q> + j q�q g> + ::: : (4.1)The q�q 
omponent was 
onsidered in [123, 124, 125, 126℄. A higher order
ontribution represented by the q�q pair with an additional gluon g emitted wasstudied in [127, 128, 129, 130, 95℄. The q�q and q�qg 
omponents subsequentlyintera
t with the proton through the net 
olourless ex
hange. The way in whi
hthis ex
hange is realized distinguishes between the models. In the simplest
ase, the 
olourless ex
hange responsible for the rapidity gap is modelled bytwo perturbative gluons 
oupled to the proton with some form fa
tor [131, 132,88, 89℄ or to a heavy onium whi
h serves as a model of the proton [133℄. Higherorder 
orre
tions are in
luded by the BFKL summation of gluon ladders [134℄or using the 
olour dipole approa
h [135℄. The di�ra
tive pro
esses have alsobeen des
ribed with the help of the intera
tion with a semi
lassi
al 
olour �eldof the proton [126, 130℄.The immediate problem fa
ed in the above modelling is the strong sensitiv-ity to nonperturbative e�e
ts due to the dominan
e of aligned jet 
on�guration(to be dis
ussed in Se
tion 4.3.2). Thus, we need a des
ription of the intera
-tions in the soft regime. The model of the dipole 
ross se
tion based on theideas of partoni
 saturation, presented in the previous 
hapter, provides su
h ades
ription. The parameters of this model were determined from the analysisof in
lusive DIS [94℄. Now, it 
an be dire
tly applied to di�ra
tive DIS withouttuning additional parameters [95℄. The main result whi
h we present in Se
tion4.3, based on the analysis [95℄, is a very good des
ription of the data. In par-ti
ular, the 
onstant ratio �diff=�tot is naturally explained. Also harder thanthe soft pomeron value of an e�e
tive pomeron inter
ept is predi
ted in perfe
tagreement with the data.The leading twist nature of DIS di�ra
tion brings the issue of 
ollinear fa
-torization and di�ra
tive parton distributions. By this we mean the 
onsistentfa
torization of the di�ra
tive 
ross se
tions into a 
onvolution of hard 
rossse
tions and the di�ra
tive parton distributions, see Se
tion 2.3 for the dis
us-sion in the in
lusive 
ase. The Ingelman{S
hlein approa
h assumes 
ollinearfa
torization, imposing an additional assumption, 
alled Regge fa
torization,on the xIP -dependen
e of the di�ra
tive parton distributions. The form in �is usually �tted to the data. On the other hand, in the perturbative QCDapproa
h the di�ra
tive parton distributions 
an be dire
tly 
omputed. In par-ti
ular, if the saturation model is used, the Regge fa
torization results fromthis model. Another important aspe
t, whi
h 
annot be addressed in the ISapproa
h, is the role of higher twist 
ontributions. It appears that di�ra
tiveDIS is an example of the pro
ess for whi
h twist-4 (given by the q�q 
omponentfrom longitudinal photons) dominates over leading twist in the kinemati
 rangeof small di�ra
tive mass [127, 128℄. In Se
tion 4.4 we dis
uss these issues, basedon the results from [155℄.
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tFigure 4.1: Kinemati
 invariants in DIS di�ra
tion.4.1 Di�ra
tive stru
ture fun
tionsWe have several dimensional s
ales in di�ra
tive DIS s
atteringe+ p ! e0 + p0 +X ; (4.2)where X is a di�ra
tive system. In addition to these known from in
lusive DIS:Q2 and W 2, the mass of the di�ra
tive system M2, and the invariant four-momentum transfer from the proton into the di�ra
tive system, t = (p� p0)2,
ome into the game, see Fig. 4.1. The following dimensionless variables arebuilt out of them.The lost fra
tion of the in
ident proton momentumxIP = Q2 +M2 � tQ2 +W 2 : (4.3)In the pomeron model interpretation it is a fra
tion of the proton momentum
arried by the pomeron. The variable� = Q2Q2 +M2 � t (4.4)is the Bjorken variable related to the di�ra
tive system M2. In the pomeronmodel of di�ra
tion � is a fra
tion of the pomeron momentum 
arried by thestru
k quark. The ordinary Bjorken variablex = xIP � : (4.5)In the following we negle
t t in the de�nition of the variables xIP and � sin
eusually jtj � Q2;M2.The di�ra
tive stru
ture fun
tions are de�ned analogous to the in
lusive
ase. They depend on the four invariant variables (x;Q2; xIP ; t) and are de�nedthrough the di�ra
tive DIS 
ross se
tiond4�Ddx dQ2 dxIP dt = 2��2emxQ4 ��1 + (1� y)2� dFD2dxIP dt � y2 dFDLdxIP dt� : (4.6)
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hlein model 69For simpli
ity of notation, we introdu
e the followingFD(4)2 (x;Q2; xIP ; t) � dFD2dxIP dt(x;Q2; xIP ; t) ; (4.7)FD(4)L (x;Q2; xIP ; t) � dFDLdxIP dt(x;Q2; xIP ; t) ; (4.8)where we expli
itly indi
ate that the di�ra
tive stru
ture fun
tions depend onfour variables. As usual FD(4)2 = FD(4)T + FD(4)L : (4.9)Noti
e that the introdu
ed di�ra
tive stru
ture fun
tions have dimension GeV�2be
ause of the di�erential dt in the de�nition of the 
ross se
tion (4.6).We also de�ne the stru
ture fun
tions integrated over t sin
e they are mea-sured when the �nal state proton momentum is not dete
ted. In this 
aseFD(3)T;L (x;Q2; xIP ) = Z 0�1 dt FD(4)T;L (x;Q2;xIP ; t) (4.10)is dimensionless. The di�ra
tive stru
ture fun
tions are related to the di�ra
tivephoton-proton 
ross se
tionsFD(4)T;L = Q24�2�em d�T;L(
�p! p0X)dxIP dt ; (4.11)where T;L denote the virtual photon polarization.4.2 The Ingelman{S
hlein modelIn the Ingelman{S
hlein model [113℄ the di�ra
tive stru
ture fun
tion F (4)2 isgiven by the following fa
torized formF (4)2 (x;Q2; xIP ; t) = fIP (xIP ; t) F IP2 (�;Q2) ; (4.12)where we remind that � = x=xIP is the analogue of the Bjorken variable. Thephysi
al interpretation of the above fa
torization, whi
h we 
all the Reggefa
torization, is as follows. The di�ra
tive s
attering o

urs through the ex-
hange of the pomeron with the momentum pIP = xIP � p, des
ribed by the
ux f(xIP ; t), and a subsequent hard s
attering of the virtual photon on thepartoni
 
onstituent of the pomeron whi
h 
arries a fra
tion � of the pomeronmomentum. The latter intera
tion is 
hara
terized by the pomeron stru
turefun
tion F IP2 (�;Q2). The stru
ture fun
tion (4.12) is s
hemati
ally shown inFig. 4.2.The pomeron ex
hange is des
ribed by the 
ux fa
torfIP (xIP ; t) = N16� x1�2�IP (t)IP B2IP (t) ; (4.13)
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PPFigure 4.2: Di�ra
tive stru
ture fun
tion in the Ingelman{S
hlein model. Thespring-like lines represent the pomeron.where the pomeron traje
tory is assumed to have the \soft" values of the pa-rameters found in the analysis of hadroni
 rea
tions�IP (t) = 1:08 + 0:25 GeV�2 � t : (4.14)It appears that for DIS di�ra
tion the value of the inter
ept �IP (0) has to bein
reased to �IP (0) � 1:13 � 1:20.BIP (t) des
ribes the pomeron 
oupling to the proton. Phenomenologi
ally, ithas been established that the pomeron traje
tory 
ouples to the proton throughthe Dira
 elasti
 form fa
tor [21℄BIP (t) = 4m2 � 2:79 t4m2 � t � 11� t=0:71�2 : (4.15)The normalization N = 2=� in eq. (4.13) follows the Donna
hie{Landsho�
onvention [136℄.The pomeron stru
ture fun
tion is expressed through the quark distributionsin the pomeron qIP (�;Q2) in a full analogy to the proton 
aseF IP2 (�;Q2) = 2 Xf e2f � qIPf (�;Q2) ; (4.16)where f distinguishes di�erent 
avours. The fa
tor 2 results from the assump-tion that the distribution of quarks and antiquarks in the pomeron are identi
al,qIPf (�;Q2) = �qIPf (�;Q2) ; (4.17)for ea
h 
avour f , sin
e the pomeron is the va
uum quantum number ex
hange.The Q2-dependen
e of the pomeron parton distributions is governed by theDGLAP evolution equations, whi
h lead to the logarithmi
 s
aling violationof the di�ra
tive stru
ture fun
tion. We have to allow for the pomeron gluondistribution gIP (�;Q2) whi
h is automati
ally generated by the the evolutionequations from the quark distributions. The initial form in � of the pomeronparton distributions 
an be obtained in two di�erent ways. In the �rst method,
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hlein model 71used in the analysis of DIS data, the initial form is given with the help of severalparameters. Then the parameters are determined from the �t to available data.This pro
edure was su

essfully applied to DIS di�ra
tive data [86, 87, 114, 115,116℄. In the 
ase of the pomeron a di�erent method exists. The initial pomeronparton distributions 
an be estimated from soft pomeron phenomenology ofhadroni
 rea
tions [117, 118, 119℄.In the next se
tion we present an example of su
h an estimation, followingthe analysis [117℄.4.2.1 Pomeron parton distributionsAt �rst we shall spe
ify the details of the parton distributions in the pomeronat the referen
e s
ale Q20 = 4 GeV2. At small � both the quark and gluondistributions are assumed to be dominated by the pomeron ex
hange,� qIPf (�;Q20; t) = aIPf (t) �1��IP (0) ; (4.18)� gIP (�;Q20; t) = aIPg (t) �1��IP (0) : (4.19)The fun
tions aIPf (t) and aIPg (t) 
an be estimated from the fa
torization ofpomeron 
ouplings [137, 138, 139℄ :aIPf (t) = r(t) af ; aIPg (t) = r(t) ag ; (4.20)where the parameters af and ag are the pomeron 
ouplings 
ontrolling thenormalization of the small x behaviour of the sea quark and gluon distributionsin the proton i.e.xqf (x;Q20) + x�qf (x;Q20) = 2 af x1��IP (0) ;xg(x;Q20) = ag x1��IP (0) ; (4.21)and the fun
tion r(t) is r(t) = �2 GIPIPIP (t)B(0) : (4.22)The 
oupling GIPIPIP (t) is the triple pomeron 
oupling (see Fig. 4.3 a) and itsmagnitude 
an be estimated from the 
ross se
tion of the di�ra
tive produ
tionp + �p ! p + X in the limit of large mass MX of the di�ra
tively produ
edsystem X. We negle
ted the (weak) t dependen
e of the fun
tion r(t) and haveestimated its magnitude from the Tevatron data [140℄ as r(t) � r(0) = 0:089.The parameters af were estimated assuming that the sea quark distributionsin the proton 
an be parameterized as:xqf(x;Q20) + x�qf (x;Q20) = 2 af x1��IP (0) (1� x)7 ; (4.23)and �xing the 
onstants af from the requirement that the average momentumfra
tion whi
h 
orresponds to those distributions is the same as that whi
hfollows from the parameterization of parton distributions in the proton [141℄.
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P

PP PP

a) b)Figure 4.3: Contribution to di�ra
tive stru
ture fun
tion for small � (a) andlarge � (b). The spring-like lines represent the pomeron.The momentum sum rule has also been used to �x the parameter ag i.e. weassumed xg(x;Q20) = ag x1��IP (0) (1� x)5 ; (4.24)and imposed the 
ondition that the gluons 
arry 1/2 momentum of the proton.We extrapolated the pomeron dominated quark and gluon distributions in thepomeron (see (4.19)) to the region of arbitrary values of � by multiplying thefa
tor �1��IP (0) by (1� �) [138℄.We have also in
luded the term proportional to �(1� �) in both the quarkand gluon distributions [138℄. The normalization of this term in the quarkdistributions has been estimated in [136℄ assuming that it is dominated by thequark-box diagram with the non-perturbative 
ouplings of pomeron to quarks,shown in Fig. 4.3 b. In this model one gets:� qIP (�;Q20) = C�3 � (1� �) ; (4.25)where C � 0:17 [136℄. We found that the fairly reasonable des
ription of data
an be a
hieved provided that the 
onstant C is enhan
ed by a fa
tor equal to1.5. We have also assumed that the relative normalization of the quark distri-butions in the pomeron 
orresponding to di�erent 
avours is the same as thatof the sea quark distributions in the proton [141℄. Finally the normalization ofthe term proportional to �(1� �) in the gluon distribution in the pomeron hasbeen obtained by imposing the momentum sum rule. Following the approxi-mations dis
ussed above we have negle
ted the t dependen
e in those partondistributions.As the result of the estimates and extrapolations dis
ussed above, the pa-rameterization of parton distributions in the pomeron at the referen
e s
aleQ20 = 4 GeV2 looks as follows:� gIP (�;Q20) = (0:218 ��0:08 + 3:30 �) (1� �) (4.26)



4.2. The Ingelman{S
hlein model 73for the gluon distribution, and� dIP (�;Q20) = � uIP (�;Q20) = 0:4 (1� Æ) SIP (�)� sIP (�;Q20) = 0:2 (1� Æ) SIP (�)� 
IP (�;Q20) = Æ SIP (�) ; (4.27)for the quark distributions. The fun
tion SIP (�) is parameterized as belowSIP (�) = (0:0528 ��0:08 + 0:801 �) (1� �) (4.28)and Æ=0.02 [141℄. The analysis of the pomeron stru
ture fun
tions based ondi�erent parameterizations of parton distributions in the pomeron has also beenpresented in Refs. [139, 118℄.The parton distributions de�ned above were next evolved up to the valuesof Q2 for whi
h the data exist using the LO DGLAP evolution equations with� = 0:255 GeV. The results of the 
omparison with the H1 data is shown inFig. 4.5 (solid 
urves).From the presented pomeron parton distributions the pomeron stru
turefun
tion F IP2 follows. For example, at small �F IP2 (�;Q2) = AIP (Q2) ��0:08 ; (4.29)where the 
oeÆ
ient AIP (Q2) , as shown above, is a produ
t of the IPIPIP
oupling and the Q2 dependent 
oupling of the pomeron to the virtual photons,see Fig. 4.3 a. From the presented parameterization AIP = 0:03 for Q2 =4 GeV2.4.2.2 Subleading reggeonsThe subleading reggeons 
an des
ribe the nonpomeron part of the di�ra
tives
attering whi
h leads to breaking of the Regge fa
torized form of the di�ra
-tive stru
ture fun
tion (4.12). Stri
tly speaking we 
annot 
all su
h pro
essesdi�ra
tive sin
e di�ra
tion is usually asso
iated with the leading pomeron ex-
hange. However, for simpli
ity we use the same terminology for the non-pomeron reggeon ex
hanges, in
luding pro
esses with fast forward neutron inthe �nal state whi
h 
orrespond to isospin I = 1 ex
hange.Thus we postulate the following extension of the Ingelman{S
hlein model[120℄F (4)2 (x;Q2; xIP ; t) = fIP (xIP ; t)F IP2 (�;Q2) + XR fR(xIP ; t)FR2 (�;Q2) ; (4.30)where the additional terms des
ribe reggeon ex
hanges. Note, that in su
h anapproa
h the Regge fa
torization is broken { F (4)2 is no longer a produ
t of twofa
tors with a parti
ular dependen
e on kinemati
al variables like in (4.12). Asa 
onsequen
e, there is no a simple and universal xIP -dependen
e: F (4)2 � x�nIP .The last result is suggested by the H1 Collaboration data in whi
h a di�erentvalue of n seems to be predominant for larger values xIP (> 0:01) [86℄.
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Figure 4.4: The reggeon-reggeon-pomeron 
ontribution to di�ra
tive stru
turefun
tion.The Regge fa
torization breaking 
an be explained by the ex
hange of sub-leading reggeons, isos
alar (f2; !) and isove
tor (a2; �). The reggeon 
ux fa
torsin (4.30) are parameterized in analogy to the pomeron 
uxfR(xIP ; t) = N16� x1�2�R(t)IP B2R(t) j�R(t)j2 ; (4.31)where the fun
tion �R(t) is a signature fa
tor:j�R(t)j2 = 8<: 4 
os2[��R(t)=2℄ for even signature reggeons (f2; a2)4 sin2[��R(t)=2℄ for odd signature reggeons (�; !) ; (4.32)and �R(t) is the reggeon traje
tory. BR(t) des
ribes the 
oupling of the reggeonto the proton.We assume that BR(t) = BR(0) exp(t=2�2R) with �R = 0:65 GeV, as knownfrom the reggeon phenomenology of hadroni
 rea
tions. From the same analysiswe obtain the parameters of the reggeon traje
tory�R(t) = 0:5475 + 1 GeV�2 � t : (4.33)Moreover, the following relations between the reggeon-proton 
ouplings arefound [120, 121℄ B2f2(0) > B2!(0) � B2a2(0) � B2�(0) : (4.34)This result shows that the isove
tor reggeons (a2; �) 
an safely be negle
tedin the presented analysis. These reggeons are 
ru
ial, however, for the di�ra
-tive pro
ess with fast forward neutron in the �nal state, see [121℄ for detaileddis
ussion.The reggeon stru
ture fun
tion FR2 at small �, whi
h is relevant for the H1data analysis, 
an be found in a similar way as for the pomeronFR2 (�;Q2) = AR ��0:08 ; (4.35)
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hlein model 75where now AR is determined by the triple Regge vertex RRIP (see Fig. 4.4). Inour analysis we introdu
e the ratioCenh = ARAIP ; (4.36)whi
h is related to the ratio of the \triple-Regge" RRIP and IPIPIP 
ouplings.It should be mu
h bigger than one, as suggested by the analysis [142℄ of softhadroni
 intera
tions. The data from the H1 
ollaboration [86℄, presented interms of the stru
ture fun
tion FD(3)2 , prefer Cenh � 10 in whi
h 
ase reason-able agreement of our des
ription with the data is obtained for � � 0:4. This isillustrated in Fig. 4.5, reprodu
ed from [122℄, where the pure pomeron 
ontri-bution from the analysis [117℄ (solid lines) and the e�e
t of the reggeon terms(dashed lines) is shown.We have also 
he
ked how the QCD evolution of the reggeon stru
ture fun
-tion (4.35) in
uen
es the results. We found that it was not important, espe
iallyin view of the triple-Regge 
oupling un
ertainties. More details on the sublead-ing reggeon 
ontribution, as well as on the pion 
ontribution whi
h is relevantfor xIP > 0:1, 
an be found in [120, 121℄.The fa
t that the presented des
ription deteriorates for large values of �, i.e.in the region of small di�ra
tive mass, is not a

idental. To be more pre
ise,the des
ription falls signi�
antly below data for � > 0:4, whi
h is shown inthe two rightmost 
olumns in Fig. 4.5. A 
loser inspe
tion reveals that theonly way to 
ure this problem, within the des
ription based on the Ingelman{S
hlein model, is to assume that the gluon distribution in the pomeron is largely
on
entrated at � � 1 [86, 114, 115℄. Our gluon distribution (4.26) is modeledkeeping in mind the situation in the proton, where the gluon distribution isstrongly suppressed for large �. Thus a suitable modi�
ation of the pomerongluon distribution would be ne
essary.We will not pursue, however, the analysis in this dire
tion sin
e we thinkthat it does not lead to better understanding of DIS di�ra
tion. Instead, we
hange to a des
ription based dire
tly on QCD, in whi
h the di�ra
tive stateis formed by the 
omponents of the photon wave fun
tion (4.1). In this de-s
ription, supplemented by the dipole 
ross se
tion des
ribed in the previous
hapter, all essential features of the Ingelman{S
hlein model are present andnaturally explained. In addition, the problem with the des
ription of the re-gion of large � is 
ured by 
areful analysis of the longitudinal virtual photon
ontribution. This 
ontribution, found to be 
on
entrated at � � 1, is formallyhigher twist and of 
ourse 
annot be treated by the leading twist pomeronparton distribution analysis in the Ingelman{S
hlein model.
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log10(xP)Figure 4.5: Di�ra
tive stru
ture fun
tion FD(3)2 from the pomeron+reggeonanalysis versus the H1 
ollaboration data. The solid lines 
orrespond to thepomeron 
ontribution and the dashed lines show the reggeon 
ontribution withCenh = 10.



4.3. QCD based des
ription 774.3 QCD based des
riptionLet us 
onsider the di�ra
tive system formed by the �rst Fo
k 
omponent of thevirtual photon wave fun
tion{the q�q pair (see eq. (4.1)). The elasti
 s
atteringon the proton o

urs through the 
oupling of two gluons in singlet state withthe transverse momenta �l, and the longitudinal momentum fra
tions x1 andx2 whi
h obey xIP = x1 � x2 : (4.37)We 
onsider the zero momentum transfer t = 0. There are four amplitudes forthis pro
ess in whi
h the two gluons 
ouple to the quarks in all possible ways,one of them is shown in Fig. 4.6.The �nal state quark momenta are de
omposed in the base whi
h 
onsistsof two light-like ve
tors q0 = q+x p and p, and two spa
e-like transverse ve
torsorthogonal to the previous ones. Thus we havek1 = z q0 + k2 +m2fs z p + kT (4.38)k2 = (1� z) q0 + k2 +m2fs (1� z) p � kT ; (4.39)where s = 2q0 � p and mf is the quark mass. In the frame in whi
h the virtualphoton and the proton are 
ollinear along the z-axis, the transverse momentumkT = (0;k; 0). The di�ra
tive mass of the q�q system is given byM2 = (k1 + k2)2 = k2 +m2fz (1� z) : (4.40)In the 
�IP 
enter-of-mass frame (pIP = xIP � p) z is related to the quark s
at-tering angle 
os � = 1� 2 z : (4.41)For the symmetri
 
on�guration with z = 1=2 the quarks s
atter at � = �=2.Aligned jet 
on�guration with z � 0 
orresponds to � � 0.
lT lT

z,kT

q

pFigure 4.6: Di�ra
tive produ
tion of the q�q pair.
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tive DIS4.3.1 Basi
 
ross se
tionsThe 
ross se
tions for di�ra
tive s
attering from transverse and longitudinalphotons 
� + p! q �q + p0 (4.42)are 
omputed analogously to the in
lusive 
ase. Assuming the two-gluon ex-
hange me
hanism, the amplitude is the sum of two subamplitudes, with 
rossedand un
rossed ex
hanged gluons. In the high energy limit, the real parts of thetwo subamplitudes 
an
el, and we are left only with the imaginary part of theun
rossed amplitude whi
h dominates the pro
ess. After squaring that ampli-tude we obtain for the transverse 
ross se
tion [90℄d �DTd2k dz dt j t=0 = �em6� Xf e2f Z d2ll4 Z d2l 0l 04 �sf(xIP ; l2) �sf(xIP ; l 02)��[z2 + (1� z)2℄ � kD(k) � k + lD(k + l)� � � kD(k) � k+ l 0D(k+ l 0)�+ m2f � 1D(k) � 1D(k + l)�� 1D(k) � 1D(k+ l 0)�� (4.43)and for the longitudinal 
ross se
tiond �DLd2k dz dt j t=0 = �em6� Xf e2f Z d2ll4 Z d2l 0l 04 �sf(xIP ; l2) �sf(xIP ; l02) (4.44)� 4 Q2 z2(1� z)2 � 1D(k) � 1D(k + l)�� 1D(k) � 1D(k+ l 0)� ;where D(k) = k2 + z(1� z)Q2 +m2f . The four terms whi
h arise after 
omput-ing the produ
ts under the integral 
orrespond to four possible ways in whi
hthe two gluons 
ouple to the q�q pair. Su
h 
ouplings are ne
essary for gaugeinvarian
e and �niteness of the 
ross se
tions integrated over k.Noti
e that we use the same unintegrated gluon distribution fun
tion f(xIP )as in the in
lusive 
ase, now taken at xIP instead of at Bjorken-x. In generalthis fun
tion should depend on the gluon longitudinal momentum fra
tionsf(x1; x2; l2) where xIP = x1 � x2. In the high energy limit, however, when theleading powers of log(1=x) are taken into a

ount, the asymmetry x1 6= x2 
anbe negle
ted and the indi
ated approximation is legitimate. The role of thisasymmetry for high-p? jet photoprodu
tion was analyzed in [143℄ with the helpof the o� diagonal parton distributions [144, 145, 146℄.Eqs. (4.43) and (4.44) 
an be easily rewritten in the dipole representation,using relations (B.1) and (B.3) from Appendix B. After some rearrangements
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ription 79we obtaind �DTd2k dz dt j t=0 = 3�em32�3 Xf e2f Z d2r12� d2r22� �̂(xIP ; r1) �̂(xIP ; r2) ek�(r1�r2)��[z2 + (1� z)2℄ r1 � r2r1 r2 Q2 K1(Qr1)K1(Qr2) + m2f K0(Qr1)K0(Qr2)�(4.45)and d �DLd2k dz dt j t=0 = 3�em32�3 Xf e2f Z d2r12� d2r22� �̂(xIP ; r1) �̂(xIP ; r2) ek�(r1�r2)� 4Q2 z2 (1� z)2 K0(Qr1)K0(Qr2) ; (4.46)where Q2 = z(1 � z)Q2 +m2f . The in
lusive di�ra
tive 
ross se
tion (at t = 0)is obtained after the integration over momenta of the �nal state quarksd �DT;Ldt j t=0 = Z d2k dz d �DT;Ld2k dz dt j t=0 : (4.47)It has a remarkably simple form in the dipole representation. When the inte-gration over k in (4.46) is done, we obtain the delta fun
tion Æ(r1 � r2) whi
hallows to perform one of the two integrations over r. Thus we �nd the followingresult d �DT;Ldt j t=0 = 116� Z d2r dz Xf j	fT;L(r; z)j2 �̂2(x; r) ; (4.48)where 	fT;L is the photon wave fun
tion whi
h appears in the in
lusive DIS
ross se
tion (3.7). Noti
e that the dipole 
ross se
tion appears squared in thedi�ra
tive 
ross se
tion. In order to obtain (4.48) we 
hanged the argument in�̂ from xIP to x during the k-integration. It is legitimate in the high energyapproa
h as long as the dominant 
ontribution is not 
on
entrated at small� = x=xIP . As we will see, this is the 
ase for the di�ra
tive q�q produ
tion.The formula (4.48) is a realization of the old idea of Good and Walker[147℄ (see also [148℄) that di�ra
tion o

urs due to di�erent absorption of theintera
tion matrix eigenstates. In the small-x DIS 
ase these are the q�q dipoleswith de�nite r and z. The proje
tile, the virtual photon in our 
ase, is asuperposition of these states ea
h of whi
h is elasti
ally s
attered with di�erentprobability.The total di�ra
tive 
ross se
tions are obtained after an additional inte-gration over t. Assuming a fa
torizable exponential dependen
e on t with thedi�ra
tive slope BD, we have�DT;L = Z 0�1 dt eBDt d �DT;Ldt j t=0 = 1BD d �DT;Ldt j t=0 : (4.49)
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tive DIS4.3.2 Saturation and DIS di�ra
tionDIS di�ra
tion is a good test of the saturation model. The three parameters ofthis model were obtained from the �t to in
lusive small x data. Determined inthis way the dipole 
ross se
tion has been applied to eqs. (4.45) and (4.46) inthe region of moderate values of � where the q�q 
omponent of the di�ra
tive�nal state dominates. For small values of � the q�qg state should additionallybe 
onsidered. The result is a very good des
ription of di�ra
tive data formHERA, see [95℄.The idea that the dipole 
ross se
tion saturates with the x-dependant radiusis parti
ularly important for di�ra
tion. It allows to explain in a natural waythe 
onstant ratio �D=�in
 as a fun
tion of x and Q2 whi
h is observed atHERA. As a 
onsequen
e, the di�ra
tive 
ross se
tion has the same leadingtwist behaviour and energy dependen
e as the in
lusive DIS 
ross se
tion. Toprove these results, let us perform the qualitative analysis of the transverse 
rossse
tion (4.48), using the approximate formula (3.15) with the squared dipole
ross se
tion (3.21).In the s
aling region, Q2 � 1=R20, we �nd for transverse photons�DT � 4=Q2Z0 dr2r2 ��0 r24R20 �2| {z }symmetri
 + 4R20Z4=Q2 dr2r2 � 1Q2r2���0 r24R20 �2| {z }aligned jet + 1Z4R20 dr2r2 � 1Q2r2��20| {z }aligned jetwhi
h after the integration gives the following leading 
ontributions�DT � �20Q4R40| {z }r<2=Q + �20Q2R20| {z }2=Q<r<2R0 + �20Q2R20| {z }r>2R0 : (4.50)Noti
e that in 
ontrast to in
lusive DIS 
ross se
tion (3.23), the leading twist-2result 
omes only from aligned jet 
on�guration. The symmetri
 
ontributionis higher twist. Therefore, the perturbative 
ontribution is largely suppressedin di�ra
tive DIS. This situation is illustrated in Fig. 4.7 where we show thedistribution d�T =dr for in
lusive (3.7) and di�ra
tive (4.48) 
ross se
tions. Thesuppression of the 
ontribution with r < 2=Q for di�ra
tive disso
iation (DD)is 
learly visible.In DIS di�ra
tion the proton stru
ture is probed with a large q�q probe, andthe 
orresponding sizes r are in the saturation region of the dipole 
ross se
tion(3.18). The fa
t that di�ra
tion has a signi�
ant soft 
omponent (r � 2R0)is to be expe
ted. Here we �nd that the semi-hard region 2=Q < r < 2R0signi�
antly 
ontributes (detailed analysis gives around 50%). This shows thatDIS di�ra
tion is ideally suited to study the transition from `soft' to `hard'physi
s.The analysis performed for the longitudinal 
ross se
tion gives a higher twist
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ross se
tions at Q2 = 10 GeV2 and x = 10�4. The dipole 
rossse
tion is shown by the dotted line. The r-axis is in units of 2R0(x) = 0:37 fm.
ontribution for all sizes r�DL � �20Q4R40| {z }r<2=Q + �20Q4R40 log(Q2R20)| {z }2=Q<r<2R0 + �20Q4R40| {z }r>2r0 : (4.51)The intermediate (semi-hard) region, however, is logarithmi
ally enhan
ed.From the 
omparison of the leading behaviour of (4.50) and the in
lusive
ross se
tion (3.23), we obtain for the ratio�D�in
 � 1log(Q2R20(x)) ; (4.52)whi
h is a slowly varying fun
tion of x and Q2. A more detailed analysis basedon the Mellin representation gives the following result [94℄�D�in
 = �08�BD log(2)log(Q2R20) + 
E + 1=6 : (4.53)Substituting the �tted values of the parameters we obtain the result of theorder of 10% whi
h agrees quite well with the measured value. A more re�ned
omparison is presented in Fig. 4.8, reprodu
ed from [95℄, where the 
at ratiofor di�erent values of di�ra
tive mass MX is found as a fun
tion of 
�p 
enter-of-mass energy W .The role of the x-dependant saturation 
an be better understood if we as-sume that the dipole 
ross se
tion (3.21) takes the form�̂(x; r) = 8<: �0 r2=4R20(x) for r � 2R
ut�0R2
ut=R20(x) for r > 2R
ut ; (4.54)
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tive and in
lusive 
ross se
tions as a fun
tionof W for di�erent values of Q2 and di�ra
tive mass MX . The data are fromZEUS [87℄.where R
ut � 1=�QCD � 1=Q is x-independent infrared s
ale whi
h repla
es thesaturation s
ale R0(x) as the separator between perturbative and nonpertur-bative domains. Noti
e that (4.54) violates unitarity when x! 0. Computingthe leading 
ontribution for both in
lusive and di�ra
tive 
ross se
tions fromrelation (3.15), we �nd�in
 � �0Q2R20(x) log(Q2R2
ut) (4.55)�D � �20Q2R20(x) R2
utR20(x) : (4.56)Thus the ratio �D=�in
 would be proportional to 1=R20(x) � x��, whi
h 
on-tradi
ts the results from HERA. Therefore, the x-dependant saturation radiusR0(x) may be viewed as an e�e
tive 
uto� leading to the 
onstant ratio of thetwo 
ross se
tions as a fun
tion of x.The 
omparison of the predi
tions based on the form (3.18) of the dipole
ross se
tions with DIS di�ra
tion data is shown in Fig. 4.9. No further param-eters were introdu
ed in addition to those �xed in the in
lusive DIS analysis.
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tive stru
ture fun
tions xIPFD(3)2 (�;Q2; xIP ) as a fun
-tion of xIP for di�erent values of � and Q2 (in units of GeV 2). The data arefrom ZEUS [87℄.Noti
e the agreement with both the normalization and the xIP -dependen
e ofthe measured stru
ture fun
tions. For this 
omparison, the q�q and q�qg di�ra
-tive �nal states were 
onsidered1. The analyti
al formulae used in the presentedanalysis are given in the next se
tions where we also explain the signi�
an
e ofthe q�q and q�qg 
ontributions for the total di�ra
tive 
ross se
tion.4.3.3 Di�ra
tive mass spe
trumSo far we have been interested in the in
lusive des
ription of di�ra
tive DIS.Now, we want to look at these pro
esses more ex
lusively. The most naturalquestion is how the di�ra
tive 
ross se
tions depend on massM of the di�ra
tivesystem. In the 
ase of the q�q pair, whi
h form the di�ra
tive system, the answeris en
oded in eqs. (4.45) and (4.46). We write them again assuming that the1The q�qg �nal state is dis
ussed in detail in Se
tion 4.3.5.
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tive DISdipole 
ross se
tion is spheri
ally symmetri
, �̂(r) = �̂(r).In this 
ase the angular integration with respe
t to the angles between k andr1, r2 
an be performed with the help of the relation (B.5) from Appendix B.Thus we obtaind �DTd2k dz dt j t=0 = 3�em32�3 Xf e2f n[z2 + (1� z)2℄ Q2 �21(k; z) +m2f �20(k; z) ;o(4.57)d �DLd2k dz dt j t=0 = 3�em32�3 Xf e2f 4Q2 z2 (1� z)2 �20(k; z) ; (4.58)where the \impa
t fa
tors"�i(k; z) = Z 10 dr r Ki(Qr)Ji(kr) �̂(xIP ; r) (4.59)for i = 0; 1. Let us re
all that Q2 = z(1� z)Q2 +m2f , and Ki and Ji are theBessel fun
tions.The di�ra
tive mass spe
trum of the q�q pair is found after integratingover the �nal state quark momenta 
orresponding to a di�ra
tive mass M ,eq. (4.40)), and over t a

ording to (4.49). Thus we haved�DT;LdM2 = Z d2k dz Æ M2 � k2 +m2fz(1� z)! 1BD d �DT;Ld2k dz dt j t=0 : (4.60)It is easy to 
he
k that after the integration of the above relation over M2, thetotal di�ra
tive 
ross se
tions (4.49) are obtained.The di�ra
tive stru
ture fun
tions (4.10) are dire
tly related to the di�ra
-tive 
ross se
tions. From relation (4.11) we easily �nd the general relationxIPFD(3)T;L (�;Q2; xIP ) = 14�2�em Q4� d�DT;LdM2 ; (4.61)where we swit
h to � = Q2=(Q2 +M2) as an independent variable whi
h is ananalogue of the Bjorken-x for DIS di�ra
tion. The presented formulae 
an beused for numeri
al analysis with the dipole 
ross se
tion given by the saturationmodel, see the 
omparison with the data in Fig. 4.9. It is instru
tive, however,to try to analyze them analyti
ally.4.3.4 Mass spe
trum in 
ertain limitsWe 
an analyze the derived formulae analyti
ally in 
ertain limits of the di�ra
-tive mass M . For this purpose we perform the integration over k in (4.60) to�nd d�DT;LdM2 = 2� Z 1=2zmin dz z(1� z) 1BD d �DT;Ld2k dz dt j t=0 ; (4.62)
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ription 85where zmin = (1�q1� 4m2f=M2)=2 and k2 = z(1� z)M2�m2f on the r.h.s of(4.62). If, for simpli
ity, we set mf = 0, we arrive at the �nal formulae whi
hwill serve as the starting point for the analysis presented in this se
tiond�DTdM2 = 3�em32�2BD Xf e2f Q2 Z 10 dz z2(1� z)2 [z2 + (1� z)2℄ �21(z) ; (4.63)d�DLdM2 = 3�em32�2BD Xf e2f Q2 Z 10 dz z3(1� z)3 �20(z) ; (4.64)where the impa
t fa
tors (4.59) take the form�0;1(z) = Z 10 dr rK0;1�pz(1� z)Qr� J0;1�pz(1� z)Mr� �̂(xIP ; r) :(4.65)In the following we will dis
uss our results mainly in terms of the stru
turefun
tions (4.61) whi
h are related to the above 
ross se
tions by a simple mul-tipli
ative fa
tor.In the limit M = 0, only �0 in eq. (4.65) has a nonzero value sin
e Ji(0) =Æi0. Thus we expe
t that at the low mass edge of the spe
trum, M2 � Q2 or� ! 1, the longitudinal 
ontribution (although higher twist) dominates overthe transverse one. Indeed, the analysis done for the saturation model in thespirit of the estimations from the previous se
tions, gives the following dominant
ontributions for � ! 1,xIPFD(3)Tqq � �20BDR20(xIP ) (1� �) ; (4.66)xIPFD(3)Lqq � �20BDR20(xIP ) � 1Q2R20� :As expe
ted, the longitudinal stru
ture fun
tion is suppressed by the additionalpower of 1=Q2 but it dominates over FDT when � � 1. Let us noti
e that thevanishing of FDT at � = 1 is independent of the form of the dipole 
ross se
tion.It is interesting to note that the leading behaviour of the transverse 
rossse
tion is given by aligned jet 
on�guration (z < 1=R20Q2) whi
h involves largedistan
es, r � R0. In the small mass limit this 
omponent, as well as the wholetransverse 
ross se
tion, are strongly suppressed. For the longitudinal polar-ization, the symmetri
 
on�guration (z � 1=2) gives the main 
ontribution. Insu
h a 
ase the large sizes are strongly suppressed, and the perturbative re-gion r � R0 mainly 
ontributes to the 
ross se
tion. This observations leadto the expe
tation that the di�ra
tive 
ross se
tion is nearly saturated by theprodu
tion of the longitudinally polarized ve
tor mesons in the limit M2 � Q2.The same analysis performed for the saturation model in the triple Regge
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tive DISlimit, M2 � Q2 or � ! 0, gives to the following resultxIPFD(3)Tqq � �20BDR20(xIP ) � ; (4.67)xIPFD(3)Lqq � �20BDR20(xIP ) � 1Q2R20� �3 ;where now � � Q2=M2. Both 
ontributions are due to aligned jet 
on�guration(z < 1=R20M2). The higher twist nature of FDL for �xed � and xIP is evident.This stru
ture fun
tion is also suppressed stronger than the transverse one.The fa
t that the stru
ture fun
tions (4.67) vanish when � ! 0 is indepen-dent of the the form of the dipole 
ross se
tion, but depends on the photon wavefun
tion. The saturation model, however, provides the normalization (togetherwith the di�ra
tive slope BD) and the dependen
e on energy (xIP ) whi
h areessential elements for the 
omparison with data.In terms of the 
ross se
tions, relations (4.67) look as followsd�DTdM2 � 1M4 and d�DLdM2 � 1M8 ; (4.68)in the limit M2 ! 1, for �xed xIP and Q2. The experimental results fromHERA, however, do not 
on�rm su
h strong di�ra
tive mass suppression. ForM2 � Q2 the measured d�D=dM2 � 1=M2 whi
h is a strong indi
ation that wehave to 
onsider the next Fo
k state from the virtual photon wave fun
tion (4.1),the q�qg state. Indeed, after 
onsidering this 
ontribution in the 
on�gurationwhen the gluon is strongly separated from the q�q pair in the r-spa
e, we obtainagreement with the data. In terms of the di�ra
tive stru
ture fun
tion, themeasured and 
omputed FD(3)2 rises when � ! 0. E�e
tively (in the large N
limit) the new 
on�guration may be viewed as the gg dipole.4.3.5 The q�qg 
ontributionThe detailed dis
ussion of the q�qg 
ontribution is given in [129℄ and [95℄. Herewe only quote the �nal result in the dipole representation (see also eq. (23) in[95℄ for the representation with the unintegrated gluon distribution),xIPFD(3)q�qg (�;Q2; xIP ) = 81�256�4BD Xf e2f �s2� Z 1� dzz "�1� �z�2 +��z�2#� z(1� z)3 Z (1�z)Q20 dk2 log�(1� z)Q2k2 � �22(k; z) ; (4.69)where the new impa
t fa
tor is given by�2(k; z) = k2 Z 10 dr r K2�r z1� z kr� J2(kr) �̂(xIP ; r) : (4.70)The di�ra
tive produ
tion from transverse photons is only 
onsidered. Noti
ethat an additional gluon radiation is a higher in �s 
orre
tion. The variable
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pFigure 4.10: Di�ra
tive q�qg produ
tion.z des
ribes the relative momentum fra
tion of the gluon with respe
t to thepomeron momentum xIPp. The 
ombination k2=(1 � z) whi
h enters the loga-rithm is its mean virtuality. The term in square bra
kets under the �rst integralis the Altarelli-Parisi splitting fun
tion g ! qq, whi
h results from the approxi-mation that the transverse momentum of the emitted gluon is smaller than thetransverse momentum of the quark. In the impa
t parameter representationthis 
orresponds to a large separation between the gluon and the q�q pair.In the triple Regge limit � ! 0, we obtain the following resultxIPFD(3)q�qg � �20BDR20(xIP ) (1� 32�) ; (4.71)whi
h gives the mass spe
trum d�DTdM2 � 1M2 : (4.72)Thus, although this is a higher in �s 
orre
tion, the pro
ess with a gluon radi-ated o� in the q�qg di�ra
tive state dominates over the pure q�q 
ontribution inthe large di�ra
tive mass limit. For a small di�ra
tive mass, FD(3)qqg is stronglysuppressed, and the q�q 
ontributions (4.66) is important. The presented resultsare supported by the exa
t numeri
al analysis, see [95℄ for details.In summary, we have dis
ussed the three 
ontributions to the di�ra
tive DIS,the q�q pair from the transverse and longitudinal photon and the q�qg system,FD(3)2 = FD(3)Tq�q + FD(3)Lq�q + FD(3)q�qg : (4.73)These 
ontributions have distin
t regions of � in whi
h they dominate. For� � 1 or M2 � Q2 the longitudinal q�q 
omponent is the most important.In the intermediate range, � � 1=2 or M2 � Q2, the q�q produ
tion from thetransverse photon prevails. Finally, for � � 0 or M2 � Q2 the q�qg produ
tiondominates. The three 
ontributions are shown in Fig. 4.11, reprodu
ed from[95℄. Note very good agreement with data.
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4.4 Di�ra
tive parton distributionsThe di�ra
tive stru
ture fun
tions FD(4) were introdu
ed in Se
tion 4.1 in afull analogy to the in
lusive DIS 
ase. They 
hara
terize the hadroni
 tensorfor di�ra
tive DIS: W�� = W��(p; p0; q)W�� = 14� XX < pjJem� (0)jp0X >< p0XjJem� (0)jp > (2�)4 Æ4(p� p0 � pX)= ��g�� + q�q�q2 �FD(4)1 + 1p�q �p� � q� p�qq2 ��p� � q� p�qq2 �FD(4)2 :Noti
e the di�eren
e to the in
lusive hadroni
 tensor (2.6). In the summationover the �nal states only those with loosely s
attered in
ident proton are re-tained. Thus, the �nal states in the di�ra
tive hadroni
 tensor 
onsist of thes
attered proton p0 and the di�ra
tive system X over whi
h the summationis performed. This introdu
es two variables (xIP ; t), de�ned in Se
tion 4.1, inaddition to those known from the in
lusive 
ase (x;Q2).
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tive parton distributions 89The momentum p0 of the s
attered proton 
an also be used to build thetensor stru
ture of the hadroni
 tensor (4.74). It is not ne
essary, however, aslong as the azimuthal angle of the s
attered proton is not measured [124℄. Thusonly two stru
ture fun
tions are needed to 
hara
terize the hadroni
 tensor:FD(4)i = FD(4)i (x;Q2; xIP ; t) ; (4.74)where i = 1; 2. In the following we will be interested in the stru
ture fun
tionsintegrated over t, FD(3)i (�;Q2; xIP ), see eq. (4.61). The stru
ture fun
tions(4.74) are identi
al to those in Se
tion 4.1.As in in
lusive DIS, the di�ra
tive stru
ture fun
tions are de
omposed intothe leading and higher twist 
ontributionsFD(3)i (�;Q2; xIP ) = FD(3)LTi (�;Q2; xIP ) + FD(3)HTi (�;Q2; xIP )Q2 + ::: : (4.75)The leading twist part is related to di�ra
tive parton distributions (DPD) [149,150, 151, 152℄ in analogy to in
lusive DISFD(3)LT2 (�;Q2; xIP ) = Xf e2f � �qDf (�;Q2; xIP ) + �qDf (�;Q2; xIP )	 ; (4.76)In addition to the di�ra
tive quark distributions, qDf and �qDf , the di�ra
tivegluon distribution gD(�;Q2; xIP ) is de�ned. Usually, it is assumed that thequark and antiquark distributions are equal,qDf (�;Q2; xIP ) = �qDf (�;Q2; xIP ) ; (4.77)to be in a

ord with the pi
ture of the pomeron ex
hange with va
uum quantumnumbers. All distributions obey the DGLAP evolution equations in whi
h xIPis a parameter independent of the evolution.The DPD have a probabilisti
 interpretation. They are 
onditional proba-bilities to �nd in a fast moving proton a parton with the momentum fra
tion�, under the 
ondition that proton remains inta
t after the s
attering losing asmall fra
tion xIP of its momentum. The momentum fra
tion � is de�ned withrespe
t to the lost proton momentum xIPp.The possibility to de�ne the di�ra
tive parton distributions results from theproof that 
ollinear fa
torization holds for di�ra
tive DIS [153℄. This allowsto separate the leading twist 
ontribution into short and long distan
e parts,and then absorb 
ollinear singularities into the latter part. As a result theparton distributions a
quire dependen
e on the s
ale, governed by the evolutionequations.In in
lusive DIS parton distributions are universal, i.e. the same distri-butions 
an be used in the des
ription of both lepton-hadron DIS and hadron-hadron hard rea
tions sin
e 
ollinear fa
torization is valid for the two pro
esses.Collinear fa
torization, however, is violated in di�ra
tive hadron-hadron s
at-tering [154, 153℄. Thus, unlike the in
lusive s
attering, the di�ra
tive partondistributions are no universal quantities. They 
an safely be used, however, to
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tive DISdes
ribe hard di�ra
tive pro
esses involving leptons. A systemati
 approa
h todi�ra
tive parton distributions, based on quark and gluon operators, is givenin [152, 133℄.Dis
ussing di�ra
tive parton distributions, it is very important to distin-guish between di�erent types of fa
torization. Collinear fa
torization allows tode�ne these distributions. The other fa
torization, 
alled Regge fa
torization,is a hypothesis on a fa
torized form of DPD. Namely,qDf (�;Q2; xIP ) = f(xIP ) qIPf (�;Q2) : (4.78)The fun
tion f(xIP ) is 
ommon for both the quark and gluon DPD. If f(xIP )is given by (4.13) (integrated over t) we arrive at the Ingelman{S
hlein model.In this 
ase qIPf (�;Q2) 
oin
ide with the pomeron parton distributions.Let us emphasize that the issue of di�ra
tive parton distributions is inti-mately related to the leading twist-2 
ontribution to di�ra
tive stru
ture fun
-tions. In parti
ular, the assumption that the longitudinal stru
ture fun
tion isleading twist, as in in
lusive DIS, is not supported in the two-gluon ex
hangemodel. The leading twist vanishes and FDL is twist-4 with the behaviour pro-portional to 1=Q2.4.4.1 DPD in the saturation modelThe di�ra
tive parton distributions 
an be de�ned in the two-gluon ex
hangemodel. In order to �nd the quark distribution we have to extra
t the leadingtwist part from FD(3)T , eq. (4.61). The gluon distribution is extra
ted fromFD(3)q�qg given by (4.69). The longitudinal stru
ture fun
tion FD(3)L , as highertwist, does not 
ontribute to di�ra
tive parton distributions.In order to extra
t the quark DPD, we write FD(3)T , given by (4.61) with(4.62), in the form in whi
h the z-integration is performed �rst. After that we�nd the following form of the transverse q�q 
ontribution in the limit mf = 0,xIPFD(3)Tqq = 364�4BD Xf e2f �2(1� �)3 Q2(1��)=4�Z0 dk2 1� 2�1� � k2Q2s1� 4�1� � k2Q2 �21(k)(4.79)where now�1(k) = k2 Z 10 dr r K1 s �1� � kr! J1(kr) �̂(xIP ; r) : (4.80)The leading twist part of (4.79) is obtained by negle
ting the powers k2=Q2under the integral and integrating over k2 up to in�nity. Stri
tly speaking,energy 
onservation is violated in su
h a 
ase, but the 
orre
tions are of thehigher twist nature. With the new limit the integral is �nite and we 
an write



4.4. Di�ra
tive parton distributions 91the leading twist part of (4.79) asFD(3)LTTqq = 2 Xf e2f � qDf (�; xIP ) ; (4.81)where the di�ra
tive quark distribution is given byqDf (�; xIP ) = 3128�4BD xIP �(1� �)3 Z 10 dk2 �21(k; �; xIP ) ; (4.82)for any 
avour f . Noti
e a la
k of the fa
torization s
ale �2 = Q2 on theright hand side of (4.81). This may be viewed as a 
onsequen
e of not havingin
luded ultraviolet divergent 
orre
tions whi
h would require a 
uto�. Withthose 
orre
tions the parton distributions be
ome �2-dependent and evolutionwould relate the distributions at di�erent Q2 values. However, we may useqDf (�) as input distributions for the Altarelli-Parisi evolution with an initials
ale related to the physi
s involved, e.g. �2 = 1=R20(xIP ) for the saturationmodel. Of 
ourse, the 
hoi
e of the initial s
ale introdu
es an un
ertainty forthe predi
tion. As we will see in the next subse
tion, the xIP dependen
e in(4.82) fa
torizes and does not in
uen
e the evolution.The gluon distribution 
an be found from (4.69). In the 
al
ulation ofthis 
ontribution it was assumed that the transverse momenta or virtualitiesof the quark and the gluon are strongly ordered. In this approximation theintegration over the transverse momentum of the quark loop gives a logarithmi

ontribution whi
h has a natural lower 
uto�, the virtuality of the gluon. Atthe same time the virtuality of the gluon should not ex
eed Q2. This is theorigin of the logarithmi
 term in (4.69). Collinear fa
torization means that we
an pull that logarithm out of the integral over the gluon transverse momenta,and add to it an arbitrary s
ale Q20. Thus we 
an write (4.69) in the followingform (we set z = ~� there)FD(3)LTg�gg = 2 Xf e2f � �s2� log Q2Q20 1Z� d~�~� 12 "�1� �~��2 +��~��2# gD( ~�; xIP )(4.83)where the di�ra
tive gluon distribution is given bygD(�; xIP ) = 81256�4BD xIP �(1� �)3 Z 10 dk2 �22(k; �; xIP ) (4.84)and �2 is given by eq. (4.70). As in the 
ase of the quark distribution (4.82),the found gluon distribution does not depend on Q2, and serves as the initialdistributions at some �xed s
ale Q20.The motivation for the above identi�
ation of the di�ra
tive gluon distri-butions is the stru
ture in the 
urly bra
kets on the r.h.s of eq. (4.83). It isidenti
al to the stru
ture resulting from the DGLAP evolution with one split-ting of the gluon into the q�q pair.The 
ombined initial parton distributions (4.82) and (4.84), depi
ted inFig.4.12, allow 
omplete des
ription of the leading twist part of di�ra
tive
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tive quark distribution (4.82) and the gluon distribution(4.84) (multiplied by x = xIP �) from the saturation model as a fun
tion of �for xIP = 0:0042 at the initial s
ale Q20.DIS. They serve as the initial 
onditions for the DGLAP evolution equations.DGLAP evolution in this 
ase means that the di�ra
tive system be
omes more
ompli
ated due to additional parton emissions.The longitudinal, higher twist 
ontribution requires a separate treatment. Itbe
omes important for large values of �, where the q�q and the q�qg produ
tionfrom transverse photons is negligible. Thus we add this 
ontribution to theevolved leading twist part. The 
omplete expression of the stru
ture fun
tionreads FD(3)2 = FD(3)(LT )2 + FLq�q : (4.85)where FD(3)LT2 is given byFD(3)(LT )2 = 2 Xf e2f � qD(�;Q2; xIP ) ; (4.86)with the full DGLAP evolution. The longitudinal stru
ture fun
tion FLq�q isfound using relations (4.61) and (4.62) in whi
h the integration over z is doneFLq�q = 316�4BD xIP Xf e2f �3(1� �)4 Z Q2(1��)4 �0 dk2 k2=Q2s1� 4�1� � k2Q2 �20(k) ;(4.87)with �0 de�ned as in eq. (4.80) with the Bessel fun
tions K1; J1 repla
ed byK0; J0. From the above expression we see that FLq�q is one power down in Q2with respe
t to the transverse 
ounterpart F Tq�q, see eq. (4.79), being higher twist
ontribution.In summary, Eqs. (4.82) and (4.84) may serve as initial 
onditions for theevolution equations in the analysis of di�ra
tive DIS with the di�ra
tive stru
-ture fun
tion given by (4.85). For the 
omparison with the data see [155℄.



4.4. Di�ra
tive parton distributions 934.4.2 Regge fa
torizationThe s
aling property of the dipole 
ross se
tion, i.e. that �̂ is a fun
tion ofthe dimensionless ratio r=R0(x), has the remarkable 
onsequen
e for the xIP -dependent of the found di�ra
tive parton distributions.Introdu
ing the dimensionless variables k̂ = kR0(x) and r̂ = r=R0(x) in(4.82) and (4.84), and assuming Q20 to be a �xed s
ale, we �nd the followingfa
torization qDf (�; xIP ) = 1xIPR20(xIP ) qIPf (�) ; (4.88)gD(�; xIP ) = 1xIPR20(xIP ) gIP (�) : (4.89)We have introdu
ed a notation similar to that in (4.16) for the �-dependentfa
tors. This type of fa
torization is similar to Regge fa
torization but in fa
thas no 
onne
tion with Regge theory. It merely results from the s
aling prop-erties of the saturating 
ross se
tion �̂. Sin
e the evolution does not a�e
t thexIP -dependen
e of the DPD, the fa
torized form will be valid for any s
ale Q2.Now, we 
an rewrite eq. (4.86) asFD(3)(LT )2 = 1xIPR20(xIP ) 2 Xf e2f � qIPf (�;Q2) (4.90)in whi
h the xIP -dependen
e is fa
tored out. The Q2-dependen
e of the distri-butions qIPf is introdu
ed by the evolution equations.In the saturation model the parameter � = 0:29 in the relation R0(x) � x�=2was determined from a �t to in
lusive DIS data only [94℄. The same valueholds for di�ra
tive intera
tions, thus we �nd a de�nite predi
tion for the xIP -dependen
e of the leading twist di�ra
tive stru
ture fun
tionFD(3)(LT )2 � x�1��IP : (4.91)At present, the bulk of di�ra
tive data in DIS support the fa
torized form(4.91). They are usually interpreted [86, 87℄ in terms of the t-averaged pomeroninter
ept �IP , i.e. FD(3)2 � x1�2�IPIP : (4.92)Su
h a dependen
e has been introdu
ed in the spirit of the Ingelman{S
hleinmodel, with the t-integration performed, FD(3)2 � R dt f(xIP ; t) � x1�2�IPIP .Thus, a

ording to (4.91) and (4.92) we �nd�IP = �2 + 1 � 1:15 ; (4.93)whi
h is in remarkable agreement with the values found at HERA, �IP =�IP (0) � 0:03 = 1:17 by H1 [86℄ and �IP = 1:13 by ZEUS [87℄. More de-tailed analysis, see [95℄, allows to predi
t �IP � �IP (eff) as shown in Fig. 4.13for the two values of the di�ra
tive mass.
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tive pomeron slope as predi
ted in the saturation modelas a fun
tion of Q2 for two values of the di�ra
tive mass MX . The data arefrom the ZEUS 
ollaboration.FD(3)2 in the saturation model 
ontains more than leading twist. This meansthat the dependen
e (4.91) is not generally valid. It is espe
ially importantfor � ! 1, i.e. in the small di�ra
tive mass region. From the analysis ofSe
tion 4.3.3 we know that the twist-4 longitudinal stru
ture fun
tion dominatesthere. Thus the expe
ted dependen
e on xIP for � � 1 is stronger than in theintermediate range of the di�ra
tive mass M2 � Q2,FD(3)2 � FD(3)L � 1xIPR40(xIP ) = x�1�2�IP ; (4.94)whi
h 
learly violates the universality of the e�e
tive pomeron inter
ept indi�erent regions of di�ra
tive mass. The �rst indi
ation of that e�e
t wasindeed observed at HERA [87℄, and the saturation model gives a satisfa
toryexplanation, see Fig. 4.13 and [95℄ for more details.At this point we do not agree with the Ingelman{S
hlein model in whi
ha universal pomeron inter
ept behaviour resulting from Regge fa
torization isassumed. The la
k of universal Regge fa
torization should be distinguishedfrom the possible violation of the xIP -fa
torization due to subleading reggeonex
hanges [86℄, dis
ussed in Se
tion 4.2.2. This e�e
t is not des
ribed by thesaturation model, and is important for higher values of xIP than those 
onsideredin the high energy limit in whi
h the analyzed formulae were derived.The large twist-4 
omponent also o�ers an alternative to the strongly 
on-
entrated at � � 1 gluon distribution, found in the purely leading twist DGLAPanalysis of DIS di�ra
tion [86℄.Fig. 4.14 summarizes our studies of DIS di�ra
tion based on the relation(4.73) with the saturation model for the dipole 
ross se
tion. This �gure shouldbe 
ompared to Fig. 4.5 in whi
h the results from the model with the softpomeron and reggeon ex
hanges were shown. We see that a good des
riptionof data is obtained with the saturation model, in
luding the region of large �(the two rightmost 
olumns in Fig. 4.14).These results were obtained withouttuning additional parameters to those found in the in
lusive data analysis. Of
ourse, the reggeon 
ontribution 
annot be des
ribed by the saturation model.
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Chapter 5Summary and outlookIn this dissertation we have presented a des
ription of DIS at small x whi
h usesthe ideas of parton saturation. The presentation is based on the ten publishedarti
les listed in Introdu
tion.Before the main results are dis
ussed, the ba
kground material on deepinelasti
 s
attering is provided in Chapter 2. This in
ludes the standard de-s
ription with the help of the QCD parton model with the DGLAP evolutionequations [12, 13, 14℄ as well as the dis
ussion of the small-x limit of DIS. Inthis limit, the notion of a hard pomeron is introdu
ed based on 
onsiderationsleading to the BFKL equation [25℄. This equation repla
es the DGLAP evolu-tion equations. Also a di�erent fa
torization formula [25, 33℄ for the 
al
ulationof the nu
leon stru
ture fun
tions exists at small x, whi
h uses the unintegratedgluon stru
ture fun
tion des
ribing the hard (BFKL) pomeron. The stru
turefun
tions in su
h a des
ription strongly rise with de
reasing x, thus they ulti-mately violate unitarity. The unitarization 
orre
tions whi
h tame the strongrise are realized by 
onsidering additional intera
tions between gluons in thenu
leon. This me
hanism leads to a pi
ture of parton saturation in whi
h thegluons form a strongly 
orrelated system [39℄. In this 
ase the linear DGLAP orBFKL evolution equations are modi�ed by nonlinear terms. The pre
ise formof these 
orre
tions is still under the investigation.The 
urrent experiments on small-x DIS performed at HERA 
all for an-swering the question about the role of parton saturation (unitarization) e�e
tsfor the measured pro
esses. We have analyzed this problem in the dipole pi
-ture of in
lusive DIS at small x in Chapter 3. In this pi
ture the unitarity
onditions are naturally formulated. The main element of the des
ription is thephenomenologi
al parameterization of the dipole{proton 
ross se
tion whi
h in-
orporates the main features of parton saturation [94℄. The three parametersof su
h a model are determined from a �t to all available data on lepton-protons
attering at small x < 0:01. In the dis
ussed approa
h a good des
ription ofboth the DIS data and the transition to low Q2 region is obtained. By a 
arefulanalysis of the role of the light quark mass in the q�q dipole, the photoprodu
-tion limit 
an formally be a
hieved with a good agreement with the data. Theheavy 
avour in
lusive produ
tion in DIS is also analyzed. The saturation ef-fe
ts in the dipole-proton 
ross se
tion parameterization are 
ru
ial for good96



97des
ription of the data in a broad range of Q2. They are also responsible fora new s
aling law in in
lusive �
�p 
ross se
tion at small x, whi
h is predi
tedby the model and su

essfully 
onfronted with the data [98℄. The 
onstru
teddes
ription allows to study more formal aspe
t of the QCD based des
ription ofDIS su
h as the twist expansion of the stru
ture fun
tion F2 [99℄. We providean explanation for the observed in other analyses small size of the the highertwist 
orre
tions and estimate the region of validity of the twist expansion atsmall x.A 
ru
ial test for the developed des
ription is provided by di�ra
tive pro-
esses in ep DIS. In these pro
esses the in
oming proton stays inta
t after thes
attering, losing a small fra
tion of its initial momentum. As we explainedin detail in Chapter 4, the dipole pi
ture with the saturation e�e
ts is verysu

essful in providing explanation of DIS di�ra
tion. In this 
ase the pro
essis viewed as elasti
 s
attering of the q�q or gg dipole o� the proton. The samedipole{proton 
ross se
tion as in in
lusive DIS 
an be used. Thus, we do notneed to tune any further parameters. In this sense we obtain a uni�ed for-mulation of in
lusive and di�ra
tive DIS with a very good agreement with thedata [144℄. The basi
 feature that di�ra
tive DIS has the same dependen
eon Q2 and x as in
lusive ele
troprodu
tion is naturally explained in our ap-proa
h due to the saturation features. This approa
h 
an be 
onfronted to thatwhi
h uses Regge theory with the 
on
ept of the soft pomeron and subleadingreggeon ex
hanges [117, 114, 115, 120, 121℄. The subleading reggeon ex
hanges
annot be des
ribed by the saturation model, but the soft pomeron aspe
t 
anbe analyzed by looking at di�ra
tive parton distributions [99℄. We �nd Reggefa
torization property for them as the predi
tion of the saturation model withthe 
orre
t energy dependen
e measured at HERA. In 
ontrast, in the Reggeapproa
h these features are postulated. We also quantify the role of the twist-4q�q 
ontribution from longitudinal photons for the des
ription of the di�ra
tivedata at small values of the di�ra
tive mass (� � 1). This 
ontribution violatesthe universality of Regge fa
torization in the large � region and also providesa natural alternative to the strongly 
on
entrated at � � 1 di�ra
tive gluondistribution found in the Regge based models.The future work should be 
on
entrated on the analysis of nonlinear unita-rization 
orre
tions to the linear QCD evolution equations. The new equationsare expe
ted to provide the basis for the proposed parameterization of the dipole
ross se
tion. With respe
t to this program, the most promising is the analysisperformed by Kov
hegov [66, 67℄ after the saturation model was formulated.In this approa
h, the BFKL equation, formulated in the dipole representation,is generalized by taking into a

ount multipomeron ex
hanges in the large N
limit. The resulting nonlinear equation has a solution whi
h 
ontains essentialfeatures of our parameterization of the dipole 
ross se
tion. The future analysiswill 
on
entrate on the appli
ation of this formalism to des
ription of the DISdata [156℄.



Appendix ASolution to the BFKLequationWe are looking for the spheri
al symmetri
 solution of eq. (2.82) written for thedimensionless fun
tionf(!; k1; k2) � k21 F (!; jk1j; jk2j; 0) : (A.1)After performing the angular integration in eq. (2.82) usingZ 2�0 d�(a� b 
os�) = 2�pa2 � b2 (A.2)for a > b > 0, the following spheri
ally symmetri
 form of the BFKL equationis found!f(!; k1; k2) = k21 Æ2(k1 � k2) (A.3)+ N
�s� 1Z0 dk02k02 k21 (f(!; k0; k2)� f(!; k1; k2)jk02 � k21 j + f(!; k1; k2)p4k04 + k41) :This equation 
an be diagonalized using the Mellin transform of f with respe
tto k1 f̂(!; 
) = Z 10 dk21k21 �k21k22��
 f(!; k1; k2) ; (A.4)where the inverse relation readsf(!; k1; k2) = 12�i ZC d
 �k21k22�
 f̂(!; 
) (A.5)and the integration 
ontour C is to be 
hosen to the right of all singularites off̂(!; 
) in the 
-plane. 98



99Integrating both sides of eq. (A.3) over k21 with a fa
tor as in (A.4), we �nd!f̂(!; 
) = 1� + ��s 1Z0 dk02k02 1Z0 dk21 (A.6)�k21k22��
 (f(!; k0; k2)� f(!; k1; k2)jk02 � k21 j + f(!; k1; k2)p4k04 + k41) ;where ��s = N
�s=�. Now, we 
hange the integration variable: k02 ! v =k02=k21 , and perform the integration over k21 to obtain!f̂(!; 
) = 1� + ��sK(
) f̂(!; 
) ; (A.7)where K(
) is the Lipatov kernelK(
) = Z 10 dvv �v
 � 1jv � 1j + 1p4v2 + 1�= 2 (1) �  (
) �  (1� 
) (A.8)and  (
) is the digamma fun
tion. We use the following representation of  (
)to obtain the last equality, valid for Re 
 > 0 (
) � dd
 ln �(
) = �
E � Z 10 dv v
�1 � 11� v (A.9)with 
E = � (1) � 0:57721 being Euler's 
onstant. K(
) 
an be analyti
ally
ontinued onto the whole 
omplex plane, ex
ept the points 
 = 0;�1;�2:::where simple poles o

ur.From (A.7) the solution in the (!; 
)-spa
e 
an easily be foundf̂(!; 
) = 1=�! � ��sK(
) : (A.10)The solution in the (s; k)-spa
e,F(s; k1; k2; 0) = 1�k21 ZC d
2�i �k21k22�
 ZC0 d!2�i � ss0�! 1! � ��sK(
) ; (A.11)is obtained using eq. (A.5) and the inverse Mellin transform,F(s; k1; k2; 0) = 12�i ZC0 d!� ss0�! F (!; k1; k2; 0) ; (A.12)where the 
ontour C 0 is to the right of all !-plane singularities of F (!; � ).



Appendix BDipole transformationsHere we prove two basi
 relations whi
h are 
ru
ial for the dipole pi
ture rep-resentation of in
lusive and di�ra
tive 
�p 
ross se
tions. We start from� kD(k) � k+ lD(k+ l)� = Z d2r2� e�ik�r �1� e�ir�l� i rr Q K1(Qr); (B.1)where K1 is the Bessel{M
 Donald fun
tion and D(k) = k2 +Q2. In order toprove the above relation let us write the l.h.s of eq. (B.1) asZ d2k1 Æ2(k1 � k)� k1D(k1) � k1 + lD(k1 + l)� == Z d2k1 Z d2r1(2�)2 eir�(k1�k) � k1D(k1) � k1 + lD(k1 + l)� == Z d2r2� e�ir�k Z d2k12� eir�k1 � k1D(k1) � k1 + lD(k1 + l)� :The r.h.s of eq. (B.1) is found after integration over k1 with the help of therelation Z d2k2� expfik � rg kD(k) = i Q rr K1(Qr): (B.2)In the same way we 
an prove the se
ond basi
 formula� 1D(k) � 1D(k+ l)� = Z d2r2� e�ik�r �1� e�ir�l� K0(Qr); (B.3)where the relation analogous to (B.2) looks as followsZ d2k2� expfik � rg 1D(k) = K0(Qr) : (B.4)100



101with K0 being the Bessel{M
 Donald fun
tion.Eq. (B.2) 
an be obtained from eq. (B.4) as a result of di�erentiation withrespe
t to r and the relation K 00(x) = �K1(x). Therefore, we only need toprove relation (B.4).This 
an easily be done by performing the angular integration on the l.h.sof eq. (B.4) with the help of the well known relationexpfikr 
os�g = J0(kr) + 2 1Xn=1 inJn(kr) 
osn� ; (B.5)where Jn are the Bessel fun
tions. Thus, we �ndZ d2k2� eik�r 1D(k) = Z 10 k dkk2 +Q2 Z 2�0 d�2� expfikr 
os�g == Z 10 k dkk2 +Q2 Z 2�0 d�2� (J0(kr) + 2 1Xn=1 inJn(kr) 
os n�) == Z 10 dk k J0(kr)k2 +Q2 � K0(Qr) :
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