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Chapter 1

Introduction

In this dissertation we present a description of interactions in deep inelastic
scattering (DIS) of electrons and protons at small values of the Bjorken variable
z. Such processes are currently studied experimentally at the DESY ep collider
HERA. DIS experiments established Quantum Chromodynamics (QCD) as the
underlying theory of strong interactions. Quarks and gluons, the basic quanta
of this theory, account for the revealed point-like structure of the proton down
to distances of about 107'6 ¢cm. The small-z kinematic domain explored at
HERA is particularly interesting from the point of view of QCD studies.

The basic feature of QCD interactions is asymptotic freedom. At distances
much smaller than the typical hadronic size (~ 1 fm) quarks and gluons behave
as very weakly interacting free particles (partons). The manifestation of such
a behaviour is scaling of the proton structure function F, with logarithmic
violation explained by perturbative QCD (pQCD). With the rising distance,
the interactions become stronger and eventually quarks and gluons are bound
in directly observed hadrons. This phenomenon, called confinement, has been
extensively studied since the advent of QCD. Despite these efforts, however,
the full understanding of confinement is yet to be achieved. In the confinement
region pQCD breaks down and new nonperturbative methods are necessary.
The lattice formulation of QCD serves as an example.

The QCD studies of DIS at small z (< 1) are located between the regions
of asymptotic freedom and confinement. The physical picture of the proton
which emerges from these studies suggests that the proton structure at small z
is dominated by dense gluonic systems with a large number of low momentum
(wee) gluons. As a result, the proton structure function Fy strongly increases
with decreasing . The strong rise, however, cannot go on indefinitely due to
interactions between gluons in the dense systems. This effect, called parton
saturation, tames the strong rise of F5 in agreement with the condition of uni-
tarity of the description. Thus, at small x gluons in the proton form a strongly
correlated system of interacting particles. Let us recall that the fixed target
DIS experiments, performed for  ~ 1, revealed a dilute system of free par-
tons. Thus in DIS at small z, a new (semi-hard) regime of QCD is studied
in which the strong coupling constant is small but the interactions between
partons cannot be neglected.
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The question whether parton saturation is relevant in the kinematic range of
HERA has intrigued physicists since the beginning of this experiment. Due to
the large ep center-of-mass energy, the Bjorken variable z ~ 107> at scales for
which pQCD is still applicable. The description which we are going to present
strongly suggests the positive answer to this question.

The physical interpretation of DIS at small z is provided in the proton rest
frame. In this frame, the virtual photon «* fluctuates into a quark-antiquark
pair long time before the pair interacts with the proton. Thus, the pair forma-
tion and its subsequent interaction are clearly separated. In this interpretation,
~v* is a linear superposition of partonic components, being the gg dipoles char-
acterized by the transverse size r (with respect to the y*p collision axis) and
longitudinal momentum z. The dipole-proton interaction does not mix these
components, i.e. r and z are good quantum numbers conserved by the interac-
tion. Therefore, DIS at small = can be viewed as the sum over independent ¢g
dipole scatterings on the proton target. In this sense, the DIS process is similar
to hadron—hadron scattering, with the advantage that the structure of one of
the projectiles is completely known.

The dipole-proton interaction depends on the dipole size. For small sizes
(r < 1 fm), pQCD is applicable and the interaction is realized by a single
gluon exchange accompanied by an additional gluon radiation. For large sizes
(r ~ 1 fm), confinement forces are important, changing the interaction to a one
resembling hadron-hadron interactions with a weak dependence on energy. This
effect cannot be computed in pQCD and has to be modelled, but the onset of the
transition between the QCD radiation at small sizes and hadronic interactions
for large sizes is within the reach of pQCD means. In the intermediate range
of the dipole sizes, multi-gluon exchanges with additional interactions between
the gluons are important, leading to the picture of parton saturation.

The detailed QCD description of the above processes has not been achieved
yet. We propose a phenomenological approach and postulate a parameterization
of the dipole-proton interactions which incorporates the described features.
With this parameterization we achieved a very good description of the DIS data
at small z (mainly from HERA), including the transition to low Q? values. The
main ingredient of this model is a saturation radius Ry (), related to the size of a
gluon system in the proton. Ry(x) sets the scale for the dipole configurations. In
particular, r ~ Ry corresponds to the transition region where saturation effects
are important. The saturation radius decreases when x — 0, thus, for small
enough z, saturation effects can be described by pQCD, making the approach
consistent. We find that it happens in the HERA kinematic range since Ry ~
0.2 fm (which corresponds to the saturation scale Q4(x) = 1/Ry(z) =~ 1 GeV)
for £ ~ 10~%. Parton saturation allows to describe the transition of the v*p
cross section, o,«, ~ Fy/Q?, to low Q? values. Namely, if the wavelength of
the virtual probe is smaller than the saturation radius, 1/Q < Ry, Bjorken
scaling (with logarithmic violation) is found, o+, ~ 1/Q% In the opposite
case, when 1/@Q > Ry, the virtual probe cannot resolve the gluonic system and
0,+p saturates to a constant value.

A very stringent test of the postulated model of the dipole-proton interac-
tions is provided by diffractive DIS at small z. In a first approximation, these



processes can be interpreted as elastic scattering of gg dipoles off the proton
with the net colourless exchange. As a result, the proton stays intact, losing
only a small fraction of its initial momentum. The most striking feature of DIS
diffraction, measured at HERA, is a constant ratio (~ 10%) between the diffrac-
tive and total cross sections as a function of 2 and Q2. The understanding of
this feature, as well as the entire process, is a great challenge for QCD.

The parameters of the dipole-proton interactions were determined in the
analysis of inclusive DIS. With these parameters a good description of diffractive
DIS is also obtained. In particular, the constant ratio og;f¢/0s0 is naturally
explained. The key element for the success of this approach is incorporation of
parton saturation effects with the intrinsic saturation scale Ro(z). A distinctive
feature of DIS diffraction is the suppression of the small size dipole configuration
(r < Ryp), making diffractive processes directly sensitive to the range of r ~
Ry in which parton saturation effects dominate. The relative hardness of the
saturation scale, 1/Ry ~ 1 GeV, suggests that DIS diffraction is a semi-hard
rather than soft process as Regge theory (used traditionally in the description
of hadron-hadron high energy scattering) would require.

In the following we describe inclusive and diffractive processes in DIS at
small z from the unified point of view imposed by the dipole picture presented
above in which parton saturation plays the dominant role. An extensive com-
parison with the current data from HERA is also presented. The dissertation
is based on the following original articles (in the chronological order).

I K. Golec-Biernat and J. Kwiecinski, QCD analysis of diffractive DIS at
HERA, Phys. Lett. B353 (1995) 329, [117].

IT K. Golec-Biernat, Partonic structure of the pomeron, Acta Phys. Polon.
B27 (1996) 134, [115].

IIT K. Golec-Biernat and J.P. Phillips, QCD: Quantum chromodynamic diff-
raction, J. Phys. G22 (1996) 92, [114].

IV K. Golec—Biernat and J. Kwieciniski, Subleading reggeons in deep inelastic
diffractive scattering at HERA, Phys. Rev. D55 (1997) 3209, [120].

V K. Golec—Biernat, J. Kwieciniski and A. Szczurek, Reggeon and pion con-
tributions in semi—exclusive diffractive processes at HERA, Phys. Rev.

D56 (1997) 3955, [121].

VI K. Golec—Biernat and M. Wiisthoff, Saturation effect in deep inelastic
scattering at low Q? and its implication on diffraction, Phys. Rev. D59
(1999) 014017, [94].

VII K. Golec—Biernat and M. Wiisthoff, Saturation in diffractive deep inelastic
scattering, Phys. Rev. D60 (1999) 114023 [95].

VIIT J. Bartels, K. Golec—Biernat and K. Peters, An estimate of higher twist
at small  and low Q? based upon a saturation model, Eur. Phys. J. C17
(2000) 121, [99].
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IX A. Stasto, K. Golec-Biernat and J. Kwiecinski, Geometric scaling for the
total v*p cross section in the low = region, Phys. Rev. Lett., 86 (2001)
596, [98].

X K. Golec-Biernat and M. Wiisthoff, Diffractive parton distributions from
the saturation model, Eur. Phys. J. C20 (2001) 313, [155].

The outline of the presentation is the following. In Chapter 2 we provide
basic elements of the QCD description of deep inelastic processes, mainly for
pedagogical reason, following the literature on this subject in the past 30 years.
A particular attention is paid to the description of DIS at small z. From the
point of view of Regge theory, used traditionally in the description of high
energy hadronic scattering, the small x limit corresponds to Regge limit in
which a pomeron exchange with soft dependence on energy dominates. The
analysis of this limit in pQCD leads to the concept of a hard pomeron with
much stronger dependence on energy. The hard pomeron calls for unitarization
corrections. They are realized in terms of parton saturation effects which lead
to nonlinear modifications of the standard evolution equations.

In Chapter 3, based on the results from Refs. [VI,VIILIX], we present a
description of inclusive DIS in the dipole picture. In this picture, the parame-
terization of the dipole—proton interactions incorporates in a phenomenological
way both the hard pomeron concept and its unitarization done with the help of
the idea of parton saturation [VI]. We determine few parameters of this model
from a fit to all available data at small z. As a result, a very good description
of inclusive DIS data at small = is obtained, including the transition region to
small Q? values. In addition, a new scaling law at small z is predicted and
confronted with the data [IX]. We discuss also heavy flavour production and
analyze more formal aspect related to the twist expansion in DIS at small z
[VIII]. We finish this part by presenting two conceptually different approaches
to the description of the transition to small Q? values in DIS.

In Chapter 4 we describe diffractive DIS following the results obtained in
Refs. [I-V,VIL,X]. In the first part, these processes are described using Regge
theory, modified to allow for a partonic structure of the diffractive system [I-V].
This is necessary in order to account for the measured leading twist character of
the diffractive structure function. In the second part, we present an alternative
description in which the diffractive system and its interaction with the proton
are modelled starting from perturbative QCD [VII]. The dipole—proton cross
section found in the inclusive DIS analysis is naturally applied in this approach.
In DIS diffraction, the idea of saturation is even more important, allowing for
explanation of the most striking experimental fact from HERA of the constant
ratio between the diffractive and inclusive cross sections. We discuss in detail
various aspects of the description, presenting an extensive comparison with the
data The relation between the two approaches to DIS diffraction is discussed
in the part on diffractive parton distributions [X]. We point out that many
features of these processes which are postulated in the Regge-like approach find
an explanation in the pQCD description combined with the idea of saturation.

Conclusions and outlook are presented in Chapter 5. The derivation of some
crucial relations for the main stream presentation is moved to Appendices.



Chapter 2

Basics

2.1 DIS cross section and structure functions

In the electron-proton deep inelastic scattering (DIS), shown schematically in
Fig. 2.1, the incoming electron couples to the electroweak current which probes
the structure of the proton. In the following we will concentrate on the kine-
matic range in which electromagnetic part of the current dominates. In such a
case a virtual photon is exchanged with virtuality!

Q= -¢" = —(e—€)>0, (2.1)

where e and €’ are incoming and scattered electron momenta. ? determines
the resolution power with which the proton is probed by the photon. The other
important quantity is the dimensionless Bjorken variable
2 2
Tr = Q = Q y
2p-q Q>+ W?2
where p is the incoming proton momentum and W? is the square of center-of-
mass energy of the virtual photon—proton (y*p) system,

(2.2)

W? = (p+q)? = Q? (é - 1) : (2.3)
In proton’s rest frame 2p-q = 2Mv, with v = E — E' being the energy transfer
from the electron to the proton. Both quantities, z and Q?, can be determined
by measuring energy E’ and scattering angle ' of the scattered electron. Other
complementary methods involve the final hadronic state X. From the concep-
tual point of view, however, the observation of the scattered electron suffices
to reveal the proton structure. The defined kinematic variables,  and Q?, are
particularly useful for a physical interpretation of DIS.
The differential cross section for unpolarized ep DIS in one photon exchange
approximation reads

do 2m o2,
- " W, 2.4
dz dQ? x252()? K (24)

1t is convenient to change the sign of the space-like photon virtuality.

11
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Figure 2.1: Kinematic invariants in DIS.

where aep ~ 1/137 and s = (p + €)? is the ep system center-of-mass energy
squared. The neglected W and Z boson exchanges are important for Q? ~
MI%V z, corresponding to much larger values of = than those we consider.

L* is the leptonic tensor, fully determined from QED coupling of the virtual
photon to the electron,

1
L = STRf g} = 2 el b eel — gel e} (25)

WH is the hadronic tensor, related to the electromagnetic current J*, which
gives the hadronic part of unpolarized DIS 2,

1
Wilpa) = 5= [ <pli:)0,0)p> (2.6
1
= = 2 <plBO]X >< X [L,0)[p> @m)* 5'p+q-px).
X

The second line is obtained after inserting the complete set of final states be-
tween the two electromagnetic currents, and using the translation invariance
property of the current. The Lorentz structure of W, is found from the
conservation of the electromagnetic current, ¢*W,, = 0, and the symmetry
Wy = Wy, due to parity conservation,

_ quQv 1 D-q p-q
Wuu(pa Q) = <_gul/ + ?> Fy + p_q <pu - %L?) < v — QU?> Fy,

The unknown scalar structure functions Fi(z, Q%) and Fy(z,Q?), characterize
the hadron structure revealed in unpolarized DIS with Z and W boson ex-
changes neglected.

The hadronic tensor W, is related to the imaginary part of the forward

*We use the notation <p|... p>=1/23", <pA|...| pA> where the summation is performed
over the proton polarization, and p is the proton momentum.
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v*p scattering amplitude T},

1
Wi = 5-Tm Ty, (2.8)
where
T =i /d4zeifrz <p| T((2) T, (0)) | p> - (2.9)

With some care with respect to the definition of the virtual photon flux and
using the optical theorem, the structure functions can be related to the v*p
cross sections for the transverse and longitudinal polarized virtual photon, o
and oy, respectively,

QQ
2eF, = T T = Fr, (2.10)
2
F2—233F1 = %O’L EFL. (211)
em

Thus, the newly defined transverse and longitudinal structure functions obey
F, = Fr + Fy,. (2.12)

The final form of the DIS cross section (2.4) is obtained after contracting
the tensors (2.5) and (2.7),

2
do 2m o,

dE ~ 10 (14 (1-9y)*) B(2,Q%) — v* Fr(z,Q%)]  (2.13)

where )
o _ @
e TS

LS

y = (2.14)

3

is another useful variable used in the DIS description. In the proton rest frame
y is a fraction of incoming electron energy transfered into the hadronic system.
Both z and y obey: 0 < z,y < 1.

The structure functions describe the proton structure as measured in inclu-
sive DIS. From the theoretical point of view the major task is to provide an
explanation or prediction for their form.

2.2 Partons and their distributions

In the key experiment, performed at SLAC, ep DIS was studied in the Bjorken
limit: Q%,2p - q — oo and z fixed. In this limit, the structure functions exhibit
Bjorken scaling [1], i.e. they approximately depend only on the dimensionless
variable z,

Fi(z,Q%) ~ Fy(z), i=1,2. (2.15)

To a good approximation the Callan-Gross relation is fulfilled, Fy — 22 F) =
Fr, =~ 0. As we will see, this relation has a physical meaning.
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Figure 2.2: Deep inelastic scattering in the parton model.

The interpretation of scaling is due to Feynman [2, 3]. He envisaged the
proton as a collection of point-like, non-interacting among themselves particles,
called partons. In the infinite-momentum frame in which the proton moves
very fast, the relativistic time dilation slows down the rate at which partons
interact. As a result, the virtual photon interacts with an individual parton
without disturbing the rest of the system. The total cross section is a sum over
incoherent ~y*-parton interactions, weighted by the probability f(£) to find a
parton in a fast moving proton with a fraction ¢ of the proton momentum,

do 46 (¢)
drdQ? /0 dg 1(8) dxr dQ?

In this way the distribution of partons in a proton, f({), is introduced. The
above formula reflects factorization of the DIS cross section into a short distance
interaction, described by the partonic cross section d&(¢), and a long distance
structure, described by the parton distribution f(£).

Assuming that partons are Dirac fermions with spin 1/2 carrying the frac-
tion £ of the proton’s momentum, the following result is found in the parton
model [4]

(2.16)

Fy(z) = 2zF (z Z /dgax— Efi(€ Ze z filz). (2.17)

where e; is the electric charge. Additionally, the parton transverse momenta
with respect to the proton direction are neglected. The Callan-Gross relation
results from the spin 1/2 assumption.

Scaling is explained by the parton model. Moreover, Bjorken-z is equal to
the momentum fraction of the struck parton since from the momentum conser-
vation at the vy*-parton vertex, see Fig. 2.2, we have

(€p+q)® =0 = €= —*/2p-q =z (2.18)

Thus, the structure function Fy(z) “measures” the parton distributions of the
proton. Let us emphasize that partonic interpretation is inherent to the infinite-
momentum frame in which DIS is viewed.
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2.3 Parton model justification

The justification of the parton model comes from Quantum Chromodynamics
(QCD) [5, 6]. QCD is the unbroken SU(3) gauge theory of strong interactions
with fermionic quark fields and bosonic gluon fields. Both types of fields carry
quantum number related to local gauge group, called colour.

The most important property of QCD is asymptotic freedom [6]. The effec-
tive coupling constant a4(Q?), describing the strength of interactions between
quarks and gluons, vanishes when the scale Q? — oco. The Q?-dependence is
governed by the renormalization group equation. In the lowest order

1
bo In(Q2/A2)’

where by = (33 — 2Ny)/127 is positive (for a reasonable number Ny of quark
flavours) and A is the basic mass parameter of QCD (of the order 200 MeV)
introduced by the renormalization procedure. The above formula is valid for
Q? > A2, when o,(Q?) < 1 and perturbative description in terms of interact-
ing weakly quarks and gluons makes sense. For Q> — A? the strong coupling
constant becomes large and perturbative methods break down. It means that
the region of confinement is reached in which quarks and gluons form strongly
bound colourless systems, observed as asymptotic hadronic states.

It is natural to interpret partons as the quarks and gluons. Asymptotic free-
dom means that QCD is asymptotically free, i.e. it approaches free-field theory
at short distances with logarithmic modifications. This leads to the observed
experimentally logarithmic violation of Bjorken scaling for matrix elements of
electromagnetic currents between on-mass-shell states [7]. In contrast to the
naive parton model, in QCD the struck quark can acquire large transverse mo-
mentum by emitting a gluon which effect gives scaling violation.

There are two approaches to describe DIS in the Bjorken limit using QCD.
The first approach is based on the operator product expansion (OPE) of the
product of two electromagnetic currents. The second one relies on direct calcu-
lations using Feynman diagrams, combined with a factorization theorem which
allows to separate the short and long distance structure.

as(Q%) = (2.19)

2.3.1 Operator product expansion for DIS

Historically, the first justification of the parton model came through the oper-
ator product expansion (OPE) of the electromagnetic currents in the hadronic
tensor W,,, eq. (2.6). In the Bjorken limit, the dominant contribution to W,
comes from the region of integration close to the light cone, see e.g. [8],

0 < 2% < const/Q?, (2.20)

Thus, the OPE around the light cone is relevant when Q? — oc. Ignoring, for
simplicity, the vector character of the current, we have [9]

o0

T(2)J(0) = > )" Gl (%) 2 - 2 OF,, s (0). (2.21)
n=0 A
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The expansion is singular at 2z = 0, and W, is determined from the singularity
structure, contained entirely in the coefficient functions C,f‘ called also Wilson
coefficients. The operators O4 are well behaved local composite operators,
symmetric and traceless in Lorentz indices (which is indicated by the curly
brackets). In this case n is the value of spin of the composite operator, and A
distinguishes operators with the same spin.

From naive dimensional counting in the units of mass, the Wilson coefficients
behave in the following way in the limit z — 0

et ~ (

where dj(= 3) and dp are canonical dimensions of the current J and the com-
posite operator O, respectively. Relation (2.22) is true for free field theory
while in QCD it obtains logarithmic modifications. The difference

= : (2.22)

1 >d1—(do—n)/2

T=do—n (2.23)

is called twist of the composite operator, and its value determines the singularity
structure of the coefficient functions. The most singular (dominant) term in
(2.21) is given by the lowest twist operators. These are the operators with
7 = 2, which give Bjorken scaling in free field theory. The higher twist terms
are suppressed by additional powers of 1/Q2.

From now on we limit our discussion to the leading twist-2 operators. The
relevant QCD operators are: the quark flavour nonsinglet oy S’l, quark singlet
0,5, and gluon O operators,

i — ‘(—) .(—>
Oﬁf""ﬂn} = 9 M Y{u1 YDp> 1Dy, v, (2.24)
0S — D iDL 2.25
{pny = YV 1Dus - 1Dy 9, (2.25)
O — F. iD,. ---iD, F°® (2.26)
{p1pm} {uia ¥Pps =+ Wpn 1 7y '

where 1 =1,2,--- ,NJ% — 1, A are the generators of the flavour group SU(Ny)

and the covariant derivative %: (B - 13) /2. The trace over colour indices
in the above is implicit. There is an infinite tower of the twist-2 operators
enumerated by spin n.

Plugging (2.21) (with the tensor structure modifications for vector currents)
into the forward Compton scattering tensor T),,, eq. (2.9), we obtain the ana-
lytic expansion in the unphysical region of w = 1/ < 1 in the Bjorken limit.
Schematically, T}, (w) = >, aun W™, where a,,, involve products of the Wil-
son coefficients C* and matrix elements of the composite operators < p|O4|p >.
The analytical structure of T}, (w) in the complex w-plane is given by cuts along
(=00, —1) and (1,00) on the real axis. Therefore, using analyticity we can
rewrite a,,, in the form of the integrals over discontinuities of 7}, (w) along
the cuts, i.e. in the physical region of |w = 1/x| > 1. These discontinuities, in
turn, are related to the hadronic tensor W, eq. (2.8), and hence to the DIS
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structure functions F;. Finally, the following relation is found for the Mellin
moments of the structure functions [10]

/ e Fi(z,Q%) = ) Coy(Q%) My, (2.27)
A

0

where ¢ = 2, L and the Wilson coefficient C;;"i(QQ) are the Fourier transforms of
the z2-dependent coefficient functions in eq. (2.21), see [10]. The coefficients M !
parameterize the diagonal matrix elements of the composite operators between

nucleon states
A

<p| O(m---un) p>= M,‘;‘ Pluy " Pun) - (2.28)
Notice that the tensor structure on the r.h.s of (2.28) is unique since we only
have the nucleon momentum p, at our disposal.

Up to now, we have neglected the necessity of renormalization. The matrix
elements of the operators appearing in the OPE are divergent and need to
be renormalized. This procedure introduces a renormalization scale p into
the problem. The change of u can be absorbed by the change of parameters
of a theory, that leads to the renormalization group (RG) equation for the
running parameters and matrix elements of the considered operators. Applying
this method to the OPE (2.21) for a massless theory, we find as a consistency
condition

0 0
3 [(“W N 5(%)3—%) San + (mles)) an| CA(Q 12 a0) = 0,

(2.29)
where we indicated the presence of the renormalization scale p in the Wilson
coefficient. [(as) is the Gell-Mann-Low function, and 7, («as) is the matrix of
anomalous dimensions of the composite operators O“ with spin n. They mix
under renormalization if they have the same quantum numbers. The quark
singlet and gluon operators (2.25) and (2.26) are examples of such operators.

Both S(as) and v, (as) are computed in pQCD as a series in powers of ag:

Blag) = —a2by +adby + -, (2.30)

@) (e em

Tn(cts)
where by is defined in eq. (2.19), and 77(20) were found for the operators (2.24)-
(2.26) in Ref. [7]. The famous minus sign in the expansion of the g function
leads to asymptotic freedom of QCD. The running coupling constant (2.19) is
a solution of the equation

2 das(QQ)

Q TQQ = 5(015(@2))’ (2.32)

with S(as) in the lowest order approximation.
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The solution to the RG equation (2.29) is given in terms of the running
coupling constant. In the lowest order approximation for 8 and +,, we find

40)

O o) — € Loty [
Cnil@ (i) = Cuallan(@) [0

where the matrix notation is assumed, and «a; is given by (2.19).
When the renormalization procedure is performed, the coefficients Cf’i and

M/ in eq. (2.27) acquire the p-dependence. Now, we have

1
/ 4z 572 Fy(2, Q%) = Cna(Q%/1?, s (%)) Ma(1i2), (2.34)
0

where the solution (2.33) is substituted. The Lh.s in the above is a measured
quantity and obviously does not depend on a renormalization point pu. There-
fore, differentiating both sides with respect to u, we find the following RG
equation for the coefficients M

¥ dM (i) as(p?) 3 ( gO))AB MP (%) (2.35)
B

dp? 2

The renormalization scale y is arbitrary, thus, we are free to choose . = @@ > A.
In such a case (2.34) becomes

/ dr "2 Fy(z, Q%) Z C (1, 05(Q%) MA(Q?), (2.36)
0

where ¢ = 2, L. In this way the logarithmic scaling violation for the structure
functions is found [7] due to the running coupling constant «, and the evolution
governed by the anomalous dimensions of the twist-2 operators (2.24)-(2.26).

We have to keep in mind that our discussion concerns the leading behaviour
of the structure functions, therefore, it applies to large @2, when QCD is asymp-
totically free. In general, the OPE leads to the following expansion in powers
of 1/Q?% in the Bjorken limit?

A2
QQ
where the twist-2 part is found by inverting the Mellin moments (2.36). The
twist-4 (and higher) contribution has to be analyzed independently by consid-
ering twist-4 operators and their logarithmic in Q2 evolution [11].

In summary, QCD predicts the breakdown of Bjorken scaling, described by
eq. (2.36). The Wilson coefficients C#. are computed in pQCD. The coeffi-

n,t
cients M/ (Q?), however, are not determined until initial conditions at some

scale Q3 > A? are provided for egs. (2.35). Thus, despite the evolution is
driven by the perturbatively computed anomalous dimensions, the nonpertur-
bative aspect is encoded in the initial conditions for the evolution. This is a
manifestation of the short- and long-distance factorization present in the OPE.

Fop(e,Q?) = F (€, Q) + Fip V(e Q2) (2.37)

30ther sources of 1/Q2 corrections are provided by target mass corrections, relevant at
large z, or resummation effects like renormalons.
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Figure 2.3: The elementary processes described by the splitting functions Py,(y),
P,q(y) and Pga(y) from the left to the right, respectively. Additionally,

PGq(y) = PqG(l —y).

2.3.2 The Altarelli-Parisi formulation

In [12] Altarelli and Parisi reinterpreted the main results of the previous section
on the scaling violation in terms of parton distributions and basic interactions
between partons being quarks and gluons.

They identified the Mellin moments of the parton distributions fa(z,Q?)
with the coefficients M;'(Q?) from eq. (2.28),

/ Cdp et A @, QY = MAQY), (2.38)

0

where we denote collectively f4 = (¢nvs, ¢s. g), the quark flavour nonsinglet,
singlet and gluon distributions, respectively. Let us recall that M/ characterize
matrix elements of the twist-2 QCD operators 04, see eq. (2.28). Choosing an
additional light-like vector 7, such that 7-p = 1, we find the following relation

1
/ dr "~ [Nz, Q%) = M- At <p|Of, Ly | P>u= (2.39)
0

The matrix elements in the above cannot be computed in pQCD, only their
change with @ is governed by the RG equation. Thus, the parton distributions
are of nonperturbative nature, and their determination can be attempted in
lattice formulation of QCD or, indirectly, with the help of experimental data.

The next step is the identification of the anomalous dimension (%(10)) AB:
eq. (2.31), with the moments of the splitting functions Pap(y)

1
|y Pant) = 60 (2.40)
The splitting functions were computed in [12] from basic vertices of QCD, using
the generalization of equivalent photon method. They describe the elementary
processes, shown in Fig. 2.3, independent of the quark flavour.

Relation (2.38) can be inverted, and after that the evolution equations (2.35)
are rewritten in the following form*

o 8an($2@2 _ @) / dy

y) P (z/y, Q%) , (2.41)

4Using the property of the Mellin moments: A, B, < (A® B)( f dy/y A(y) B(z/y)
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where the summation over B is implicit and the splitting function matrix equals

Py 0 0
Pap = 0 Py, Pya
0 Pgy Paa

These are the Altarelli-Parisi evolution equations, derived for abelian theo-
ries before the advent of QCD by Gribov and Lipatov [13] and independently,
following the method of [13], by Dokshitzer for QCD [14]. Notice that the
quark nonsinglet distribution evolves independently of the quark singlet and
gluon distributions. This occurs because the corresponding partonic operator
O/ does not mix under renormalization with the operators O° and OF.

The Altarelli-Parisi (DGLAP) equations have probabilistic interpretation.
In the infinite momentum frame, the parton distributions f“(z,Q?) describe
probability to find quark or gluon in a hadron, carrying a fraction z of hadron’s
momentum, as seen by the probe with a virtuality Q2. The evolution equations
describe the change of this probability with the resolution power Q?, due to the
emission of partons described by the splitting functions.

Relation (2.36) for the moments of the structure functions can also be in-
verted. After that we find the following formula for the structure functions

1
ReQ) = Y [ Yot wa@)ef @@ (242
A X

where ¢ = 2, L and coefficient functions CZA(y) are related to the the Wilson co-
efficients Cf’i from the previous section through the Mellin transformation. For-
mula (2.42) reflects the short- and long-distance factorization, called collinear
factorization, in which the coefficient functions are computed in perturbative
QCD while the parton distributions contain information about nonperturbative
structure of the nucleon. In the lowest order in « for the coefficient functions
Fr, =0 and

Py(z,Q%) = ef {zqs(z, Q%) + 2q5(z,Q%)}. (2.43)
f

where the sum over quark flavours is performed. In order to find the parton
distributions, we have to specify initial conditions for the DGLAP evolution
equations at some scale Q% > A?. In practice, an analytical form in 2 of the
initial conditions is given in terms of several parameters. Then, the parameters
are determined from a fit to DIS data.

2.3.3 Evolution in diagrams

By summation over a class of infinitely many diagrams the DGLAP equations
can be directly obtained from perturbative QCD [14]. This method serves as a
starting point for the computations beyond the leading order.

In brief, the DIS structure functions is computed using the optical theo-
rem (2.8). The relevant class of diagrams are ladder diagrams, with the cut
states being on mass-shell, see Fig. 2.4. We treat for a moment the lowest lying
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Figure 2.4: QCD ladder diagrams contribution to DIS structure functions.

incoming parton as a hadron with a small virtuality —m?, which serves as a
regulator in the calculation. The diagrams with n cells amount the contribution
a?log"(Q?/m?) ~ 1. Thus, the large logarithms log(Q?/m?) compensate for
the smallness of «; in each order n and have to be resummed. The key element
for the dominance of the ladder diagrams is the choice of the planar gauge for
the gluon field. As shown in [15], other diagrams, including non-planar ones,
are suppressed by additional powers of a; without accompanying logarithms,
and are neglected. Such an approximation is called leading-logarithmic approx-
imation (LLA).

The leading-logarithmic expression for the structure functions is obtained
after the integration over exchanged parton momenta [15],

ki = aip’ + Bid + kii, (2.44)
in the configuration strongly ordered in the transverse momenta
m? < k] < B, <<k, < Q7. (2.45)

Here the Sudakov decomposition of momenta is adopted with the null base
vectors defined by ¢’ = ¢ + zpp and p' = p + (m?/s)q’, where p?> = —m? and
2p' - ¢' = s ~ Q%. The longitudinal momentum fractions are also ordered due
to mass-shell condition imposed on the emitted gluons (cut in Fig. 2.4),

1 >0 > a9 > > = x. (2.46)

The B; variables are small (~ m?/s) and can be integrated out. Thus, the
successive parton emissions are in the proton momentum direction p ~ p'.

Condition (2.45) leads to the improved parton picture. From the point of
view of the quark (i — 1), the upward quark (i) looks as a probing (bare) par-
ticle, with much larger virtuality. As we move upwards, the quark (i) becomes
“dressed” (in cloud of partons with smaller virtualities) for the quark (i + 1),
which now acts as a highly virtual probe. Therefore, increasing virtuality, the
number of decays increases, and the cloud of virtual particles is penetrated more
deeply (at shorter transverse distances). This is a physical picture behind the
scaling violation in the LLA.
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The large logarithms come from the integration over the ordered transverse
momenta. FKach cell contributes one power of a; and logarithmic integral. Thus,
the integration over n cells gives

2 2 2
o /‘Q d‘kin| /'kj_ nl d‘kQ 1| - /'kJ_2 d‘ki” _ O‘_g log" Q_2 (2.47)
’ m?2 |k3_n| m? |k 1ln— 1| m2 |k3_1‘ n! m?

The integration over the longitudinal variables «; leads to a convolution of n
splitting functions Py,. After the transformation into the Mellin space a simple

factor with anomalous dimension is obtained: (7](\?)/271')”. Thus, we find for the
Mellin moments of the structure function Fy

(0)
SN 2 ON\" 2
Fyn_1(Q?) = Z % 1og % <72L7r) (32> _ (2.48)

The small virtuality —m? of the incoming parton cannot be set to zero due
to collinear singularity which appears when a massless parton decays into two
collinear massless partons. The remedy is to assume that there exists a suffi-
ciently hard factorization scale® pp > A. With this scale, the short-distance
part, given by the integration over the transverse momenta up < |k | < @,
is safe from the point of view of perturbative calculations. The long-distance
part, m < |k, | < pp, can be factored out and absorbed into the unknown bare
distribution of the parent parton in a nucleon ¢°. Thus, we have

(0) (0)

As TV Qs Y

Pon-1(Q%) = <Q2> N (%> - an - (2.49)

,UF R m?

-~

qn (uF)

As a measured quantity, Fy y_1(Q?) does not depend on the factorization
scale. Thus we can write the RG equations for ¢x (ur) by differentiation of both
sides of (2.49) with respect to pup. Choosing pur = @, the evolution equation
for the Mellin moments of the parton distribution is found

@ 2 dgf b= 800 @), (2.50)
In the presentation, the coupling constant was fixed, but the running a; can
be consistently included by considering the next-to-leading logarithmic approx-
imation (NLLA), in which the terms proportional to as(aslog(Q?/m?))" are
summed up. In this case, the splitting functions P(ay, z) and coefficient func-
tions C'(as, z) are computed to a higher order in a; [16]. In general

Plag,a) = (52) PO (@) + (g—;)QP(I)(m) + (;1—;)313(2)(:3) b (250)
Clag,z) = CO(z) + a, CV(z) + a2 CP(z) + ---, (2.52)

In most calculations ur = p, the renormalization scale related to ultraviolet divergences.
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where (0) refers to LLA, (1) to NLLA, (2) to NNLLA and so on. The running
coupling constant also has to be computed to the appropriate order.

The parton distributions are universal for a given hadron in a sense that
the same distributions can be used in the cross sections for which collinear
factorization holds. Usually, it is a matter of nontrivial proofs in which infrared
structure of pQCD is carefully examined, see Collins et al. in Ref. [17].

2.4 DIS in Regge limit

Expansions (2.51) truncated at some order are good approximations away from
2 = 0. In the limit z — 0, however, large logarithms log(1/z) appear in all or-
ders except the lowest one 5. Thus, the perturbative expansion (2.51) becomes
slowly (or badly) convergent because of the presence of large logarithmic cor-
rections. A systematic method of resummation of these corrections is necessary
in order to restore the reliability of QCD in the small z domain.

In the standard DGLAP approach, the following hierarchy of scales is as-
sumed to assure that z ~ 1

W? ~ Q% > A?, (2.53)

where W is the y*p center-of-mass energy (2.3). The second condition justifies
the use of perturbative QCD. For the fixed target DIS experiments condition
(2.53) holds true. With the advent of the ep collider HERA, however, the study
of a new limit of DIS has started in which W is much bigger than any other
scale involved. In particular,

W2 > Q% > A% (2.54)

This condition corresponds to the Regge limit of DIS. In such a case x < 1,
and the fixed order DGLAP approach is incomplete. The DIS processes in the
limit (2.54) are called semi-hard. They are similar to soft hadronic processes in
the sense that energy is much bigger than the ‘mass’ of the projectile (). On the
other hand these processes are hard since a,(Q?) < 1 and pQCD is applicable.

In the leading twist description of DIS at small z, the resummation of large
log(1/x) terms is necessary in the singlet and gluon splitting functions (2.51),
and in the coefficient functions (2.52). The systematic method corresponds to
the resummation of terms proportional to o log¥(1/2) in the leading logarith-
mic approximation and subleading terms proportional to a?** logk(l/x) in the
higher order approximations. In general

0 [ n 1

z Plag, ) = Z (as)" Zpgcn) log¥(1/z)| + regular part (2.55)
n=0 L k=1 i

Clas,x) = Z (as)" Zcén) logh(1/z)| + regular part.  (2.56)
n=0 L k=1 i

fThere are also large logarithms log(1 — z) when  — 1. We are not discussing them here.
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In the above, £k = m corresponds to the leading contribution whereas k£ < n
gives subleading corrections. In this way an improved perturbative expansion
for (2.51) and (2.52) is obtained. In practice, the leading contribution is ob-
tained using the k| -factorization formula [33], discussed in section 2.4.3, in
the collinear limit. This formula can be extended beyond the leading order in
agreement with collinear factorization (2.42) by a careful examination of the
region of low transverse momenta for parton emissions [34].

The large log(1/z) terms, however, are present in all twist contributions to
the structure functions, making them as important as the leading twist contri-
bution. The k| -factorization formula also includes these corrections by keeping
the Q?-dependence exact. Thus, the new way of computation is a nontrivial
extension of the leading twist formalism. Moreover, using the k| -factorization,
it was shown [18] that for fixed Q2 > A? the operator product expansion breaks
below some value of x due to nonperturbative effects. A problem which arises
in the new approach is unitarity of the computed cross sections. This is the
main theoretical challenge in QCD of semi-hard processes, which we address
phenomenologically in Chapter 3.

Before discussing the small-z limit in QCD in detail, we describe the high
energy limit of scattering processes using Regge theory which dominated in the
pre-QCD era. This introduces the concept of a pomeron in terms of which the
semi-hard processes are usually discussed.

2.4.1 Soft pomeron

Regge theory [19] allows to study the high energy limit of scattering reactions,
based on general assumptions about the scattering matrix S = 1 + A, like
Lorentz invariance, crossing, unitarity and causality. From the last assumption
follows the property of analyticity of the scattering matrix as a function of
Lorentz invariants regarded as complex variables. The only singularities allowed
are those imposed by unitarity conditions.

For the two-to-two scattering of spinless and massless particles the scattering
amplitude A(s,t) is an analytic function of the Mandelstam variables”. A(s,t)
describes three different reactions, depending on the domain of the kinematic
invariants. We are interested in the Regge limit of the scattering amplitude,

s — 00, t = const (2.57)

for the s-channel reaction, a + b — ¢ + d, with s = (p, + pp)> > 0 and ¢ =
(pa —pe)? < 0. For this purpose we consider scattering in the crossed t—channel,
a+¢—b+d, witht = (p, +pz)? >0 and s = (p, — p3)? < 0. The standard
partial wave decomposition for this process reads

o.¢]
A(s,t) = (20 + 1) a,(t) P;(cos ). (2.58)
1=0
The above expression is convergent for | cos6;| = |1+ 2s/t| < 1, i.e. throughout

the t—channel physical region, ¢ > 0 and —¢ < s < 0, but it quickly breaks

"The third Mandelstam variable v = —s — ¢.
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Figure 2.5: Integration contour C and its distortion in the complex angular
momentum plane

down when continued into the s—channel region s > 0 and ¢ < 0. The appro-
priate analytic continuation of (2.58) is provided through the complex angular
momentum plane [ [20],

Aty = 3 F a2 {6 o) + 7 o) Pl(1+2§), (2.59)

24 sin 7l

(+)

where a; ' are partial wave amplitudes with signature n = +1, and P; is

the Legendre polynomial, analytically continued in [. The functions £(li) =
1/2 (n + exp(—inl)) are called signature factors. The contour C encircles the
pole singularities at [ = 0,1, 2, ..., due to the denominator sin=l, see Fig. 2.5.
By computing residues of the poles encircled by C, we check that (2.59) provides
analytic continuation of (2.58). The two signatured partial wave amplitudes in
(2.59) are necessary for uniqueness of the analytic continuation. In this case,
a(l+)(t) is an analytic continuation of a;(¢) for even | and a(_)(t) for odd I.
The signature factors allow to obtain (2.58) when the residues in (2.59) are
computed.

With the representation (2.59), the Regge limit can be achieved by distort-
ing the integration contour C' as shown in Fig. 2.5. On the way to the new
contour C', singularities of the partial wave amplitude a(ln) (t) appear (cuts or
poles), which have to be circumvented by winding the contour around. The
usefulness of Regge theory is based on the assumption that there are only iso-
lated singularities, cuts or poles. In the simplest nontrivial case, one simple

pole, called Regge pole, is assumed,

o (f) ~ LW (2.60)

where the pole position «(t) is called Regge trajectory (with a definite signature),
and [(t) is a residue. In this case we find

2a(t) + 1
sin ra(t)

Afs,1) = 0y B0 Py (142) + Ao, 260

where Acr is the contribution given by the integration along the contour C'.
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A. Regge trajectory

When the Regge pole occurs for an integer value of I; = a(t;), then (2.61)
has a pole at ¢ = ¢;, because of the denominator sin7a(t;). This corresponds
to a physical meson bound state (or a resonance if Im «(¢;) # 0), produced in
the t—channel with mass m; = /f; and spin /;. It appears that most of the
known mesons form families with the same quantum numbers but spin which
lie on the straight line Regge trajectories

at) = a(0) + o't, (2.62)

where «(0) is the intercept, and o' is the slope of the Regge trajectory. The
signature factor ensures that particles lying on a Regge trajectory differ by two
units of angular momentum.

The Regge trajectory continued to negative values of ¢ describes the scat-
tering in the s—channel. In the Regge limit, Ac» = 0 in (2.61) and only the
Regge pole contributes. We find ® for large s

A(s,t) ~ B(t) s*® (2.63)

where the residue B(¢) and the signature factor &7, were absorbed in A(t).
Therefore, the production of particles in the ¢t—channel can be ‘detected’ in the
s—channel from the asymptotic behaviour of the corresponding amplitude. It
is usually said that the Regge trajectory (reggeon) is exchanged.

From the optical theorem, we have for large s

Oror = 5 L TmA(s,0) ~ 52071, (2.64)

Thus, the intercept of the Regge trajectory «(0) determines the asymptotic
behaviour of the total cross section for the s-channel reaction. If many reggeons
are exchanged, we add amplitudes with different trajectories. The dominant
contribution is given by the trajectory with the highest intercept (the rightmost
singularity in the [-plane).

The slope of the Regge trajectory o is found from the ¢-dependence of
elastic scattering amplitude [21].

B. Pomeron

How useful are the presented concepts? Donnachie and Landshoff per-
formed a very economical fit to the total cross section data for various hadronic
reactions, assuming the form (2.64) with two powers of s [22]. As a result, they
found

otor = A (5/50)""" + B (s/s0)"%, (2.65)

where sg = 1 GeV. The two powers are universal, but the coefficients A and B
depend on a hadronic reaction. The first term corresponds to the exchange of
the (p,w, f,a)-meson Regge trajectory

ar(t) = 0.55 + 0.86 GeV™2-¢. (2.66)

(2141)
r2(l1+1)

8Using the asymptotic formula P;(z) o (z/2)! for large z.
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Figure 2.6: (p,w, f,a)-meson and soft pomeron trajectories

see Fig. 2.6. The second term in (2.65), responsible for the rise of the cross
sections for large s, is attributed to the pomeron exchange.

By definition, the pomeron trajectory is the even signature (n = 1) Regge
trajectory with the intercept «(0) > 1 corresponding to the exchange of the
vacuum quantum numbers’. In the Donnachie and Landshoff analysis the soft
pomeron (IP) trajectory has the intercept slightly above one

ap(t) = 1.08 + 0.25 GeV 2 - t. (2.67)

Notice that the pomeron slope afp = 0.25 GeV~? is much smaller than the
reggeon slope. Thus, if there is a real particle (with spin [ = 2) lying on the
soft pomeron trajectory, it has mass around 2 GeV, see Fig. 2.6. A glueball is
a candidate, see [23] for a recent review.

However, there is a problem with the soft pomeron. If the energy dependence
5908 continues as s — oo, it will eventually come into conflict with the Froissart-
Martin bound [24], reflecting unitarity

ot < Clog? (s/s0) , (2.68)

where C' = 7/m?2 ~ 60 mb. Thus, the description with the help of the pomeron
trajectory with a(0) > 1 is inconsistent and more complicated singularities like
cuts have to be considered. In the DL parameterization sy = 1 GeV?, and the
total cross sections lie much below the unitarity bound for present energies.
Nevertheless, for diffractive processes the problem of unitarity is more acute.

C. Application to DIS

Let us apply the concept of Regge trajectory exchanges to DIS at small z.
Considering v*p scattering, we may write the Donnachie-Landshoff parameter-

%i.e. parities P = 4+1, C = 41, G = +1 and isospin I = 0.
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ization of the nucleon structure function Fy ~ Q? Onyep S
Fy(2,Q%) = A(Q*)z' o + B(Q?) ! n). (2.69)

Having in mind partonic interpretation, we expect the pomeron contribution
to be given by flavour singlet sea quarks, while the reggeon term is determined
by flavour nonsinglet valence quarks. Thus, we find for the proton and neutron
structure functions

FY? ~ 7008 F? — F} ~ %5 (2.70)

in the small z limit. However, the measured at HERA proton structure function,
Fy ~ 2z M@ has a bigger effective power A(Q) than the soft pomeron value
which additionally rises with Q2. Such a behaviour can be accounted for by the
DGLAP evolution equations due to flexibility in choosing initial conditions for
the evolution. In particular, the dependence (2.70) can be incoporated in initial
distributions at the scale Q% ~ 1 GeV? where nonperturbative Regge theory
may be applicable. The strong rise of Fj is also predicted by the analysis of the
Regge limit of perturbative QCD.

2.4.2 Hard pomeron

In this section we present the main results on the Regge limit in QCD, based
on a seminal work of the BFKL group [25]. The largest contribution to the
scattering amplitude in this limit comes from leading logarithms in the center-
of-mass energy s in the kinematic region where

a, L 1, a, logs ~ 1. (2.71)

The approximation in which terms proportional to (aslogs)™ are summed is
called the leading logarithmic approximation (LLA(s)).

Let us consider for illustration the elastic scattering of two quarks, see
Fig. 2.7. In the Regge limit, exchanges of the highest spin elementary quanta
(gluons) dominate. The imaginary part of the gq¢ — gq amplitude is computed
from the unitarity condition,

PR
Ims A% (s,t) = — > /d@nn Alpr,pasn +2) A" (py,phin +2). (2.72)

In such a case, two production amplitudes for the process qqg — (ng)qq have
to be squared and integrated over the final state particle momenta. P® is the
colour projector on a representation R of the gauge group. For the pomeron ex-
change, the projector on a singlet representation is relevant. The full amplitude
can be reconstructed from the imaginary part using dispersion relations. In the
LLA(s), which we consider from now on, the amplitude is purely imaginary.

There are three key elements in the computation of the r.h.s of eq. (2.72):
the phase space, reggeized gluon and new effective vertices.



2.4. DIS in Regge limit 29

P2 Py

Figure 2.7: Pomeron exchange in QCD.

e The large logarithms of energy are obtained in the LLA(s) assuming multi-

Regge kinematics for phase space of the final state particles. Parameter-
izing their momenta with the help of the Sudakov variables,

li = aipr + Bip2 + 11, (2.73)

where p? = p2 = 0 and 2p; - p» = s, the multi-Regge kinematics is defined
by the conditions

Qp > 0y, l1;~ s, (2.74)

In contrast to the DGLAP condition (2.45), the transverse momenta are
not ordered but limited to the region around sy which does not increase
with energy /s. The scale sg cannot be determined in the LLA(s). Strong
ordering in a’s leads to similar ordering in rapidity

Yi > Yit1 s (2.75)

since y; — yir1 =~ log(a;/@;t+1) in the collinear frame for the incident
quarks.

The exchanged gluons in the ladder in Fig. 2.7 are reggeized. This is a
nontrivial property of nonabelian gauge theories, obtained in the LLA(s)
as a result of summation of virtual corrections to the colour octet exchange
in the high energy limit [26]. Gluon reggeization means that the standard
propagator is replaced by

1 1 A\ w(ti)

- - <ﬁ> , (2.76)
i ti \ So

where t; = k? ~ —kii and s; = (I;_1 +[;)2. The function'?

d?K| 1

(2m)? K2 (k- k)%

wit) = aSth/ (2.77)

10The integral is divergent and should be regularized, e.g. by introducing infrared cutoff .
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Figure 2.8: The structure of the amplitude A(w,t) in the high energy limit.

defines the negative signature Regge trajectory of the reggeized gluon
a(t) = 1 + w(t). Notice that the trajectory passes through 1 at ¢ = 0,
as expected for spin-1 gluon.

There are two types of effective vertices. The gauge invariant reggeon-
reggeon-particle vertex I'(k;, k;11), denoted by a blob in Fig. 2.7, replaces
the standard triple gluon coupling. Its explicit form can be found e.g
in [20]. The coupling of the #-channel gluons into the external quarks is
given by the eikonal vertex

2p% 5 o (2.78)

where the colour structure has to be additionally supplied. The delta
function reflects helicity conservation in the high energy limit. In the
LLA(s), the momentum structure of eikonal vertex is also valid for gluons
as external particles, which could illustrate our considerations.

A. BFKL equation

Using the presented elements, the total cross section for the scattering of

two quarks in the Regge limit is derived from (2.72)

O_tot — ImSAH(Sa 0)

S

. (2.79)

The reader may consult original articles [25] as well as excellent reviews [20, 27,
29] for details of the derivation. The final result looks as follows [20].

Let us introduce the Mellin transform of the s-channel discontinuity (2.72)

Alw, t) = /100d (%) (%) - %ﬂ(s’ﬂ. (2.80)
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The structure of the amplitude A(w,t) is shown in Fig. 2.8. It is a convolution
of the impact factors ®;(k;, q) and the function F(w, ki, ks, q) describing QCD
pomeron exchange

Alw,t) =

G d*k; d*k
/ ! 2 '1)1(k1,q) @2(k2aq) F(waklak%q)v (281)

(2m)* ) %3 (ki —q)?

where t = —q?. For the quark-quark scattering, G = (N2 — 1)/4N? and the
impact factors for slightly off-shell quarks to regulate infrared divergence are
given by ®; = o dyy.

The function F' obeys the BFKL equation. In the forward limit £ = 0,

F(w, ki, ko,0) = 0%(k k)+a5/ K (2.82)
w w, K1, Ko, = 1 2 = (kl_k,)Q .
k2
F(waklakQaO) - F(w7k17k270) 3

K21 (k- K2

where @; = N.a,s/m. The first term in the square brackets is related to real
gluon emission while the second one corresponds to virtual corrections leading
to reggeization of the exchanged gluons. Notice that the latter term cancels
infrared divergence at k/ = k; in the real emission part.

Relation (2.80) can be inverted using the inverse Mellin transform. After
that the total cross section (2.79) reads

d’k; d’k
otot g / 1 2 (I)l(kl,[]) (I)Q(kQ,O) f(S,klak%O)a (283)

RGO
where F(s,-) is the inverse Mellin transform of F(w,-) given by eq. (A.12) in
Appendix A.

The energy dependence of 0/ is predicted by the solution of the BFKL
equation. In Appendix A we present details of the computations leading to the
following spherically symmetric solution

1 dy (K" [ dw (s\* !
- _ ay (k1 — =) ——, (2.84
F (s, k1, k2,0) k2 Jo 2mi <k§> /C, 2mi \s0/) w—asK(y)’ (25

where the integration is done in the complex - and w-planes, related to the
Mellin transformations in the variables k? and s, respectively. K(y) is the
Lipatov kernel, defined in Appendix A.

B. Asymptotic form of the solution

The asymptotic form of solution of the BFKL equation for s — oo is found
after the saddle point integration around y = 1/2 at which point £'(1/2) = 0.
In this case, the integration contour C is given by: v = 1/2+4iv. The singularity
structure of the integrand in (2.84) is fully determined by its denominator, i.e.
the equation

w=as;K(1/2 +iv). (2.85)
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K(1/2 +iv) is a real function, and when v runs from —oo to oo, w goes from
—00 to wy = 4@ In2 (for v = 0) and then back to —oc. Thus we obtain a cut
from —oc to wg in the complex w-plane. This should be contrasted with the
situation which is usually assumed in Regge theory where we deal with poles
in the complex angular momentum plane [ = w + 1, see Section 2.4.1.

Now, the integration contour C’ in the w-plane is chosen to the right of
the tip of the cut wg, and is closed in the left half-plane encircling the cut
singularity. The integral over w in (2.84) is given in terms of the discontinuity
of its integrand across the cut. After computing this discontinuity, we find

1 < dy k% 1/2+iV s asK(1/2+iv)
7(S,k1,k270):7r—k% /OO% (@) . :

After expanding the integrand around the saddle point » = 0 and performing
the v-integration, we find'! the asymptotic solution

) oxnd I/
1 < s >a5K(1/2) P 2a. K7(1/2) n(s/30) (2.86)
F(s,k1,k2,0) = ———= | — .(2.
(5 k1 K2, 0) m/k2ks \So V2mas K" (1/2) In(s/s)
The above formula has several interesting features.
1. Strong rise with energy s, determined by
wyp = asK(1/2) = 4as;In2. (2.87)

Substituting @; ~ 0.2 we find: F ~ s%° Because of much stronger
dependence on energy than for the soft pomeron, the presented vacuum
quantum number exchange is termed hard (or BFKL) pomeron,

2. Diffusion pattern in In(k ) with a rate determined by the second deriva-
tive of the Lipatov kernel @, K"(1/2) = 28 @, ((3) and In(s). The lack of

strong ordering in gluon transverse momenta is the origin of diffusion.

The strong coupling constant is fixed in the leading log(s) summation. TIts
dependence on a hard scale is introduced in the next-to-leading approximation.

The strong rise of F is the source of problems. It leads to the same leading
behaviour of the total cross section (2.83) in the high energy limit

O_tOt ~ Sap—l — 84651112’ (288)

which ultimately violates unitarity bound (2.68).

The lack of unitarity is related to the problem of diffusion into the nonper-
turbative region of small transverse momenta for large enough s, making the
BFKL approach doubtful. One way to save this approach is to apply it only to
the situation in which large scales of the same order in k£ exist at the begining
and at the end of the evolution. In this case diffusion into the low k| -region

"'With the help of the relation [*_dv/2r exp(—Av®/2 4+ iBv) = exp(—B*/(24))/V2rA



2.4. DIS in Regge limit 33

is minimized. Solving the unitarity problem, however, allows to avoid small k|
diffusion due to the existence of a saturation scale [28].

C. NLO corrections to the BFKL equation

The next-to-leading logarithmic approximation (NLLA) to the BFKL equa-
tion is found by the resummation of terms proportional to a;(as logs)™ [29]. In
this approximation the linear structure of the BFKL equation is retained. The
BFKL integral kernel, however, obtains corrections proportional to as.

The first source of the NLL corrections are virtual contributions to the
reggeized gluon trajectory w(t), eq. (2.77), and to the reggeon-reggeon-particle
vertex I'. The most important corrections come from the relaxation of the
strong ordering condition (2.75) for the multi-Regge kinematics of the final
state particles. In the NLLA, two final state gluons can be close to each other.
In addition, a final state gg pair can also be emitted.

The first analysis of the next-to-leading order BFKL equation revealed that
the found corrections are very large [30]. The value of the hard pomeron inter-
cept, ap = 1 4+ w9, decreases significantly,

wVEO = wo (1 — 6.47@,), (2.89)

where wy is the leading order value (2.87). Therefore, for a reasonable value of
@, ~ 0.2 we have wV9 < 0, and the intercept becomes smaller than 1. The
cure of this problem is to additionally resum collinear corrections to the BFKL
equation to all orders. In such a case the BFKL equation correctly reproduce
the collinear limit, see [31] and references therein. At the same time, the value of
w0 is stable with respect to the change of g, e.g. for ay = 0.2, N0 =0.27
[31]. This value is significantly lower than the LO value. The unitarity bound,
however, remains violated.

2.4.3 k -factorization

In the application of the BFKL approach to DIS at small z, the gluon ladder
couples to the proton on one side and to the ¢g pair produced by the virtual
photon on the other side, see Fig. 2.9. Thus, formula (2.83) takes the following
form

g)\ =

d’k; d’k
g / LZ_2 ) (kp,0) ®,(ky,0) F(z, ki, k,0), (2.90)

COLN A

where A = T, L denotes the virtual photon polarization and we replace s by
r ~ @Q%s . ®, and ®, are the virtual photon and proton impact factors,
respectively. From gauge invariance, ®5(k; = 0,0) = ®,(ky = 0,0) = 0, which
are the necessary conditions for the infrared finiteness of the cross sections.
The photon impact factor is the high-energy hard cross section for the sub-
process: v* + g(k) — g+ G, computed in pQCD to the lowest order in ay as
a function of the transverse momentum k of the incoming off-shell gluon with
k ~ zp+ k; and k> = —k?. The two relevant diagrams are are shown in
Fig. 2.9. In the NLLA, the diagrams contain additional gluon in the final state
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Figure 2.9: The photon impact factor graphs.

or they are modified by virtual corrections. The calculations of the photon
impact factor in the NLLA are being pursued [32].

The proton impact factor is of a nonperturbative origin and can only be
modelled. We rewrite relation (2.90) in a different way, by hiding the proton
form factor in the unintegrated gluon distribution

2
flo,k) = ﬁ/dk—? B, (ks, 0) K2F (i, k, ks, 0) (2.91)

In such a case eq. (2.90) becomes

2
o, @) = [ eru(@k) f@10, (2.92)

where we absorbed the factor G/(27) in the definition of the photon impact
factor ®7 1 and indicated that it depends on the photon virtuality.

Relation (2.92) is called k| -factorization formula [33]. In the small z limit
the DIS cross sections are computed by the convolution of the photon im-
pact factors and unintegrated gluon distribution, done over all values of the
gluon transverse momentum k2. This reflects the lack of the ordering in gluon
transverse momenta in the BFKL ladder in contrast to the DGLAP approach.
For large 2, in the leading twist approach, formula (2.92) resums leading in
log(1/z) corrections to the splitting function Py, and next-to-leading correc-
tions to the function Py, [34, 35, 72].

As discussed in the previous section, diffusion to the low k| region is a source
of problems. There is the danger that in the application to the description of F3
at small z, dominant contribution will come from the nonperturbative region.
Extracting, however, the leading twist part for high @2, the nonperturbative
part factorizes from the perturbative part, allowing for meaningful perturbative
calculations in the spirit of collinear factorization [34, 35, 72, 20].

By considering the collinear limit in eq. (2.92), the following relation be-
tween the unintegrated gluon distribution and the gluon distribution g(z, Q?)
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from the DGLAP approach is found for large Q?

Q* k2
ro(.Q?) = [ G ib), (2.93)

where we assume spherical symmetry for k. The derivation of this relation is
presented in Section 3.2.6.

In the leading log(1/z) approximation, the unintegrated gluon distribution
f(x, k) obeys the BFKL equation which can easily be found from eq. (2.82)
after the angular integration (see Appendix A for details)

dk,2 k? f((.d, kl) - f(w: k) + f(w: k)
k' k"% — k2| VAak™ + kA
where the relation between the x-space representation and the Mellin moments
is given by

ol k) = a0+ [ b 2o

Flak) = [ 2207 k). (2.95)
C T

The nonhomogeneous term fy(k) corresponds to the exchange of two perturba-
tive gluons between the g¢ pair and the proton. The higher order corrections
to this process, described by the second term, lead to the BFKL gluon ladder.
In the z-space, the BFKL equation takes the form of the evolution equation in
the rapidity Y = log(1/x).

The calculations of the photon impact factor can be found in [25] or [20].
They are organized in such a way that only the leading order contribution
(the gq pair Fock component) to the photon impact factor is considered. The
higher order corrections are included in the unintegrated gluon distribution.
In an alternative way of calculations, performed in [36, 37, 38] in the dipole
representation, the BFKL effects are located in the photon wave function. The
parent gq pair is dressed in the soft gluon contribution, and the interaction with
the proton is realized by the exchange of two perturbative gluons. The explicit
form of the photon impact factor can be read off from formulae (3.1) and (3.4),
presented in Section 3.1.

Following the presented method of constructing the solution of the BFKL
equation (2.94), we find the strong increase of the proton structure functions
when z — 0,

Fy(z,Q?) ~ g~1% 2, (2.96)

Thus, unitarization corrections are necessary which would tame the rise in z.
It is not clear whether an analogue of the Froissard-Martin bound (2.68) exists
for the y*p scattering,

Fy, < clog?(1/x). (2.97)

Although this condition has not been proven a logarithmic bound in z is widely
expected.

In order to fulfil unitarity in the description of DIS different methods have
been proposed. The literature on this subject was initiated by the seminal
work of Gribov, Levin and Ryskin (GLR) [39] and continued over the years
in [40]-[64]. The overall picture which emerges from these studies is related to
saturation in dense partonic systems.
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2.4.4 Parton saturation

In the DGLAP approach in the double leading logarithmic approximation
(DLLA), when z — 0 and Q? — oo, the number of gluons strongly rises [65],

2g(2,Q) ~ exp2 | @, log(Q?/Q3) log(1/x) . (2.98)

where the fixed coupling constant @y = N.a, /7 is assumed for simplicity. This
follows from the singular behavior of the splitting function Py,(z) ~ 2N./z
which dominates in the evolution equation for the gluon distribution at small
z. The solution (2.98) corresponds to a flat input distribution. For a singular
input, zg ~ =, the power-like rise in z is conserved by the evolution in Q2.
Through the coupling to the sea quarks, ¢ — q@, the strong rise of the gluon
distribution leads to a similar behaviour of the proton structure function F5. As
we have seen in the previous section, the same result is obtained in the leading-
and next-to-leading BFKL approach.

The gluon distribution increase cannot continue indefinitely with decreasing
z. If the density of gluons becomes too large anihilation or recombination of
gluons become important, taming the strong increase. This effect is called
parton saturation. A simple geometric estimation shows when these effects may
become significant [40]. In a frame in which the proton momentum is large,
zg(z, Q?) gives the number of gluons per unit of rapidity of transverse size of
the order of 1/@Q. The transverse area occupied by gluons is given by the gluon-
gluon cross section oy, ~ as(Q?)/Q? times the number of gluons. If this area
is comparable to transverse proton size,

as(QZ)
QQ

the gluons in the proton overlap and recombination occurs [39].

Condition (2.99) defines critical line (or better transition region) in the
(z, Q?)-plane where parton saturation is important, see Fig. 2.10. With this
line, the saturation scale Q4(z) is also defined. The saturation scale increases
with decreasing z, thus we expect that for small enough z, the region around
the critical line corresponds to semi-hard QCD when «; is small and the par-
tonic system is dense. Below the critical line the linear evolution equations
hold, above this line recombination effects cannot be neglected and the evolu-
tion equations obtain non-linear modifications, called shadowing or screening
corrections. Much above the critical line the approach based on pQCD breaks
down. Thus, with decreasing = and fixed Q?, the following transition is studied:

zg(z,Q*) ~ nR?, (2.99)

perturbative QCD —  high density QCD —  nonperturbative QC'D

Gribov, Levin and Ryskin found the following approximate modification of
the DGLAP evolution equation for the gluon distribution in the DLLA [39],

0% zg(z, Q? _ a2
aln(l/gg)ga(ln(Qg/Az) = @, zg(z,Q%) - 202 [z9(z, Q)]

(2.100)
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Figure 2.10: Parton distributions and critical line .

Notice the factor 1/Q? which in general suppresses the nonlinear term. The
nonlinearity, however, becomes important close to the critical line where the
ratio between the nonlinear and linear terms is of the order of oz, With such
a modification, the gluon distribution saturates with decreasing z, and so does
the structure function. A more refined analysis of Mueller and Qiu [40] extends
the GLR result by including nonlinear modifications for the DGLAP equations
for the sea quark distributions.

The GLR equation effectively resums ‘fan’ diagrams where one gluon ladder,
corresponding to QCD pomeron in the DLLA, splits into two gluon ladders. The
nonlinear term in (2.100) describes the basic one-to-two ladder splitting. In fact,
the nonlinear term contains the two-gluon distribution G2, approximated by
the square of the gluon distribution [40]

GO(r,2,Q*, Q%) = — [0, Q)] (2.101)
where R is related to the correlation length between gluons from different lad-
ders. If the two ladders couple to different quarks, the proton size is relevant,
and R ~ 5 GeV~'. If the ladders couple to the same quark, the constituent
quark radius R ~ 2 GeV ! is more appropriate [43]. In this case, the strength
of the nonlinear term in eq. (2.100) is significantly bigger.

The GLR equation generated a lot of interest [40]-[53]. Phenomenological
studies were concentrated on estimation of the numerical significance of the
nonlinear corrections [41, 42, 45], especially for the DIS experiments at HERA
[43, 44, 47]. The analysis performed with the help of the nonlinear evolution
equations of Mueller and Qiu showed that the effect of nonlinearity may be
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hidden in the initial distributions for the linear DGLAP evolution equations, at
least for not too small Q% (> 2 GeV?) [49]. On the theoretical side, the study
of the four-gluon operator revealed that the evolution of the four gluon state
in the DLLA is not simply the product of two independent gluon ladders, but
proceeds through the pairwise interactions of all four gluon lines [52]. The effect
is not large but in order to estimate to what extent the GLR equation is a good
approximation, more complicated n-gluon operators should be analyzed [50, 51].
The corresponding equations for them form the so-called BKP hierarchy.

A systematic program to study such operators beyond the DLLA, with
the aim to find unitary description of DIS, was formulated by Bartels in [50]
and developed in [52, 53]. The idea is to identify and resum a minimal set of
nonleading corrections to the leading BFKL summation which leads to a unitary
amplitude. This set comprises contributions with n gluons in the ¢-channel and
in order to fulfil unitarity conditions in all subchannels any n is allowed. The
program was pursued up to n = 6. An interesting pattern, based on gluon
reggeization and conformal symmetry, was revealed which gives hope that the
whole set of unitarity corrections to the BFKL equation could be formulated
as an effective conformal field theory in 241 dimensions [53]. Lipatov with
his collaborators were also trying to construct an effective field theory for high
energy QCD [54]. Independently, the problem of unitarization was studied in
the dipole picture of Mueller in [56, 57] and in [58]. A similar approach was
presented by Levin with coworkers [59]. Unitarization has also been studied
using renormalization group methods [60].

A different approach to unitary generalization of the BFKL equation was
proposed by Balitsky [61]. By using the operator product expansion for high
energy scattering in QCD, he derived an infinite set (hierarchy) of coupled
equations for n-point Wilson-line operators. Recently, Weigert managed to
simplify the form of these equations by writing them as a functional evolution
equation for the generating functional of the Wilson-line operators [62]. The
connection between the effective theory for the Colour Glass Condensate [63]
and the evolution equation found by Weigert has been established in [64].

The Balitsky’s equations decouple in the large N, limit. In this limit, the
equation for the 2-point function was independently derived by Kovchegov [66]
in the dipole picture. The equation generalizes the BFKL equation by including
a quadratic term, and reduces to the GLR equation in the DLA. The properties
of this equation were investigated in [66, 66, 68], supporting the picture of
parton saturation. The equation introduces an internal saturation scale Q ()
below which the nonlinear effects lead to saturation of the gluon density.

The current status of the theoretical investigations of unitarization sug-
gests further studies in order to obtain results which could be directly ap-
plied to the description of high energy DIS. In Chapter 3 we describe a semi-
phenomenological approach to unitarization where we propose an effective pa-
rameterization of the DIS interactions containing essential features of parton
saturation, in particular the saturation scale. As the main result of this analy-
sis, the idea of saturation turned out to be very successful in the description of
the data from HERA.
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Figure 2.11: Acceptance region at HERA. Additional constraint comes from the
angular cut on measured scattered electron. The mazimal Q? ~ 10° GeV?2.

2.4.5 Small z limit at HERA

An excellent review of experimental results obtained at HERA is presented in
[69]. Here we briefly describe the small z results. At this collider, 27 GeV
electrons are brought into collision with 820 GeV protons. Due to the large
center-of-mass energy /s = 300 GeV, the range in the Bjorken variable z is
extended by three orders of magnitude from 1072 for fixed target experiments
down to 107° at HERA (for Q® = 1 GeV?). A part of the kinematic range of
HERA in the (z, Q?)-plane is shown in Fig. 2.11.

The general situation concerning the applicability of pQCD techniques to
the description of DIS processes is shown in Fig. 2.10. The DGLAP equations
evolve a known proton structure at a scale Q% up to a large Q2 at moderate
values of z by the summation of strongly ordered in kr parton emissions. At
small £ and moderate %, the BFKL equation evolves to smaller values of z,
summing strongly ordered in rapidity gluon emissions. The two equations have
a common limit (DLLA) at high Q? and small z. At very small z, satura-
tion effects come into the game, restoring unitarity through nonlinear evolution
equations (e.g. the GLR equation). From this perspective, the main problem
at HERA is how to locate the general scheme from Fig. 2.10 in Fig. 2.11. In
particular, the following questions have been addressed.

1. For how low z is the DGLAP summation still a viable approximation?
2. Are the values of z small enough for the BFKL approach to be applied?

3. Has the region of parton saturation already been reached?



40 Chapter 2. Basics

These problems are intimately connected to the interplay between pertur-
bative and nonperturbative aspects of QCD. Thus, the studies at HERA are
not simple tests of perturbative QCD but, by pushing perturbative techniques
to the limit of applicability, they extend our knowledge about nonperturbative
structure of the proton and eventually about confinement.

A. BFKL searches

In comparison to the fixed target experiments, the first most striking result
at HERA is the strong rise of the proton structure function F, ~ 7=M@?)
with decreasing * < 1072 at fixed Q?, see Fig. 3.6. The measured values
of X\ are much bigger than for the soft pomeron exchange [70]. The strong
rise in z is predicted by the BFKL summation, and the question arises if the
observed behaviour is a genuine signature of this approach. The analyses based
on the BFKL equation and k| -factorization are successful in the explanation
of Fy [71]. A particular attention in these analyses was paid to the infrared
region of small transverse momenta since the integration in (2.92) is carried
over all values of [. In the most elaborate analysis [72], a unified description
is constructed which incorporates both the BFKL and DGLAP resummations
and takes into account a significant part of the next-to-leading corrections to
the BFKL equation. Other unified approaches like CCFM scheme [73], which
includes coherence effects in gluon emission, were also extensively studied [74].

However, the standard method based on the fit of initial distributions for
the DGLAP evolution equations is also successful in the description of F5. The
reason is explained by the strong rise of the gluon distribution in the DLLA,
see eq. (2.98), which induces a similar behaviour of F». Based on the double-
logarithmic asymptotics, a scaling low for Fy was proposed [75]. The relation
between the BFKL and DGLAP approaches was extensively studied in [76]. The
practical conclusion drawn from these studies was that in the kinematic range
of HERA, the inclusive measurement of F5 is not able to discriminate between
the two approaches. For this purpose, exclusive processes which directly probe
the kinematic structure of gluon emission would be more appropriate.

The processes that have been suggested are shown in Fig. 2.12. In the
forward jet production in DIS at small z [77], see Fig. 2.12(a), the jet transverse
momentum k%j ~ (Q? in order to minimize the DGLAP evolution and the BFKL
diffusion into the region of small transverse momenta of the gluons in the ladder.
The longitudinal momentum of the jet z; > x to enhance the role of the BFKL
summation and isolate the (z/z;)~* behaviour. In such kinematics the jet is
produced close to the proton remnants making the measurement a challenge.
The measurement was performed, however, and the experimental results favour
the descriptions with non-ordered in k7 gluon emissions [78, 79].

A hadronic variant of this process is shown in Fig. 2.12(c) where two hard
jets in hadron-hadron collision are strongly separated in rapidity. If the BFKL
mechanism populating the rapidity interval Ay with no ordered in kr gluons
is used, the cross section is proportional to exp (A Ay) [80]. This idea is not
feasible, however, at fixed energy colliders. Instead, it is better to look at the
angular correlation of the dijets which at leading (fixed) order are back-to-
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Figure 2.12: BFKL footprints

back, but gluon radiation introduces decorrelation [81]. In DIS a similar effect
is observed in the process shown in Fig. 2.12(d) [82]. The first experimental
results were reported in [83].

Due to the relaxation of strong ordering of the gluon k7’s in the BFKL
approach, more transverse energy E7 should be emitted between the current
jet and the proton remnants than would result from the DGLAP approach [84],
especially in the central and forward region, see Fig. 2.12(b). Such an effect
was indeed observed at HERA [78, 85]. The comparison of the predictions
with the data, however, is plagued by hadronization effects. The BFKL-based
calculation [84] accounts for Ep at the partonic level, assuming an additional
constant contribution due to hadronization. Other models, formulated with
the help of Monte Carlo techniques, include hadronization and after some fine-
tunning are able to describe the observed Er.

In conclusion, although none of these processes can be treated as proof of
BFKL effects, the measurements show that higher order QCD effects repre-
sented by BFKL (or CCFM) configuration for gluon emission are important in
the data description.

B. DIS diffraction

Kinematically, small 2 opens the possibility to observe DIS events with large
rapidity gap in the final state between the photon and the proton fragmenta-
tion regions. In fact, in most cases the scattered proton stays intact losing
only a small fraction of its initial energy, see Fig. 2.13. In the pQCD approach
based on DGLAP emissions, the probability of such processes are exponentially
suppressed due to the fragmentation process driven by parton radiation. How-
ever, the observed fraction of these events in DIS at HERA is of the order of
10%, with the distribution fairly independent of Q? and z [86, 87]. This is a
second striking result in the small z region at HERA. Large rapidity gap is a
characteristic feature of diffractive processes in which the pomeron exchange is
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Figure 2.13: DIS diffraction.

responsible for the scattered proton being intact. With this interpretation, the
natural question is whether the BFKL pomeron is responsible for DIS diffrac-
tion.

The most compelling picture of diffraction is obtained in the proton rest
frame. In this frame, the virtual photon dissociates into a ¢q pair long before
the interaction with the proton. Then the pair is elastically scattered forming
diffractive system'? with the invariant mass M. The configurations which dom-
inate diffractive cross section are the ones with large (hadronic) transverse sizes
of the ¢q pair (aligned jet configuration). Small (perturbative) transverse sizes,
giving e.g. diffractively produced large pr jets, are not precluded but are sup-
pressed as higher twist. A significant part of the dominant contribution is given
by intermediate (semi-hard) sizes. This region of the transverse sizes is bound
to effects which are at the border between perturbative and nonperturbative
phases of QCD. In particular, by suppressing pure perturbative component,
DIS diffraction is especially sensitive to parton saturation since a large part of
unitarization corrections contributes to diffractive dissociation. Of course, by
studying exclusive diffractive processes like high-pr jet or J/1 vector meson
production, one can isolate the perturbative component, and suppress semi-
hard and large configurations. In this case a single BFKL pomeron exchange
would dominate.

The presented picture is confirmed in the studies of diffractive dissociation
based on the BFKL approach [88]. In inclusive diffractive DIS almost the
whole phase space covered by the BFKL evolution is located in the infrared
domain of transverse gluon momenta where pQCD is not applicable. This
finding confirms the dominance of aligned jet configuration. However, in the
diffractive J/v production at large ¢, where small size component dominates,
the BFKL pomeron provides a good description [89].

The observed features of DIS diffraction are intimately related to the prob-
lem of unitarization corrections (with the intuitive picture of parton saturation).
In the following presentation we explore this problem in detail. The main idea
behind the presentation is that unitarization effects are already important in

12The system can be generalized to qg + n gluon final state.
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the HERA kinematic range. In particular, we suggest that the transition region
or critical line from Fig. 2.10 is located at Q2 = 1 — 2 GeV? and = ~ 1074
Thus for inclusive DIS, saturation effects manifest themselves in the transition
of Fy to low Q2 values. Since @, is in the perturbative region, the onset of
saturation can be described by means of perturbative QCD. In Chapter 3 we
present details of the unitary description of inclusive DIS at small x.

In diffractive DIS, saturation is crucial even for higher values of Q?, due to
suppression of the perturbative component. The constant ratio of the DIS cross
sections oyifr/01 as a function of = and (Q)? is a direct manifestation of this
effect. Using the parameterization of the y*p interactions found in the inclusive
data analysis, we obtain a good description of diffractive data. This and related
issues on DIS diffraction are discussed in Chapter 4.



Chapter 3

Inclusive DIS at small 2

In this chapter we present the description of inclusive deep inelastic scatter-
ing at small z, based on the analysis [94]. We start from presenting the kp-
factorization formulae for the y*p cross sections (2.92). We switch then to the
dipole representation in which a simple physical interpretation of the scattering
exists in the proton rest frame. In this interpretation, the virtual photon splits
into a qq dipole long before the interaction with the proton takes place. The
dipole-proton interaction is parameterized in the way which leads to unitarity
by using the idea of parton saturation. In particular, an internal scale related
to a dense partonic system in the proton is introduced. We discuss qualita-
tively the results of such a model of the interaction, emphasizing the transition
to low Q? region of DIS. The other aspects like the photoproduction limit and
heavy quark production are also analyzed. The presented model predicts a new
scaling of the v*p cross sections at low values of z, confirmed by the analysis
of the existing data [98]. More formal aspects of the description are discussed
in the section on the twist expansion. This problem could be studied in more
detail, and interesting results on the cancellation of the transverse and longi-
tudinal twist-4 components of the proton structure function F, are presented,
following [94, 99]. We finish with the discussion of the relation between the
dipole formulation and the conventional DGLAP description.

3.1 Small z cross sections

The cross section for the v*p scattering from transverse and longitudinal polar-
ized photons are computed from the imaginary part of the forward Compton
scattering amplitude in the high energy limit, see Fig. 2.9 with k replaced by 1.
The virtual photon splits into a quark-antiquark pair that interacts elastically
with the proton through the exchange of two gluons in the colour singlet state.
This interaction is described by the unintegrated gluon distribution f(z,1?),
which introduces the dependence on energy of the y*p system. Strictly speak-
ing, if only two perturbative gluons are exchanged which directly couple to
quarks in the proton, the process is energy independent and f(z,1?) = fo(I?).
If two reggeized gluons interact with themselves, forming the compound sys-
tem (hard pomeron), f(z,[?) is a solution of the BFKL equation (2.94). The

44
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interaction can also involve many gluon exchanges, like in the semiclassical ap-
proximation [91] in which the basic k| -factorization structure (2.92) is retained.
For the transverse photons we have [90]

= Zom N2 ot [ax [
UT—ﬂfef l4a5 z, Oz

k k+1 \? 1 1 2
{[22”1‘2)2] \o DT} " {ow  DweEn) } (3

where m is a mass of the quark of flavour f to which the virtual photon couples,

Dk) = K2+ Q° (3.2)

and
Q= 2(1-2)Q* +m?. (3.3)
In the v*p collinear frame, +k are two-dimensional vectors of transverse momen-
tum of the quarks and z, (1—z) are the fractions of the light-cone momentum of
the photon carried by the quarks. The transverse momentum of the exchanged
gluon 1 determines its virtuality, {2 = —12.
The cross section for longitudinally polarized virtual photon takes the form

d?1 !
Oé;m Ze%/l—4 o f(x,1%) /ko/ dz
f 0
1 2

4Q%*2%(1 — 2)? {

g1, =

D(k) D(k+ 1)} (3.4)
The relation between the structure functions Fr 1, and o 1, is given by eq. (2.10).

The photon impact factors, introduced in Section 2.4.3, can be found by
comparison of the above expressions with eq. (2.90) where k is replaced by L
The colour neutrality enforces the conditions <I>T,L(Q2,1 = 0) = 0, important
for the infrared finiteness of the cross sections.

In the following we present an effective parameterization of the interactions
between the gg pair and the proton, leading to unitary cross sections. The pa-
rameterization contains essential features of parton saturation. The discussion
will be presented in a dipole representation which is particularly suitable for a
discussion of unitarity issues.

3.1.1 Dipole representation

The dipole representation of the inclusive cross sections is obtained after sub-
stitution relations (B.1) and (B.3) from Appendix B into (3.1) and (3.4), and
integration over k. In this representation the transverse quark momentum k is
traded for the Fourier conjugate variable, the ¢ transverse separation r. The
crucial element of the calculation is the observation that the k-integration gives
the delta function 42 (r; —ry) which allows to perform one of the two integrations
OVET I'1 2 .
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Yy 1z Yy

Figure 3.1: Schematic representation of the basic factorization in inclusive DIS
at small x.

We obtain for the transverse cross section

or = Qem Ze?/d%/ol dz{[z2 + (1 - 2)% GQK%(GT) + mchg(@r)}
f

™

2
[ G an ) (1= (1= e, (3.5

and similarly for the longitudinal cross section

1
o= S S [ [ aQ 202 K@
7 0

™

2
x / % asf(z,1%) (1—e ™) (1-e7), (3.6)

were Ko are the Bessel-Mc Donald functions. Both cross sections can be
written in the following compact form [90, 36], shown schematically in Fig. 3.1,

1
o (. QY) = /er/O de 3 (W, (s Q)P b)), (37)
f

where the photon wave functions \Ilé’L describe the splitting of the virtual pho-
ton into the gq pair [92],

e, 2, QP = 20 3 {12+ (1= 21 Q@ K@) + miR3 @)}
(3.8)
W2 @) = 2 2 {4 Q221 - 2K @) (3.9

and @Q is defined in eq. (3.3). Formula (3.7) forms the basis of the following
analysis.
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The dipole cross 6(z,r) in eq. (3.7) characterizes the interaction of the ¢q
pair with the proton, and is connected to the unintegrated gluon distribution

flz,12),

o) = o /dl—il g f (2, 12) (1 — ™) (1= ')

3
_ % Ooodl_fasf(x,ﬂ) (1= Jo(ir)) - (3.10)

where in the last equation the angular integration was performed and Jj is the
Bessel function. The two terms in brackets in (3.10) are related to the way
the two exchanged gluons couple to the quarks. 1 comes from the diagrams
with the gluons coupled to the same quark while the exponents exp(+il-r) are
given by the coupling to different quarks, see Fig. 2.9. Notice that due to this
structure the dipole cross section vanishes for » — 0. This phenomenon, called
colour transparency, is a characteristic feature of perturbative QCD.

Formula (3.7) reflects the k| -factorization theorem. The physical interpre-
tation of this theorem is provided in the proton rest frame. The formation time
(called Toffe time [93]) of the gq pair is related to the uncertainty of energy of
the pair, 745 ~ 1/AE. In the small-z limit AE ~ Mp in the proton rest frame,
see e.g. [20]. Thus the formation time 7,4 is much larger than the interaction
time of the pair with the proton, 7;,; ~ 1/Mp,

Tq > Tint - (3.11)

In summary, for a small enough x, the g pair is formed far upstream of the
proton. This process is described by the photon wave function ¥(r, z). Then,
the pair scatters off the proton with the characteristics (r,z) frozen over the
time of the interaction. Consequently, d(z,r) can be interpreted as the cross
section for a scattering of a g pair with transverse size r off the proton.

3.1.2 Approximate relations

The dipole representation (3.7) is particularly suitable for a qualitative analysis
since the physical interpretation is transparent in this representation. In this
section we derive approximate relations which allow to perform such an analysis.
For simplicity we set my = 0.

We start from the cross section (3.7) for transversely polarized photons

o] 1
or ~ / dr2/ dz 22+ (1 — 2)?] 2(1 — 2)Q? K%(\/z(l — z)Q’r) o(z,r).
0 0
(3.12)
Its properties are determined by the behaviour of the Bessel function Kj:

1/z for <1
Ki(z) = (3.13)
V7/2z exp (—x) for x>1.
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Thus the main contribution to o7 comes from the arguments of K; smaller than
1

3
00 1 o
o~ / d7"2/ dz [2* + (1 — 2)?] U(;’T) O[z(1-2)Q**<1], (3.14)
0 0
where the function O(z < 1) equals 1, if z < 1, or 0, otherwise.

If 0 <r <2/Q, the theta function does not impose any restriction on the
values of z. In this case the z-integration factorizes and gives the factor 2/3.
For such a configuration the distribution of z is rather uniform with the mean
value < z >=1/2. This is why we call this configuration symmetric.

A different configuration occurs for large transverse separations r > 2/Q.
Now, the theta function heavily restricts z to small values: z < 1/(Q?r?). The
z-integration is performed before the r-integration, giving the leading result
2/(Q%r?), where the factor 2 arises from the symmetry z <+ (1 — z). In this
configuration, called aligned jet, z = 0 or (1 — z) ~ 0. Thus, one of the quarks
follows the photon direction while the other stays with the proton. Notice that
such a configuration occurs for large values of the transverse separation, probing
nonperturbative region.

Summarizing, we obtain the following approximate form

4/Q* gp2 o dr? 1
~ — 0 — 0 3.15
or \/0 7"2 O'(l',’l”)/ + A/QQ 7“2 (Q2T2> O'(QJ,’I") ) ( )

~~

symmetric aligned jet

where we have neglected multiplicative numerical factors, unimportant for the
qualitative analysis. For convenience, we have defined aligned jet configuration
starting from r = 2/@Q when z = 1/2. Thus, we should have in mind that the
aligned jet integral also contains an intermediate region of r. Notice the factor
1/Q?r? which suppresses the integrand for r > 1/Q. Its significance will be
discussed in detail in the following chapters.

A similar analysis' performed for the longitudinal cross section gives

yer o 1}
or, NA dr® Q a(:v,r)l + A/Q2dr Q <Q27"2> o(xz,r) . (3.16)

-~ N "

symmetric aligned jet

In order to find the leading Q? behaviour of the above formulae we have to
provide a form of the dipole cross section. We do this in the next section
specifying a model which takes into account unitarity requirements.

3.2 Saturation model

The saturation model was formulated and compared at length to DIS data
in [94]. Here we describe this model, discussing some details which were not
presented in the original formulation. For related approaches see [96].

!The behaviour Ko(x) ~ log(1/z) for £ < 1 is important in this case.
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Figure 3.2: Dipole cross section for different values of x.

The interaction of the ¢g pair with the proton is described by the dipole
cross section o(xz, r) which is modelled in our analysis. The most crucial element
is the adoption of the z-dependent saturation radius

Ro(z) = — <x>x/2’ (3.17)

Qo \ o

which scales the quark-antiquark separation r in the dipole cross section

5(z,7) = 00 g (r - %) . (3.18)

Qo = 1 GeV in eq. (3.17) sets the scale. The function g in eq. (3.18) is not
completely constrained. Important is, however, the quadratic rise at small 7
and the constant value at large 7. The form which we choose

g(f) = 1 —exp (—7%/4) (3.19)

obeys these conditions and turns out to be very successful in the data descrip-
tion. In our analysis we fit the three parameters of the model o, A\ and xzg
to all available inclusive DIS data with x < 0.01. For a detailed fit descrip-
tion see [94]; here we only quote the values of these parameters for orientation:
09 =23 mb, A =0.29 and 2o = 3 - 10~* in the fit without the charm contribu-
tion. We additionally assumed a common mass of 140 MeV for the three light
flavour quarks, which leads to a reasonable prediction in the photoproduction
region, see section 3.2.2.

The main assumption about the form (3.19) concerns saturation property
of the dipole cross section. For # — oo we have ¢ — 1 so that 6 — 0. The fact
that the dipole cross section is limited by the energy independent cross section
o may be regarded as a unitarity bound. It leads to the behaviour of the total
cross section, 0,+, ~ log(1/x), which obeys the unitarity condition (2.97). In
the opposite limit, when # — 0, the function g ~ #2 and the dipole cross section
has the pQCD property of colour transparency, discussed in Section 3.1.1.
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The saturation radius Ry(z) distinguishes between the regions of colour
transparency and saturation for the dipole cross section. The transition between
them is z-dependent, and occurs for smaller dipole sizes r as x — 0, see Fig. 3.2.
This is an essential feature of the model which agrees with the picture of parton
saturation. In particular, Rg(z) can be related to the saturation scale Qg(z) ~
1/Ro(z), discussed in Section 2.4.4. For the dipoles with the sizes below Ry,
the standard single ladder exchange dominates, close to Ry multiple interactions
(saturation effects) become important while for » > R, nonperturbative effects
dominate. This picture has been qualitatively confirmed by the QCD analysis
with the help of nonlinear evolution equations [66], done after the presented
model was proposed, see also [55].

It is instructive to contrast (3.18) with the dipole cross section obtained from
the BFKL equation. Neglecting the exponential in (2.86) and using relation
(3.10), we find for small r

o(z,r) ~ g @2y (3.20)

The linear increase in r is finally tamed, but nothing prevents & from violating
unitarity due to the power-like rise in  when x — 0. We solve this problem by
the z-dependent transition to saturation.

3.2.1 Qualitative analysis

Now, we are ready now to conclude our qualitative analysis based on eqgs. (3.15)
and (3.16). In order to obtain the leading Q2 behaviour, we approximate the
dipole cross section (3.18) by

oor?/AR3(x) for r <2Ry(x)
o(z,r) = (3.21)
o0 for r>2Ry(z).

This form contains all essential features of the exact formula for the leading ?
analysis.

In addition to the scale Ry, which we interpret as the mean distance in the
transverse plane between partons in the proton, there is another scale 1/Q, the
characteristic size of the ¢ pair. The Q?-behaviour of or,;, depends on the
relation between the two scales.

If the characteristic size of the ¢¢ pair is much smaller than the mean dis-
tance between partons,

1
— < Ry(z), (3.22)
Q
the transverse cross section (3.15) becomes
4/Q? 4R3 oo
/ dr? (o r? n / dr? 1 o0 12 n / dr? 1
or ~ — | = — | = — — | == ]o0o0.
T r? \ 4R? r2 \ Q?%r? 4R2 r2 \ Q?%r2 0
symmetric aligned jet alig;erd jet
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Figure 3.3: The distribution dor/dr as a function of the dipole size r (solid
lines) for two values of Q* and W = 245 GeV. The dipole cross section (3.18)

is shown as the dotted lines. The r-azis is in units of 2Ry (z) = 0.37 fm for (a),
and 2Ry (z) = 0.26 fm for (b).

After computing the relevant integrals, we obtain scaling behaviour of the struc-
ture function Fr ~ Q? o7 with logarithmic violation

00 a0 a0

~ 1 2R2 — 3.23
SN—— N d SN——
r<2/Q 2/Q<r<2Rg r>2Rg

where we have suppressed similar numerical coefficients (of the order of aep,/7)
for each contribution?.

Notice that both symmetric and aligned jet configurations contribute to
the leading twist result. The intermediate contribution, 2/Q < r < 2Ry, is
especially enhanced due to the large logarithm. An important contribution
comes also from the region r > 2Ry which is dominated by nonperturbative sizes
with a large hadronic cross section og. The smallness of the suppression factor
1/Q%r?%, however, compensates this effect leading to the scaling contribution.
This is a realization of the observation made by Bjorken and Kogut in [97].
The qualitative results are illustrated in Fig. 3.3a, where dop/dr as a function
of r, computed from (3.7), is shown by the solid lines. The dipole cross section
(3.18) is plotted as the dotted lines.

The presented analysis of o provides an additional motivation for the
power-like form of Ry(z). In such a case

Fr ~ 27, (3.24)

which reflects the small-z increase of the DIS cross section, similar to that
obtained from the BFKL equation. The precise value of X is not predicted in
our approach but it is fitted to the data. Thus, it can phenomenologically take
into account the next-to-leading logarithmic corrections to the BFKL equation
which are known to be important for the value of .

2This analysis shows that 2/Q and 2R, are better characteristic scales.
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The opposite relation, valid when the gg pair size is much larger than the
mean distance between partons,

% > Ro(z), (3.25)

leads to a different behaviour from the point of view of the leading powers of
Q2. The transverse cross section (3.15) takes now the form

(o N/4R(2)d—r2 007.2 + /4/Q2d—7420- + /oo d—’rQ ! (o
T 0 7'2 4R% 4R3 7'2 0 4/Q2 7"2 Q2’I"2 0

N / . J/
-~

symmetric symmetric aligned jet

which leads to

1
~ + 1 —— + . 3.26
or o9 0o log <Q2R%> o0 (3.26)
r<2Rg r>2/Q
2R0<7‘<2/Q

Notice that even the region of small r, where the dipole cross section features
colour transparency, leads to o ~ 9. The energy dependence of o7 is also
different, now it comes through the logarithmic term with the z-dependent R.
Thus we expect a smooth change from the behaviour given by (3.24) to a milder
dependence

Fr ~ Q%0¢ log(1/z), (3.27)

being in agreement with the unitarity bound (2.97).

The discussed case is illustrated in Fig. 3.3b by showing dor/dr as a function
of r. Notice that dor/dr does no longer peak around r = 2/Q), as it does in
the scaling case. In our interpretation, the limit 1/Q > Ry corresponds to
the situation in which the gg pair cannot resolve individual partons, and the
partonic system becomes dense for the probe. As a result, the dipole cross
section becomes large and multiple interactions are important.

The transition from scaling to the saturated behaviour is marked by the
critical line in the (z, Q?)-plane for which the characteristic g size equals the
mean separation between partons,

1 J—
Qs
In reality, the line may become a strip marking the transition region. What
matters is the relation between Qs and z,. Since R3(z) ~ x*, the saturation
scale Qs becomes higher when z; — 0, see Fig. 3.4. Therefore, with decreasing
Bjorken-z one has to go to smaller distances (larger Q?) to resolve a dense
parton structure of the proton. This makes the process of the transition from
scaling to saturated form perturbative and gives a hope that this process can be
described by perturbative QCD. The role of the critical line is discussed from
a different point of view in Section (3.2.5).
The same analysis can be performed for the longitudinal cross section. In
the scaling region, Q2R3 > 1, the leading contribution comes only from the

Ry (zs) . (3.28)
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Figure 3.4: The position of the critical line in the (x,Q?)-plane. The accep-
tance regions of HERA (lower band) and the future TeV (upper band) colliders
are shown. Scaling region, QQR% > 1, is to the right, and saturation region,
Q%R% < 1, to the left of the line.

symmetric in z and intermediate configuration r < 2Ry, see relation (3.16) for
the comparison,

a0 00 a0

Of ~ o 4 O (3.29)
o T @R O
S—— S—— ~——
T‘<2/Q 2/Q<T‘<2R0 r>2Rg

Aligned jet configuration for » > 2Ry is higher twist, suppressed by an ad-
ditional power of Q2. The reason is the factor 22(1 — 2)? in the longitudinal
wave function (3.9) which suppresses the end point (aligned jet) configuration.
Therefore, the longitudinal cross section is dominated by the perturbative con-
tribution. Notice also a lack of a logarithmic enhancement of the leading twist
contribution. Thus o, will be significantly smaller than op, see (3.23) for the
comparison. In the region, Q?R2 < 1, close to the critical line, we have

op ~ 0. (3.30)

The result of the comparison of the saturation model with data for o+, =
or + o, as a function of Q? for fixed energy W of the y*p system is shown
in Fig. 3.5. The plot also illustrates the effect of a light quark mass on the
results. It should be mentioned that at HERA the density of partons at the
saturation scale Q? ~ 1-2 GeV? is not particularly high. For this purpose the
next generation TeV colliders would be better (see Fig. 3.4). For the saturation
scale, however, the size of the virtual probe (~ 0.3fm) is large enough to see
blackness of the proton, most probably due to the size of the constituent quark
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Figure 3.5: The v*p cross section for various energies. The solid lines show
the fit results with a light quark mass my; = 140 MeV. The dotted lines show
the same cross sections with my = 0. The line across the curves indicates the
position of the critical line.

structure. In Fig. 3.6 we show the structure function F5 plotted as a function
of z for different values of Q2. Notice the change of the slope in z with Q? and
good agreement between the data and the results of the saturation model (solid
lines).

In summary, the saturation model naturally explains the transition from
scaling to saturation in the DIS cross section measured in the experiments at
HERA. This description is related to the concepts of a dense partonic system
and the critical line, which are closely related to unitarization of the DIS cross
sections at small z.

3.2.2 Small ? limit

It is interesting to consider a formal limit Q? — 0 in the saturation model.
The analyzed cross sections are divergent in this limit if m; = 0. However, if
a non-zero quark mass is assumed the formal limit can be found. Performing
the analysis similar to that presented in the previous section, we obtain the
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Figure 3.6: Fy as a function of x for different Q? values. The solid lines are
results of the saturation model. The data are from the H1 and ZEUS collabora-

tions.

following result, valid when m?e > Q% =0,

1
~ | _— 3.31
or 0o 1log (m%R%(m)) ( )
2
o ~ o0y Q—Q, (3.32)
my

where we additionally modify the Bjorken-z formula to allow for the photopro-

duction limit ) )

Q7 + 4m3
As expected, the longitudinal cross section vanishes when Q2 = 0. We also see
that mj plays a crucial role for the value of the transverse cross sections. In
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Figure 3.7: The effective pomeron intercept ap in osp ~ (W?2)er—1 g5 a func-
tion of Q>. The three curves illustrate different methods of calculation, see

Ref. [94] for more details.

our analysis we set m; = 140 MeV to obtain good agreement with the HERA
photoproduction data. For Q? > m;, the quark mass does not play a significant
role.

From eqs. (3.31)-(3.33) we see that for photoproduction the energy be-
haviour is given by

Tryip ~ log(W?). (3.34)

This should be contrasted to the energy behaviour found in the DIS with Q? >>
1/R2(x), see eq. (3.24),
Tysp ~ (W) (3.35)

These two extreme cases show a drastic change in the energy dependence with
the change of Q2. Tt appears that for each fixed value of 2, including photopro-
duction region, we can effectively parameterize the energy dependence through
the power-like behaviour: oy, ~ (W2)2r(@)1 see [94] for more details. The
change with Q? of the power ap(Q?) is shown in Fig. 3.7. Interestingly, ap
interpolates between the soft and hard pomeron intercept values for small and
large values of Q?, respectively.

We should warn the reader that the results presented in this subsection
should only be interpreted as an observation about the effective parameteriza-
tion which can be extended down to photoproduction region. We do not claim
that there is a perturbative way to access that region. As emphasized by many
studies, at some low values of Q? the chiral symmetry breaking effects come
into play. A similar effect appears in the presented parameterization as a de-
pendence on quark mass, which is yet another parameter to be tuned. Having
Q? even lower, confinement effects are dominant and we can no longer talk of
quarks and gluons but rather about mesons and baryons.
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3.2.3 Inclusive charm production

In formula (3.7) which we use for the description of inclusive DIS at small
the summation is performed over quark flavours, including the charm quark
contribution. Different flavours are distinguished by a quark mass and electric
charge in the photon wave function. The dipole cross section has the same form
for each flavour, with the modification (3.33) of the Bjorken-z. When the fit
to DIS data on Fs is done, the charm contribution will result as a prediction
of the model for the inclusive charm production which can be compared with
data.

In order to understand the charm production we perform the qualitative
analysis similar to that in Section 3.2.1. Since we cannot neglect the charm
mass, m. ~ 1.5 GeV, our starting formula (3.14) now takes the following form

cc © o ! 2 27 0(z,1) 2 2y,.2
of ~ /0 dr /0 dz [2° 4+ (1 — 2)7] = O [(2(1 —2)Q* +m)r* < ;]3,6
, (3.36)

plus the term proportional to m7, coming from the transverse wave function
(3.8), which leads to the same features as the leading term presented above.

As before, we want to perform first the integration over z. In this case
we solve the quadratic relation in z imposed by the theta function. If r <
2/4/Q? + 4m? there is no restriction on the z-integration and we obtain sym-
metric configuration. For 2/1/Q? + 4m?2 < r < 1/m, aligned jet configuration
is enforced (z =~ 0,1). In contrast to the massless analysis, the quark mass intro-
duces a cut-off on the maximal size of the c¢ dipole: 74, = 1/m,. Collecting
these results, we find

4/(Q*+4m3) ) 1/mZ )
_ dr= | dr 1 .
o5~ / pe (z,r) + / T <Q2r2> a(z,r), (3.37)
Y _ 4/(Q*+4mg)
sym;:etric

aligned jet

that should be compared to the massless relation (3.15).
In the saturation model, as a result of the fit to data, we have in the entire
HERA kinematic domain
1/m¢ < 2Ry(z) (3.38)

Therefore, inclusive charm production probes mostly the colour transparency
part of the dipole cross section: & = oy r2/4R§. In other words, the charm
quark mass restricts the c¢ dipole size to the perturbative values for which
unitarization effects are not yet important.

The scale given by 4m? leads to a different behaviour of o5¢ as a function
of 2, similar to the already discussed behaviour of the inclusive cross section.
If Q% > 4m?, after substituting the colour transparency form of & into (3.37),

we obtain
o) o)

_l’_
Q*R} = Q*R?
The logarithmic enhancement comes from the aligned jet integral. In the oppo-
site case, when Q? < 4m?2, only the symmetric configuration contributes, and

log(Q?/4m?). (3.39)

oF ~
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Figure 3.8: The v*p cross section (solid lines) from the fit with the charm quark
contribution This contribution is shown separately by the dotted lines.

we find

a0
2R2 "
dmg Rj

o5 ~ (3.40)
These results are illustrated by the dotted lines in Fig. 3.8, showing the charm
contribution 0°® which undergoes the transition around 4m?2 ~ 10 GeV2. Thus,
the transition of 0 to the saturated form is unrelated with the saturation of

the dipole cross section, but is dictated by the relation between the scales Q?
and 4m?2. This is due to the relation (3.38), valid at HERA.

3.2.4 Geometric scaling

Let us recall our basic formula
1
orile @) = [ [ de Y 1005 Q)R 6/ Bola)). (341)
0
f

where the photon wave functions are given by egs. (3.8) and (3.9). We explicitly
indicated the basic scaling property of our model, namely that & depends on x
and r through the dimensionless combination 7# = r/Rg(z). This has profound
consequences for the measured cross section o+, = o7 + 0. If we neglect the
quark mass my in the photon wave functions we can rescale the dipole size
r — 7 in (3.41) such that the integration variables are dimensionless. Thus,
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after the integration o+, becomes a function of only one dimensionless variable:
7= Q*R{(),
2
Oyep(2, Q) = 0y p(T). (3.42)

This fact is explicitly shown in the Mellin representation (3.43) of o+, pre-
sented in the next section. Since our model describes data well, the new scaling
is predicted for real data in a broad range of Q? [98]. The nonzero light quark
mass, introduced to extrapolate the model down to photoproduction, does not
lead to a significant breaking of the scaling. So does the charm contribution.
In Fig. 3.9, reproduced from [98], we illustrate the scaling (3.42) by showing
0,+p as a function of 7, for the small-z data with z < 0.01.

In its essence, the new scaling is a manifestation of the presence of the inter-
nal saturation scale characterizing dense partonic systems, Qs(z) ~ 1/Rgy(x).
This scale emerges from a pioneering work of [39], which was subsequently an-
alyzed and generalized in [56]- [67]. In the analysis [45], and more recently in
[66], the scaling properties similar to those postulated in (3.18) were found.
An independent formulation [63] of the small z processes, gives the same over-
all picture with the saturation scale. At a deeper level, the geometric scaling
for small-x processes may reflect self similarity or conformal symmetry of the
underlying dynamics. More detailed studies are under way, see [61]-[67].
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3.2.5 Twist expansion

Following the approach in [94] we express the v*p cross section in the saturation
model in the Mellin representation which is particularly suitable for the analysis
of the twist expansion. In the massless limit we find [94]

o 4 1 1/24iv N
or,. = 00/ 7 <7> HT,L(V)a (3-43)

oo 21 \ Q2R%(z)
where
- 30em — (9/4+ 12 7 \2 (shmv .
Hr(v) = 2 ( ) T'(3/2 44
() 16 ° < 1402 chrv v (8/2+iv), (3.44)

Hy(v) = 30“8”” 2 (1/4+”2> (4 )2 (Sh””> T(3/2+iv)  (3.45)

1402 chmv TV

and we denote e? =3, e%.

Using this representation, we construct the expansion in powers of 1/Q?
(twist expansion) or Q2. The qualitative results of Section 3.2.1 are confirmed
in such an analysis.

The cross section (3.43) is given by the Mellin-Barnes type integral which
exists for any value of the parameter 1/Q%R2, except for 0 and oc. In practice,
the integration can be performed numerically or computed in terms of the sum
over residues. A closer look at eq. (3.44) reveals that we deal with multiple
poles in the complex v-plane at

v=4i(2n+1)/2, n=0,1,2.. (3.46)

If the integration contour in (3.43) is closed in the upper half-plane and the
residues of the poles at v = i(2n+1) /2 are computed, we obtain a representation
in terms of positive powers of Q*R2, with an infinite radius of convergence. For
Q%R2 < 1 the first pole v = i/2 gives a reasonable approximation

o) = O o (log(1/QRY) i +7/6) (3.47)
O = Zmig, (3.48)

For Q?R3 > 1 it is more practical to construct an expansion in powers of
1/(Q?R2), by computing the residues at v = —i(2n + 1)/2. It can be proven
that the obtained expansion is only asymptotic. The integration contour cannot
be closed in the lower half-plane because the integral over the lower semi-circle
is divergent for the infinite radius. The scaling contribution is given by the first
pole at v = —i/2

(2) _ C®em —5 00
oy = — e? R (log(Q*R3) + vk + 1/6) , (3.49)
U(L?) — Qem -3 00 (3.50)

e —_—
T Q%R%’
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Figure 3.10: a): The contribution of different twists to the total cross section.
b): The contribution to the longitudinal cross section. The curves are normal-
1zed to the exact results which corresponds to 1 on the perpendicular azxes. The
variable T = Q?R3.

where v &~ 0.5772 is Euler’s constant. The next pole at v = —3i/2 gives the
twist-4 contribution

(4) _ 3 aem = 00

op = Sl e2 —Q4R§ , (3.51)
4 _ 4 am—5 oo 2 2

o = = ;m o2 Q4Rg (log(Q R{) + e + 1/15) . (3.52)

The logarithms which appear in the above formulas are due to multi-pole sin-
gularity structure, e.g. v = —3i/2 is a double pole for op.

Notice that the transverse and longitudinal twist-4 contributions have op-
posite signs and their absolute values are of the same order. Separately, they
are not small in comparison to the twist-2 components. However, the detailed
numerical analysis performed in [99] shows that in the sum o(*) = agfl )+ 024)
they cancel each other in such a way that only a small (negative) addition to
the leading twist-2 result is produced, see Fig. 3.10a. Thus, higher twist con-
tributions to Fy are not large in DIS at small z down to Q*>>1 GeV? (close to
the critical line). A similar effect was found in the QCD analysis of DIS data
at low z, based on the leading twist DGLAP evolution equations [100].

(4)

In contrast, o; ’ alone gives a significant negative correction to the leading

twist contribution U(LQ), especially for Q2R§ ~ 1, see Fig. 3.10b. This result
should be taken into account in an analysis of future experimental results on
the longitudinal structure function.

The critical line plays a very important role in the analysis of twist con-
tributions in DIS at small z. It gives an estimate on the region of validity of
the twist expansion. Comparing (3.49) with (3.47), we see that moving across
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the critical line Q?R3(z) = 1 we change the behaviour from o7 ~ 1/Q? to
orr ~ 0g. For Q?R2(z) < 1 the approximation based on the twist expansion
quickly deteriorates.

3.2.6 Relation to the gluon distribution

We derive the relation between the ordinary gluon distribution g(z, Q%) which
appears in the leading twist description of DIS based on collinear factoriza-
tion, and the unintegrated gluon distribution f(z,@?) introduced by the k-
factorization formula (2.92).

In the double logarithmic approximation, when the summation of the lead-
ing powers of a;log(1/x)log Q% ~ 1 is performed, the following twist-2 result
is obtained from the DGLAP evolution equations in the small-z limit

2
761;21(553 ) = ?(:[—; e zg(z,Q?) . (3.53)
We will find a similar result for the twist-2 component of the structure function
Fy, computed using the kp-factorization formula. By the comparison with
(3.53), the relation between the two gluon distributions can be found.

The Mellin representation of Fy, computed in the kp-factorization scheme is
the basis for our considerations. The computations are similar to those leading
to eq. (3.43), but now we need the result for a general form of the dipole cross
section or the unintegrated gluon distribution, see eq. (3.10). Applying the
method described in [94], we find

Py(z,Q%) = @ [ dv <11/4+3V2>( m )2 (shm)

16 ) o 2« 1402 chrv v
SPE 12 —1/2+4iv
X / l—QOfsf(.’,U,ZQ) (@) . (354)
0

The logarithmic derivative of F, has the additional factor (1/2 — iv) under the
integral

- m 14 02 chmy TV

OFy(z,Q?) 2z [ dv 11/4 + 302 m \2 (shmv
d1n Q2 _E/ < >< )(

) (1/2 — iv)

Q? dI2 12 —1/2+iv < 412 12 —1/2+iv
9 { | et (@) [ et ) (@) ,

where we split the integration over the gluon transverse momentum into the
12 < @Q? and 12 > Q? parts. Twist-2 contribution is found after closing the
integration contour in the lower half-plane for I> < @Q?, and computing the
residue at v = —i/2. Thus, we find

(2) 2 Q% g2
aFQ ($7Q ) — Qs 62 / %f(x’ZQ) .
01n Q2 3 12

(3.55)
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A direct comparison with the DLLA formula (3.53) gives the result we are
looking for
Qg1

row.Q?) = [ i) (3.56)
Relation (3.56 )is valid in the limit of small z and large Q2. Additionally,
it has to be taken with care since the integration over [ is performed in the
nonperturbative region of small 2. Unless we have some model for this region,
the found relation should be interpreted as

Q* g2

09(0.Q") = w9(e, Q) + [ Tt (3.57)

Qo

where the both scales are perturbative and large, and zg(z, Q32) is known, e.g.
from a fit to data.

The renormalization group approach, presented in Section 2.3.1, tells us
that a, in the DLLA formula (3.53) should be evaluated at the scale given by
Q?. On the other hand, the scale for a; in eq. (3.55) is not determined since
the radiative corrections leading to running «;, are beyond the leading log(1/x)
approximation in which this result was derived. Thus, the same scale Q? as for
the DLLA result can only be postulated for a; in eq. (3.55).

We finish our considerations by calculating the twist-2 part of the logarith-
mic slope of Fy in the saturation model. From (3.49), we have

8F2(2)(513aQ2) _ E a0 (3.58)
dlog Q? 473 R3(z) '

and by the comparison with eq. (3.53) we find the following gluon distribution
for large Q?
3 go

200 Q) = ) R (359

The found gluon distribution depends on Q? only through the coupling
constant «s. Thus, the proper DGLAP evolution in the large Q? limit is not
included in the constructed model. This may be improved by modifying the
behaviour of the dipole cross section at r < 2Ry(z). Indeed, approximating
in eq. (3.10) (1 — Jo(Ir)) = (Ir)%/4, which is valid for 12 < 1/r? up to a few
percent, and using eq. (3.56), we find that for small enough r (for an alternative
derivation see [101] and references therein)

2
o(x,r) ~ 3 as(1/r?) r? zg(z, 1/r%), (3.60)

where xg(z, u?) is the gluon distribution which evolves in u? = 1/r? according
to the DGLAP evolution equations. The physics of saturation, however, is not
affected by such a modification at small transverse sizes. Additionally, a better
agreement with the data is obtained for large values of Q2 [102].
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3.3 Transition to low Q? in other approaches

We briefly describe other approaches to the description of the transition to low
Q? of the proton structure function F, which use conceptually different ideas
from ours.

A. Donnachie-Landshoff approach

In this approach [103] F; is postulated in the form dictated by Regge theory,
assuming three contributions given by different Regge trajectories.

Fo(2,Q%) = fo(@) 2™ + f1(@) 2™ + fo(Q*)z™, (3.61)

where the powers ¢; are related to intercepts of the Regge trajectories:
e =a;(0)—1. (3.62)
The values ¢; = 0.08 and €9 = —0.45, which correspond to the soft pomeron and

(p,w, f,a) trajectories, respectively, were fixed. The value ¢y =~ 0.4 was found
from a fit to the small-z data. The form factors f;(Q?) were parameterized in
the following way

2 1+e€g 2\ €0/2
fo(@%) = A <QQQTQ%> (Hg_g) : (3.63)
2 1+€1 9 -1
e = A <Q2QTQ%> (1+Hg_25> , (3.64)
) B Q2 >1-I—62
f(Q7) = A <7Q2+Q% : (3.65)

The small Q? behaviour was constrained by the requirement that F» ~ Q? when
Q? — 0 for fixed W?2. The parameters: Agy_o, Qg_Q, Q25 were found from a fit
to the data in the range of z < 0.07 and Q2 = 0 to 2000 GeV?2.

The soft pomeron form factor f;(Q?) dominates at low 2, whereas at large
Q? > 10 GeV? it falls off as 1/Q. The hard pomeron form factor fo(Q?) slowly
departs from zero at small Q? to rise rapidly as Q% ~ Q¢ for Q® > 10 GeV?. In
this way the soft-hard pomeron transition is enforced by the data. Let us recall
that a similar effect is realized in the saturation model without introducing the
two pomeron concept.

It should be mentioned that in the DL model the strong rise in x is not
tamed, leading to violation of unitarity when x — 0.

B. Badelek-Kwieciniski model

In this model [104] F} is a sum of two contributions which interpolate be-
tween the region of low Q? where F, is well described by the Vector Dominance
Model (VDM) [105], and the region of large values of Q? where the leading twist
formula obtained from the DGLAP fit to the data dominates, see e.g. [100],

Fy(2,Q%) = FYPM(2,Q% + FP"(x,Q?) (3.66)
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and

Q? My oy (W?)
FyPM(z,Q%) = = : (3.67)
i, 2 @ T

PP = —L RS0 4 Q2 3.68

2 (aQ) QQ_I_Qg 2 (7Q +QO)7 ( )

where the sum over vector meson contributions is performed in which My is

mass of the vector meson V. The vector meson—proton cross section oy (W?2)

is determined from the 7p and Kp total cross sections using the additive quark

model and 7‘2/ is found from the leptonic width of the vector meson V. The
variable Z in F2AS is given by

Q°+Qf
W2+Q* - M2+Q3°

(3.69)

Tr =

where the parameter Q2 = 1.2 — 1.5 GeV'2. This is the only parameter in the
model, except those fixed independently in the VDM and DGLAP analyses. A
different realization of the same idea can be found in [106]. Similarly to the DL
approach, the unitarity condition (2.97) is violated in this model.

There exist several other effective parameterizations of F, which interpolate
between the small and large Q? behaviour of the proton structure function. An
extensive discussion of them is given in [107]. More recent parameterizations can
be found in [108]. The most comprehensive overview of the nucleon structure
functions, both from the theoretical and experimental side, is given in [109].
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Diffractive DIS

A significant fraction (around 10%) of deep inelastic scattering events observed
at HERA at small z are diffractive events [86, 87]. For these events the incom-
ing proton stays intact despite inelasticity of the reaction, losing only a small
fraction zp of its initial momentum. The final state proton is well separated in
rapidity from the rest of the system which looks like a typical DIS event. Thus
the large rapidity gap is a characteristic feature of diffractive DIS. In partonic
language, a colour neutral cluster of partons fragments independently of the
scattered proton. The ratio of the diffractive to all DIS events is to a good
approximation constant as a function of Bjorken-z and Q2. The latter condi-
tion suggests the leading twist nature of DIS diffraction. For recent reviews on
diffraction see [110, 111, 112].

Historically, the first description of diffractive DIS was provided in terms
of the Ingelman-Schlein (IS) model [113]. The model is based on Regge the-
ory in which diffractive processes are due to the exchange of a soft pomeron,
see Section 2.4.1. In other words, the proton stays intact due to the exchange
with vacuum numbers. The novelty of the IS model lies in the assumption
that the pomeron has a partonic structure as do real hadrons. The diffractive
structure function factorizes into a “pomeron flux” and a pomeron structure
function. The latter function is written in terms of the pomeron parton distri-
butions, determined from a fit to data with the help of the standard DGLAP
evolution equations [86, 87, 114, 115, 116]. In the alternative method, the phe-
nomenology of soft hadronic reactions has been used [117, 118, 119]. Despite
conceptual difficulties (the pomeron is not a particle) this idea turned out to
be very useful in the description of the DIS diffractive data, provided a harder
value of the intercept of the pomeron trajectory is assumed. The IS approach
was generalized by considering the exchange of subleading reggeons (and also
pions) [120, 121, 122, 86] to explain the diffractive data collected by the H1
collaboration at HERA. We describe the IS based approach in detail in Section
4.2, following [117, 114, 115, 120, 121, 122].

An alternative approach to diffractive processes in DIS is represented by a
detailed modelling of the diffractive state as well as of the mechanism leading to
diffraction, starting from perturbative QCD. In such an approach the diffractive
state is formed by the Fock components of the light-cone virtual photon wave

66
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function:

y>=[qG> +|qGg> + ... (4.1)

The gq component was considered in [123, 124, 125, 126]. A higher order
contribution represented by the ¢ pair with an additional gluon g emitted was
studied in [127, 128, 129, 130, 95]. The ¢q and ggg components subsequently
interact with the proton through the net colourless exchange. The way in which
this exchange is realized distinguishes between the models. In the simplest
case, the colourless exchange responsible for the rapidity gap is modelled by
two perturbative gluons coupled to the proton with some form factor [131, 132,
88, 89] or to a heavy onium which serves as a model of the proton [133]. Higher
order corrections are included by the BFKL summation of gluon ladders [134]
or using the colour dipole approach [135]. The diffractive processes have also
been described with the help of the interaction with a semiclassical colour field
of the proton [126, 130].

The immediate problem faced in the above modelling is the strong sensitiv-
ity to nonperturbative effects due to the dominance of aligned jet configuration
(to be discussed in Section 4.3.2). Thus, we need a description of the interac-
tions in the soft regime. The model of the dipole cross section based on the
ideas of partonic saturation, presented in the previous chapter, provides such a
description. The parameters of this model were determined from the analysis
of inclusive DIS [94]. Now, it can be directly applied to diffractive DIS without
tuning additional parameters [95]. The main result which we present in Section
4.3, based on the analysis [95], is a very good description of the data. In par-
ticular, the constant ratio og4;s; /0ot is naturally explained. Also harder than
the soft pomeron value of an effective pomeron intercept is predicted in perfect
agreement with the data.

The leading twist nature of DIS diffraction brings the issue of collinear fac-
torization and diffractive parton distributions. By this we mean the consistent
factorization of the diffractive cross sections into a convolution of hard cross
sections and the diffractive parton distributions, see Section 2.3 for the discus-
sion in the inclusive case. The Ingelman—Schlein approach assumes collinear
factorization, imposing an additional assumption, called Regge factorization,
on the zp-dependence of the diffractive parton distributions. The form in 3
is usually fitted to the data. On the other hand, in the perturbative QCD
approach the diffractive parton distributions can be directly computed. In par-
ticular, if the saturation model is used, the Regge factorization results from
this model. Another important aspect, which cannot be addressed in the IS
approach, is the role of higher twist contributions. It appears that diffractive
DIS is an example of the process for which twist-4 (given by the ¢g component
from longitudinal photons) dominates over leading twist in the kinematic range
of small diffractive mass [127, 128]. In Section 4.4 we discuss these issues, based
on the results from [155].
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Figure 4.1: Kinematic invariants in DIS diffraction.

4.1 Diffractive structure functions
We have several dimensional scales in diffractive DIS scattering
e+p = €+p+X, (4.2)

where X is a diffractive system. In addition to these known from inclusive DIS:
Q? and W2, the mass of the diffractive system M?, and the invariant four-
momentum transfer from the proton into the diffractive system, t = (p — p')2,
come into the game, see Fig. 4.1. The following dimensionless variables are
built out of them.

The lost fraction of the incident proton momentum

QP+ M-t

Tp = T (4.3)

In the pomeron model interpretation it is a fraction of the proton momentum
carried by the pomeron. The variable

QQ

G T (4.4

is the Bjorken variable related to the diffractive system M?2. In the pomeron
model of diffraction 8 is a fraction of the pomeron momentum carried by the
struck quark. The ordinary Bjorken variable

x = zpf. (4.5)

In the following we neglect ¢ in the definition of the variables zp and g since
usually |t| < Q2%, M2.

The diffractive structure functions are defined analogous to the inclusive
case. They depend on the four invariant variables (z, Q?, zp,t) and are defined
through the diffractive DIS cross section

d*oP 2ra?,, dFP dFpP
5 = ; [1 +(1- y)Q] 2_ 2 L . (4.6)
dx dQ? dzp dt T Q dzp dt dzp dt
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For simplicity of notation, we introduce the following

D(4) 9 dFy 2
F2 (gj’Q 733113at) = diElpdt(fE’Q ,fE]P,t), (47)
dFpP
F£(4)($,Q2,$P,t) = dil?]PLdt (xaQ27$lPat) 3 (48)

where we explicitly indicate that the diffractive structure functions depend on
four variables. As usual

D(4) _ D) D(4)
F, = FV +F (4.9)
Notice that the introduced diffractive structure functions have dimension GeV ~2
because of the differential d¢ in the definition of the cross section (4.6).
We also define the structure functions integrated over ¢ since they are mea-
sured when the final state proton momentum is not detected. In this case

0
Frp) (z, Q. op) :/ dt FP\ (2, Q% 2p. 1) (4.10)

is dimensionless. The diffractive structure functions are related to the diffractive
photon-proton cross sections

D(4) _ Q* dor,.(v'p = p'X)
A2 ey, dep dt

: (4.11)

where T', . denote the virtual photon polarization.

4.2 The Ingelman—Schlein model

In the Ingelman—Schlein model [113] the diffractive structure function F2(4) is
given by the following factorized form

F{(2,Q%zp.t) = fp(zpt) FE(B,Q2), (4.12)

where we remind that 8 = z/zpp is the analogue of the Bjorken variable. The
physical interpretation of the above factorization, which we call the Regge
factorization, is as follows. The diffractive scattering occurs through the ex-
change of the pomeron with the momentum pp = zp - p, described by the
flux f(zp,t), and a subsequent hard scattering of the virtual photon on the
partonic constituent of the pomeron which carries a fraction 3 of the pomeron
momentum. The latter interaction is characterized by the pomeron structure
function FJ(8,Q?). The structure function (4.12) is schematically shown in
Fig. 4.2.
The pomeron exchange is described by the flux factor

N RESLVA0

67 TP Bp(t), (4.13)

f]p(x]p,t) =
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Figure 4.2: Diffractive structure function in the Ingelman—Schlein model. The
spring-like lines represent the pomeron.

where the pomeron trajectory is assumed to have the “soft” values of the pa-
rameters found in the analysis of hadronic reactions

ap(t) = 1.08 + 0.25GeV ™2 - ¢. (4.14)

It appears that for DIS diffraction the value of the intercept ap(0) has to be
increased to ap(0) ~ 1.13 — 1.20.

Bp(t) describes the pomeron coupling to the proton. Phenomenologically, it
has been established that the pomeron trajectory couples to the proton through
the Dirac elastic form factor [21]

4m? —2.79¢ 1 2
Bp(t) = . 4.1
r(?) Am2 —t <1—t/0.71> (4.15)

The normalization N = 2/7 in eq. (4.13) follows the Donnachie-Landshoff
convention [136].

The pomeron structure function is expressed through the quark distributions
in the pomeron ¢ (3, Q?) in a full analogy to the proton case

FP(B,Q%) =2 ) e} Baf (B,Q7). (4.16)
f

where f distinguishes different flavours. The factor 2 results from the assump-
tion that the distribution of quarks and antiquarks in the pomeron are identical,

af (8,Q%) = af (8, Q%) (4.17)

for each flavour f, since the pomeron is the vacuum quantum number exchange.

The Q?-dependence of the pomeron parton distributions is governed by the
DGLAP evolution equations, which lead to the logarithmic scaling violation
of the diffractive structure function. We have to allow for the pomeron gluon
distribution ¢ (8, Q%) which is automatically generated by the the evolution
equations from the quark distributions. The initial form in S of the pomeron
parton distributions can be obtained in two different ways. In the first method,
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used in the analysis of DIS data, the initial form is given with the help of several
parameters. Then the parameters are determined from the fit to available data.
This procedure was successfully applied to DIS diffractive data [86, 87, 114, 115,
116]. In the case of the pomeron a different method exists. The initial pomeron
parton distributions can be estimated from soft pomeron phenomenology of
hadronic reactions [117, 118, 119].

In the next section we present an example of such an estimation, following
the analysis [117].

4.2.1 Pomeron parton distributions

At first we shall specify the details of the parton distributions in the pomeron
at the reference scale Q3 = 4 GeV2. At small 8 both the quark and gluon
distributions are assumed to be dominated by the pomeron exchange,

BaF (B, Q3. t)=dl (t) ptr®, (4.18)

B 9" (B,Q3,t) = al (1) g0, (4.19)

The functions affp(t) and al’(t) can be estimated from the factorization of
pomeron couplings [137, 138, 139] :

a}P(t) =r(t) ay, af]P(t) =r(t) a4, (4.20)

where the parameters a; and a, are the pomeron couplings controlling the
normalization of the small z behaviour of the sea quark and gluon distributions
in the proton i.e.

fEQf(HS,Q%) +33q7(517,Q%) = 9 af $1—alp(0)’
29(z,Qf) = ag 27w @, (4.21)

and the function r(t) is
™ Glplplp(t)
t) = —————. 4.22
The coupling Gppp(t) is the triple pomeron coupling (see Fig. 4.3a) and its
magnitude can be estimated from the cross section of the diffractive production
p+p — p+ X in the limit of large mass My of the diffractively produced
system X. We neglected the (weak) ¢ dependence of the function r(¢) and have
estimated its magnitude from the Tevatron data [140] as r(¢) =~ r(0) = 0.089.
The parameters a; were estimated assuming that the sea quark distributions

in the proton can be parameterized as:
2qs (@, QF) +2ds(e,Qf) = 2 ag ' PO (1 —2)7, (4.23)

and fixing the constants a; from the requirement that the average momentum
fraction which corresponds to those distributions is the same as that which
follows from the parameterization of parton distributions in the proton [141].
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a) b)

Figure 4.3: Contribution to diffractive structure function for small 8 (a) and
large B (b). The spring-like lines represent the pomeron.

The momentum sum rule has also been used to fix the parameter a4 i.e. we
assumed

2g(2,Q3) = ag 2" (1 - 2)7, (4.24)

and imposed the condition that the gluons carry 1/2 momentum of the proton.
We extrapolated the pomeron dominated quark and gluon distributions in the
pomeron (see (4.19)) to the region of arbitrary values of 8 by multiplying the
factor ' ~2P () by (1 — B) [138].

We have also included the term proportional to 5(1 — ) in both the quark
and gluon distributions [138]. The normalization of this term in the quark
distributions has been estimated in [136] assuming that it is dominated by the
quark-box diagram with the non-perturbative couplings of pomeron to quarks,
shown in Fig. 4.3b. In this model one gets:

5a"(5.Qh) = 5 (). (4.25)

where C =~ 0.17 [136]. We found that the fairly reasonable description of data
can be achieved provided that the constant C is enhanced by a factor equal to
1.5. We have also assumed that the relative normalization of the quark distri-
butions in the pomeron corresponding to different flavours is the same as that
of the sea quark distributions in the proton [141]. Finally the normalization of
the term proportional to S(1 — ) in the gluon distribution in the pomeron has
been obtained by imposing the momentum sum rule. Following the approxi-
mations discussed above we have neglected the ¢ dependence in those parton
distributions.

As the result of the estimates and extrapolations discussed above, the pa-
rameterization of parton distributions in the pomeron at the reference scale
Q% = 4 GeV? looks as follows:

Bg"(B,QF) = (0218 57" +3.30 B) (1 - p) (4.26)
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for the gluon distribution, and

BaT(5,Q7) = BuT(8,Q5) = 04 (1-0) ST(B)
BsT(B,QF) = 0.2(1-4) ST
Be(B.Q0) = §5T(B), (4.27)

for the quark distributions. The function S (B) is parameterized as below
ST(B) = (0.0528 7% 4 0.801 B) (1 —B) (4.28)

and 6=0.02 [141]. The analysis of the pomeron structure functions based on
different parameterizations of parton distributions in the pomeron has also been
presented in Refs. [139, 118].

The parton distributions defined above were next evolved up to the values
of Q? for which the data exist using the LO DGLAP evolution equations with
A = 0.255 GeV. The results of the comparison with the H1 data is shown in
Fig. 4.5 (solid curves).

From the presented pomeron parton distributions the pomeron structure
function Ff¥ follows. For example, at small 3

FF(8,Q% = Ap(Q*) %, (4.29)

where the coefficient Ap(Q?) , as shown above, is a product of the IPIPIP
coupling and the Q% dependent coupling of the pomeron to the virtual photons,

see Fig. 4.3a. From the presented parameterization Ap = 0.03 for Q> =
4 GeV?Z.

4.2.2 Subleading reggeons

The subleading reggeons can describe the nonpomeron part of the diffractive
scattering which leads to breaking of the Regge factorized form of the diffrac-
tive structure function (4.12). Strictly speaking we cannot call such processes
diffractive since diffraction is usually associated with the leading pomeron ex-
change. However, for simplicity we use the same terminology for the non-
pomeron reggeon exchanges, including processes with fast forward neutron in
the final state which correspond to isospin I = 1 exchange.

Thus we postulate the following extension of the Ingelman—Schlein model
[120]

F2(4)($aQ21$Pat) = fIP(fElPat)FQIP(BaQQ) + ZfR(xlpat)FQR(ﬁaQQ)ﬂ (430)
R

where the additional terms describe reggeon exchanges. Note, that in such an
approach the Regge factorization is broken — F2(4) is no longer a product of two
factors with a particular dependence on kinematical variables like in (4.12). As

. . . Ca(4) —n
a consequence, there is no a simple and universal zp-dependence: F, ™ ~ x5,
The last result is suggested by the H1 Collaboration data in which a different
value of n seems to be predominant for larger values zp (> 0.01) [86].
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Figure 4.4: The reggeon-reggeon-pomeron contribution to diffractive structure
function.

The Regge factorization breaking can be explained by the exchange of sub-
leading reggeons, isoscalar (fy, w) and isovector (as, p). The reggeon flux factors
in (4.30) are parameterized in analogy to the pomeron flux

N 194
frlzp,t) = mx}PQ 20 B2 (1) Inr(t)2, (4.31)

where the function ng(t) is a signature factor:

4 cos?[map(t)/2] for even signature reggeons (fa2,as)

nr(t)* = (4.32)
4 sin®[rag(t)/2] for odd signature reggeons (p,w),

and ag(t) is the reggeon trajectory. Br(t) describes the coupling of the reggeon
to the proton.

We assume that Br(t) = Bg(0) exp(t/2A%) with Ag = 0.65 GeV, as known
from the reggeon phenomenology of hadronic reactions. From the same analysis
we obtain the parameters of the reggeon trajectory

ar(t) = 0.5475 + 1GeV 2 -¢. (4.33)

Moreover, the following relations between the reggeon-proton couplings are
found [120, 121]
B3,(0) > BZ(0) > BZ,(0) ~ B>(0). (4.34)

This result shows that the isovector reggeons (ag,p) can safely be neglected
in the presented analysis. These reggeons are crucial, however, for the diffrac-
tive process with fast forward neutron in the final state, see [121] for detailed
discussion.

The reggeon structure function FJF at small 3, which is relevant for the H1
data analysis, can be found in a similar way as for the pomeron

Ff(B,Q%) = Ag g8, (4.35)



4.2. The Ingelman—Schlein model 75

where now Ap is determined by the triple Regge vertex RRIP (see Fig. 4.4). In
our analysis we introduce the ratio

Ar
Cenh = E, (436)
which is related to the ratio of the “triple-Regge” RRIP and IPIPIP couplings.
It should be much bigger than one, as suggested by the analysis [142] of soft

hadronic interactions. The data from the H1 collaboration [86], presented in

terms of the structure function FQD (3), prefer C,,; ~ 10 in which case reason-
able agreement of our description with the data is obtained for § < 0.4. This is
illustrated in Fig. 4.5, reproduced from [122], where the pure pomeron contri-
bution from the analysis [117] (solid lines) and the effect of the reggeon terms
(dashed lines) is shown.

We have also checked how the QCD evolution of the reggeon structure func-
tion (4.35) influences the results. We found that it was not important, especially
in view of the triple-Regge coupling uncertainties. More details on the sublead-
ing reggeon contribution, as well as on the pion contribution which is relevant
for xp > 0.1, can be found in [120, 121].

The fact that the presented description deteriorates for large values of 3, i.e.
in the region of small diffractive mass, is not accidental. To be more precise,
the description falls significantly below data for 5 > 0.4, which is shown in
the two rightmost columns in Fig. 4.5. A closer inspection reveals that the
only way to cure this problem, within the description based on the Ingelman—
Schlein model, is to assume that the gluon distribution in the pomeron is largely
concentrated at 8 =~ 1 [86, 114, 115]. Our gluon distribution (4.26) is modeled
keeping in mind the situation in the proton, where the gluon distribution is
strongly suppressed for large 5. Thus a suitable modification of the pomeron
gluon distribution would be necessary.

We will not pursue, however, the analysis in this direction since we think
that it does not lead to better understanding of DIS diffraction. Instead, we
change to a description based directly on QCD, in which the diffractive state
is formed by the components of the photon wave function (4.1). In this de-
scription, supplemented by the dipole cross section described in the previous
chapter, all essential features of the Ingelman—Schlein model are present and
naturally explained. In addition, the problem with the description of the re-
gion of large g is cured by careful analysis of the longitudinal virtual photon
contribution. This contribution, found to be concentrated at 8 ~ 1, is formally
higher twist and of course cannot be treated by the leading twist pomeron
parton distribution analysis in the Ingelman—Schlein model.
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Figure 4.5: Diffractive structure function FQD(?’) from the pomeron+reggeon
analysis versus the H1 collaboration data. The solid lines correspond to the
pomeron contribution and the dashed lines show the reggeon contribution with
Cenn, = 10.
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4.3 QCD based description

Let us consider the diffractive system formed by the first Fock component of the
virtual photon wave function-the ¢ pair (see eq. (4.1)). The elastic scattering
on the proton occurs through the coupling of two gluons in singlet state with
the transverse momenta +1, and the longitudinal momentum fractions z; and
9 which obey

rp =1 —T9. (4.37)

We consider the zero momentum transfer ¢ = 0. There are four amplitudes for
this process in which the two gluons couple to the quarks in all possible ways,
one of them is shown in Fig. 4.6.

The final state quark momenta are decomposed in the base which consists
of two light-like vectors ¢’ = g+ z p and p, and two space-like transverse vectors
orthogonal to the previous ones. Thus we have

k2+m;
ki = z2¢ + ——Lp + kp (4.38)
sz
k 1 ! k2+m3€ k 4.39
2—(—Z)Q+mp— T (4.39)

where s = 2¢' - p and my is the quark mass. In the frame in which the virtual
photon and the proton are collinear along the z-axis, the transverse momentum
kr = (0,k,0). The diffractive mass of the ¢q system is given by

2 2
k + mj

M? = (ki +k)? = s

(4.40)
In the y*IP center-of-mass frame (pp = zjp - p) z is related to the quark scat-
tering angle

cos = 1-2z. (4.41)

For the symmetric configuration with z = 1/2 the quarks scatter at § = 7/2.
Aligned jet configuration with z &= 0 corresponds to 6 ~ 0.

2222222222221 2R2A]

Figure 4.6: Diffractive production of the qq pair.
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4.3.1 Basic cross sections

The cross sections for diffractive scattering from transverse and longitudinal
photons

Y +p—qq+p (4.42)
are computed analogously to the inclusive case. Assuming the two-gluon ex-
change mechanism, the amplitude is the sum of two subamplitudes, with crossed
and uncrossed exchanged gluons. In the high energy limit, the real parts of the
two subamplitudes cancel, and we are left only with the imaginary part of the

uncrossed amplitude which dominates the process. After squaring that ampli-
tude we obtain for the transverse cross section [90]

d D em dQII ,
d2k(:l€dt\t:0 = 5 / / 174 asf(zp,l )Olsf(leal 2)
2 2 k k+1 k k+1'
x{[z (1= {D(k)_D<k+1)}'{p(k)‘p(k+1/)}

+my {Dim ~ DR T } {Dim - PEET] }} (443)

and for the longitudinal cross section

D
doy ozem

d?1’
muzg - / / 14 Olsf iU]P,l )asf(l'P,lQ) (444)

x4Q (1= 2)" {Dzk) B D(k1+ 0 } {Dzk) B D(kl-l- D) } :

where D (k) = k%2 + z(1 — 2)Q% + m?c The four terms which arise after comput-
ing the products under the integral correspond to four possible ways in which
the two gluons couple to the ¢g pair. Such couplings are necessary for gauge
invariance and finiteness of the cross sections integrated over k.

Notice that we use the same unintegrated gluon distribution function f(zp)
as in the inclusive case, now taken at zp instead of at Bjorken-z. In general
this function should depend on the gluon longitudinal momentum fractions
f(z1,22,1%) where zp = 21 — 5. In the high energy limit, however, when the
leading powers of log(1/z) are taken into account, the asymmetry z; # z9 can
be neglected and the indicated approximation is legitimate. The role of this
asymmetry for high-p | jet photoproduction was analyzed in [143] with the help
of the off diagonal parton distributions [144, 145, 146].

Eqgs. (4.43) and (4.44) can be easily rewritten in the dipole representation,
using relations (B.1) and (B.3) from Appendix B. After some rearrangements
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we obtain
doP 3« d?rq d2r2 . .
kodZdt\t:o = 5 Z / 6(wp,11) 6(zp,r2) 7T

X {[z2 +(1 —-2)2] 2 Q" K (Qr) Ki(Qro) + m} JKO(C?Tl)Izb(CQTQ)}

1 re
(4.45)
and
ﬂ = Sdem Z /d i d2r2 o :E r ) A(m r ) ek'(r1—r2)
d?k dz dt | t=0 3273 P,T P;T2
x4Q% 2% (1= 2)° Ko(Qr) Ko(Qrs), (4.46)

where @2 =z(1-2)Q*+ m% The inclusive diffractive cross section (at ¢ = 0)
is obtained after the integration over momenta of the final state quarks

dO'?L da:,QL
: = | Pkdzr —2 . 4.47
dt |1=0 / ? Pkdzdi| =0 (4.47)

It has a remarkably simple form in the dipole representation. When the inte-
gration over k in (4.46) is done, we obtain the delta function d(r; — ry) which
allows to perform one of the two integrations over r. Thus we find the following
result

doQQ’L
dt |t=0

! 2 f 2 .2
= Ton | Fre ; W (x,2)]? 63(z, ), (4.48)

where \Ifgq ; is the photon wave function which appears in the inclusive DIS
cross section (3.7). Notice that the dipole cross section appears squared in the
diffractive cross section. In order to obtain (4.48) we changed the argument in
6 from zp to x during the k-integration. It is legitimate in the high energy
approach as long as the dominant contribution is not concentrated at small
B =x/xp. As we will see, this is the case for the diffractive ¢q production.

The formula (4.48) is a realization of the old idea of Good and Walker
[147] (see also [148]) that diffraction occurs due to different absorption of the
interaction matrix eigenstates. In the small-z DIS case these are the ¢¢ dipoles
with definite r and z. The projectile, the virtual photon in our case, is a
superposition of these states each of which is elastically scattered with different
probability.

The total diffractive cross sections are obtained after an additional inte-
gration over t. Assuming a factorizable exponential dependence on ¢ with the
diffractive slope Bp, we have

0 doP | doP
D Bpt T,L T,L
= dt e?P" ——= = — : . 4.49
oT.L /oo ‘ dt |t=0 Bp dt |t=0 ( )
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4.3.2 Saturation and DIS diffraction

DIS diffraction is a good test of the saturation model. The three parameters of
this model were obtained from the fit to inclusive small z data. Determined in
this way the dipole cross section has been applied to eqs. (4.45) and (4.46) in
the region of moderate values of 8 where the ¢g component of the diffractive
final state dominates. For small values of 8 the qgg state should additionally
be considered. The result is a very good description of diffractive data form
HERA, see [95].

The idea that the dipole cross section saturates with the z-dependant radius
is particularly important for diffraction. It allows to explain in a natural way
the constant ratio o /0™ as a function of z and Q2 which is observed at
HERA. As a consequence, the diffractive cross section has the same leading
twist behaviour and energy dependence as the inclusive DIS cross section. To
prove these results, let us perform the qualitative analysis of the transverse cross
section (4.48), using the approximate formula (3.15) with the squared dipole
cross section (3.21).

In the scaling region, Q2 > 1/R2, we find for transverse photons

4/Q? 4R o0
9 2
5 dr? (oqr? N dr® (1 ag 1 n dr? (1 2
0' ~o N9 9 T2 9 2.2 0.
T 7 \ar 7 \@2? ) \am; 7 \@r)
Q L e iR
symmelric aligned jet alig;erd jet

which after the integration gives the following leading contributions

2 2 2

D 99 99 99
orp ~ + —— + = . (4.50)
T Q'R Q*R} Q?R}
r<2/Q 2/Q<r<2Rg r>2Rg

Notice that in contrast to inclusive DIS cross section (3.23), the leading twist-2
result comes only from aligned jet configuration. The symmetric contribution
is higher twist. Therefore, the perturbative contribution is largely suppressed
in diffractive DIS. This situation is illustrated in Fig. 4.7 where we show the
distribution dor/dr for inclusive (3.7) and diffractive (4.48) cross sections. The
suppression of the contribution with r < 2/Q for diffractive dissociation (DD)
is clearly visible.

In DIS diffraction the proton structure is probed with a large gG probe, and
the corresponding sizes r are in the saturation region of the dipole cross section
(3.18). The fact that diffraction has a significant soft component (r > 2Ry)
is to be expected. Here we find that the semi-hard region 2/Q < r < 2Ry
significantly contributes (detailed analysis gives around 50%). This shows that
DIS diffraction is ideally suited to study the transition from ‘soft’ to ‘hard’
physics.

The analysis performed for the longitudinal cross section gives a higher twist
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Figure 4.7: The distribution dor/dr (solid lines) for inclusive (Inc) and diffrac-
tive (DD) cross sections at Q%> = 10 GeV? and x = 10~*. The dipole cross
section 1s shown by the dotted line. The r-axis is in units of 2Ry (z) = 0.37 fm.

contribution for all sizes r
2 2 2

D 99 90 22 90
or ~ + log(Q“Ry) + . (4.51)
7 Q'R} Q'R; 5 Q'R}
r<2/Q 2/Q<r<2Rg r>2rg

The intermediate (semi-hard) region, however, is logarithmically enhanced.
From the comparison of the leading behaviour of (4.50) and the inclusive
cross section (3.23), we obtain for the ratio

oP 1

o g @) 2

which is a slowly varying function of z and Q2. A more detailed analysis based
on the Mellin representation gives the following result [94]

oP _ 090 log(2) (4.53)
gine 87Bp log(Q*R%) + vy +1/6 '

Substituting the fitted values of the parameters we obtain the result of the
order of 10% which agrees quite well with the measured value. A more refined
comparison is presented in Fig. 4.8, reproduced from [95], where the flat ratio
for different values of diffractive mass Mx is found as a function of v*p center-
of-mass energy W.

The role of the z-dependant saturation can be better understood if we as-
sume that the dipole cross section (3.21) takes the form

oo 7“2/4R%({L') for r < 2Rcut
o(z,r) = (4.54)
oo R%,,/R%(z) for 7> 2Ry,



82 Chapter 4. Diffractive DIS

® Q’=8GeV? v Q%=27GeV?
O Q%*=14GeV? A Q%=60GeV
<! i M, <3 GeV
5 0.06 [ x<S0€
H—\ I
S_ 004
o r
0.02 -
0L
caoa b b b b b b b by
0.06 I 3<M, <7.5GeV
i % i% i o
004F B Tt LA SO
A LA S S S —
0.0Zj
T g R S o
OTH cov b b b b b b b
0.06 7 75<M, <15GeV
0.04 -
0.02 -
Lol b b b e b b b i b |

0
40 60 80 100 120 140 160 180 200 220
W(GeV)

Figure 4.8: The ratio of the diffractive and inclusive cross sections as a function
of W for different values of Q% and diffractive mass Mx. The data are from
ZEUS [87].

where Ryt ~ 1/Agep > 1/Q is z-independent infrared scale which replaces the
saturation scale Rg(z) as the separator between perturbative and nonpertur-
bative domains. Notice that (4.54) violates unitarity when z — 0. Computing
the leading contribution for both inclusive and diffractive cross sections from
relation (3.15), we find

inc g0 2 p2
~ =1 R 4.55
2 2
O'D ~ JO Rcut (456)

Q*Rj(z) Rj(z)

Thus the ratio o” /o™ would be proportional to 1/R3(z) ~ z~*, which con-
tradicts the results from HERA. Therefore, the z-dependant saturation radius
Ry(z) may be viewed as an effective cutoff leading to the constant ratio of the
two cross sections as a function of x.

The comparison of the predictions based on the form (3.18) of the dipole
cross sections with DIS diffraction data is shown in Fig. 4.9. No further param-
eters were introduced in addition to those fixed in the inclusive DIS analysis.
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Figure 4.9: The diffractive structure functions $PF2D(3)(,B,Q2,$P) as a func-
tion of xpp for different values of B and Q* (in units of GeV?). The data are
from ZEUS [87].

Notice the agreement with both the normalization and the zp-dependence of
the measured structure functions. For this comparison, the g and qgg diffrac-
tive final states were considered'. The analytical formulae used in the presented
analysis are given in the next sections where we also explain the significance of
the ¢g and ¢gg contributions for the total diffractive cross section.

4.3.3 Diffractive mass spectrum

So far we have been interested in the inclusive description of diffractive DIS.
Now, we want to look at these processes more exclusively. The most natural
question is how the diffractive cross sections depend on mass M of the diffractive
system. In the case of the ¢q pair, which form the diffractive system, the answer
is encoded in egs. (4.45) and (4.46). We write them again assuming that the

!The gqgg final state is discussed in detail in Section 4.3.5.
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dipole cross section is spherically symmetric, 6(r) = 6(r).

In this case the angular integration with respect to the angles between k and
ri, ro can be performed with the help of the relation (B.5) from Appendix B.
Thus we obtain

_dor = Soem S {1 121 10 i i)
(4.57)
%ta - 237:; Xf:e% 40222 (1= 2)° B2k, 7)., (4.58)
where the “impact factors”
di(k,z) = /UOO drr K;(Qr) Ji(kr) 6 (zp, ) (4.59)

for i = 0,1. Let us recall that @2 =2(1 - 2)Q* + m?c, and K; and J; are the
Bessel functions.

The diffractive mass spectrum of the ¢¢ pair is found after integrating
over the final state quark momenta corresponding to a diffractive mass M,
eq. (4.40)), and over t according to (4.49). Thus we have

dO’TQL k? + m? 1 do®
L~ [ @kdes|M2P-— 1) — __TLL 4.60
dM? / ? ( 2(1—2) ) Bp d’kdzdt|i=0 (4.60)

It is easy to check that after the integration of the above relation over M?, the
total diffractive cross sections (4.49) are obtained.

The diffractive structure functions (4.10) are directly related to the diffrac-
tive cross sections. From relation (4.11) we easily find the general relation

1 Q_4 dO'JQ’L
A0y B dM?2

epFL O (B.Q%ap) = (4.61)
where we switch to 8 = Q?/(Q? + M?) as an independent variable which is an
analogue of the Bjorken-z for DIS diffraction. The presented formulae can be
used for numerical analysis with the dipole cross section given by the saturation
model, see the comparison with the data in Fig. 4.9. It is instructive, however,
to try to analyze them analytically.

4.3.4 Mass spectrum in certain limits

We can analyze the derived formulae analytically in certain limits of the diffrac-
tive mass M. For this purpose we perform the integration over k in (4.60) to
find

da?L 1/2 1 da:,QL
Lo g dz 2(1 — 2) — — DL 4.62
m / z2(1=2) 5o Pk dz dt | 1—0 (4.62)

Zmin
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where zpin = (1— /1 — 4m;/M2)/2 and k% = z(1 - 2) M? —m? on the r.h.s of
(4.62). If, for simplicity, we set m; = 0, we arrive at the final formulae which
will serve as the starting point for the analysis presented in this section

dajl? 3aem 2 2 ! 2 2 2 2 2
ot S @ [ (R, (6

dop, _ 30em ZeQ Q? /ldzz3(1—z)3 $2(2) (4.64)
dM? — 327°Bp 4 / 0 0l '

where the impact factors (4.59) take the form

o<

$0,1(2) = / drr Ko (\/z(l - z) Qr) Jo,1 (Vz(l —2) Mr) (zp,T).

’ (4.65)
In the following we will discuss our results mainly in terms of the structure
functions (4.61) which are related to the above cross sections by a simple mul-
tiplicative factor.

In the limit M = 0, only ¢¢ in eq. (4.65) has a nonzero value since J;(0) =
;0. Thus we expect that at the low mass edge of the spectrum, M? < Q? or
B — 1, the longitudinal contribution (although higher twist) dominates over
the transverse one. Indeed, the analysis done for the saturation model in the
spirit of the estimations from the previous sections, gives the following dominant
contributions for § — 1,

2

T D(3) 99 5 6
F! ~ ]. 4-
o a9 Bl)R%(flP) ( ) ’ ( 6 )

2
D(3) 75 1
F ~ .
P Lag BpRi(wp) <Q2R3>

As expected, the longitudinal structure function is suppressed by the additional
power of 1/Q? but it dominates over FJQ when 8 = 1. Let us notice that the
vanishing of FTD at 8 =1 is independent of the form of the dipole cross section.

It is interesting to note that the leading behaviour of the transverse cross
section is given by aligned jet configuration (2 < 1/R}Q?) which involves large
distances, r > Ry. In the small mass limit this component, as well as the whole
transverse cross section, are strongly suppressed. For the longitudinal polar-
ization, the symmetric configuration (z &~ 1/2) gives the main contribution. In
such a case the large sizes are strongly suppressed, and the perturbative re-
gion r € Ry mainly contributes to the cross section. This observations lead
to the expectation that the diffractive cross section is nearly saturated by the
production of the longitudinally polarized vector mesons in the limit M? < Q2.

The same analysis performed for the saturation model in the triple Regge
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limit, M? > Q? or B — 0, gives to the following result

2

OB O 4.67
TP Tqq BDR%(:EP) ﬁﬂ ( )
5 1
FD(3) - 99 3
oL BoReer \@R3) "

where now 3 ~ Q?/M?2. Both contributions are due to aligned jet configuration
(z < 1/R3M?). The higher twist nature of FP for fixed 8 and zp is evident.
This structure function is also suppressed stronger than the transverse one.

The fact that the structure functions (4.67) vanish when § — 0 is indepen-
dent of the the form of the dipole cross section, but depends on the photon wave
function. The saturation model, however, provides the normalization (together
with the diffractive slope Bp) and the dependence on energy (zp) which are
essential elements for the comparison with data.

In terms of the cross sections, relations (4.67) look as follows

daqq 1 daLD 1

amz = M and amz " MR

(4.68)

in the limit M? — oo, for fixed 2 and Q?. The experimental results from
HERA, however, do not confirm such strong diffractive mass suppression. For
M? > @? the measured do” /dM? ~ 1/M? which is a strong indication that we
have to consider the next Fock state from the virtual photon wave function (4.1),
the ¢gg state. Indeed, after considering this contribution in the configuration
when the gluon is strongly separated from the ¢g pair in the r-space, we obtain
agreement with the data. In terms of the diffractive structure function, the
measured and computed F2D(3) rises when 5 — 0. Effectively (in the large N,
limit) the new configuration may be viewed as the gg dipole.

4.3.5 The ¢gg contribution

The detailed discussion of the ¢Gg contribution is given in [129] and [95]. Here
we only quote the final result in the dipole representation (see also eq. (23) in
[95] for the representation with the unintegrated gluon distribution),

8143 s L q B 2 I 2
i 0.@ee) = g 2 52 [, [(“z) (%) ]
7
(1-2)Q° 1— 2
1 —zz)S /0 dk* log <%> $5(k, 2) , (4.69)

where the new impact factor is given by

do(k,z) = k? /OoodrrIQ(\/Zkr) Jo(kr)6(zp,T) - (4.70)

The diffractive production from transverse photons is only considered. Notice
that an additional gluon radiation is a higher in a; correction. The variable
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Figure 4.10: Diffractive qGg production.

z describes the relative momentum fraction of the gluon with respect to the
pomeron momentum zpp. The combination k?/(1 — z) which enters the loga-
rithm is its mean virtuality. The term in square brackets under the first integral
is the Altarelli-Parisi splitting function ¢ — ¢q, which results from the approxi-
mation that the transverse momentum of the emitted gluon is smaller than the
transverse momentum of the quark. In the impact parameter representation
this corresponds to a large separation between the gluon and the gg pair.
In the triple Regge limit 8 — 0, we obtain the following result

epFD o T 3 (4.71)
9 BpR3(zp) 2
which gives the mass spectrum
do R 1
—~ — . 4.72
dM?  M? (4.72)

Thus, although this is a higher in «; correction, the process with a gluon radi-
ated off in the qqg diffractive state dominates over the pure gq contribution in
the large diffractive mass limit. For a small diffractive mass, F£§3) is strongly
suppressed, and the ¢ contributions (4.66) is important. The presented results
are supported by the exact numerical analysis, see [95] for details.

In summary, we have discussed the three contributions to the diffractive DIS,
the gq pair from the transverse and longitudinal photon and the ¢gg system,
D

FP® = pPY 4 Fl

3 D(3
e @ + Y. (4.73)

q qq9

These contributions have distinct regions of § in which they dominate. For
B ~ 1 or M? <« Q? the longitudinal ¢§ component is the most important.
In the intermediate range, 8 ~ 1/2 or M? =~ Q?, the ¢q production from the
transverse photon prevails. Finally, for 5 ~ 0 or M? > Q? the ¢gg production
dominates. The three contributions are shown in Fig. 4.11, reproduced from
[95]. Note very good agreement with data.
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Figure 4.11: FQD(S)(B,QQ,QSZP = 0.0042) as a function of B (solid line). The
dashed lines show F2D . the dot-dashed lines correspond to FLDq(B) and the

Tqq ’ q’
dotted lines illustrate F£§3). The data are from the ZEUS collaboration [87].

4.4 Diffractive parton distributions

The diffractive structure functions FP®) were introduced in Section 4.1 in a
full analogy to the inclusive DIS case. They characterize the hadronic tensor
for diffractive DIS: W, = W (p,p'. q)

|
Wiw = 1= > <plI;"(0)p'X ><p'X|J"(0)p > (2m)* 0*(p = p' — px)
X

_ quqv \ LD(4) 1 pq Pq\ D(4)
= (s ) 100 55 () () 20

Notice the difference to the inclusive hadronic tensor (2.6). In the summation
over the final states only those with loosely scattered incident proton are re-
tained. Thus, the final states in the diffractive hadronic tensor consist of the
scattered proton p’ and the diffractive system X over which the summation
is performed. This introduces two variables (zp,t), defined in Section 4.1, in
addition to those known from the inclusive case (z, Q?).
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The momentum p’ of the scattered proton can also be used to build the
tensor structure of the hadronic tensor (4.74). It is not necessary, however, as
long as the azimuthal angle of the scattered proton is not measured [124]. Thus
only two structure functions are needed to characterize the hadronic tensor:

FPY = BP0 Q% ap,t) | (4.74)
where i = 1,2. In the following we will be interested in the structure functions
integrated over t, FiD(g)(,B,QQ,xlp), see eq. (4.61). The structure functions
(4.74) are identical to those in Section 4.1.

As in inclusive DIS, the diffractive structure functions are decomposed into
the leading and higher twist contributions

D(3)HT
Fi ®) (ﬁaQQafElP)
Q2
The leading twist part is related to diffractive parton distributions (DPD) [149,
150, 151, 152] in analogy to inclusive DIS

FP (6, Q% ap) = FPO(8,Q% wp) + o (475)

By (B,Q% ap) = Y & B{af (B.Q%ap) + 4P (B.Q%xp)} . (4T6)
f

In addition to the diffractive quark distributions, q}j and q}?, the diffractive

gluon distribution ¢” (8, Q?,zp) is defined. Usually, it is assumed that the
quark and antiquark distributions are equal,

q]l‘)(BaQ2afEﬂ3) = QJP(B’Q2a$P)7 (477)

to be in accord with the picture of the pomeron exchange with vacuum quantum
numbers. All distributions obey the DGLAP evolution equations in which zp
is a parameter independent of the evolution.

The DPD have a probabilistic interpretation. They are conditional proba-
bilities to find in a fast moving proton a parton with the momentum fraction
B, under the condition that proton remains intact after the scattering losing a
small fraction zp of its momentum. The momentum fraction S is defined with
respect to the lost proton momentum zpp.

The possibility to define the diffractive parton distributions results from the
proof that collinear factorization holds for diffractive DIS [153]. This allows
to separate the leading twist contribution into short and long distance parts,
and then absorb collinear singularities into the latter part. As a result the
parton distributions acquire dependence on the scale, governed by the evolution
equations.

In inclusive DIS parton distributions are universal, i.e. the same distri-
butions can be used in the description of both lepton-hadron DIS and hadron-
hadron hard reactions since collinear factorization is valid for the two processes.
Collinear factorization, however, is violated in diffractive hadron-hadron scat-
tering [154, 153]. Thus, unlike the inclusive scattering, the diffractive parton
distributions are no universal quantities. They can safely be used, however, to
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describe hard diffractive processes involving leptons. A systematic approach to
diffractive parton distributions, based on quark and gluon operators, is given
in [152, 133].

Discussing diffractive parton distributions, it is very important to distin-
guish between different types of factorization. Collinear factorization allows to
define these distributions. The other factorization, called Regge factorization,
is a hypothesis on a factorized form of DPD. Namely,

a7 (6, Q% zp) = flzp) af (8.Q%) . (4.78)

The function f(zp) is common for both the quark and gluon DPD. If f(xp)
is given by (4.13) (integrated over ¢) we arrive at the Ingelman-Schlein model.
In this case q}P(,B, Q?) coincide with the pomeron parton distributions.

Let us emphasize that the issue of diffractive parton distributions is inti-
mately related to the leading twist-2 contribution to diffractive structure func-
tions. In particular, the assumption that the longitudinal structure function is
leading twist, as in inclusive DIS, is not supported in the two-gluon exchange
model. The leading twist vanishes and Ff is twist-4 with the behaviour pro-
portional to 1/Q2.

4.4.1 DPD in the saturation model

The diffractive parton distributions can be defined in the two-gluon exchange
model. In order to find the quark distribution we have to extract the leading

twist part from F:,?@

Fg}f) given by (4.69). The longitudinal structure function FLD
twist, does not contribute to diffractive parton distributions.

In order to extract the quark DPD, we write Fj?(g), given by (4.61) with
(4.62), in the form in which the z-integration is performed first. After that we

find the following form of the transverse g contribution in the limit m; = 0,

, eq. (4.61). The gluon distribution is extracted from

(3), as higher

Q-ps 2B K

3 2 1-8Q2
i S Ty | W e
I 0 1 — 4p k_
1-BQ?
(4.79)
where now
b1 (k) = k? /Omde( fﬁkr) Ji(kr) 6(zm,7) - (4.80)

The leading twist part of (4.79) is obtained by neglecting the powers k?/Q?
under the integral and integrating over k? up to infinity. Strictly speaking,
energy conservation is violated in such a case, but the corrections are of the
higher twist nature. With the new limit the integral is finite and we can write
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the leading twist part of (4.79) as

FROET = 2% 63 BaP (B,m) (4.81)

where the diffractive quark distribution is given by

3 g

D _
qf (B;fElp) - ].287T4BD Tp (1 _6)3

/ TdR Bk Boap) . (482)
0

for any flavour f. Notice a lack of the factorization scale u? = @Q? on the
right hand side of (4.81). This may be viewed as a consequence of not having
included ultraviolet divergent corrections which would require a cutoff. With
those corrections the parton distributions become p?-dependent and evolution
would relate the distributions at different ? values. However, we may use
q?(ﬁ) as input distributions for the Altarelli-Parisi evolution with an initial
scale related to the physics involved, e.g. p? = 1/R2(zp) for the saturation
model. Of course, the choice of the initial scale introduces an uncertainty for
the prediction. As we will see in the next subsection, the zp dependence in
(4.82) factorizes and does not influence the evolution.

The gluon distribution can be found from (4.69). In the calculation of
this contribution it was assumed that the transverse momenta or virtualities
of the quark and the gluon are strongly ordered. In this approximation the
integration over the transverse momentum of the quark loop gives a logarithmic
contribution which has a natural lower cutoff, the virtuality of the gluon. At
the same time the virtuality of the gluon should not exceed Q?. This is the
origin of the logarithmic term in (4.69). Collinear factorization means that we
can pull that logarithm out of the integral over the gluon transverse momenta,
and add to it an arbitrary scale Q3. Thus we can write (4.69) in the following
form (we set z = /3 there)

1 .
g g (28 ()]
ggg _2Zef'8 1 Q2 ﬂ/ B 2[ 1 + B g (IBamP)

(4.83)
where the diffractive gluon distribution is given by

81 3
25674 Bp xp (1 —B)3

o<
o"(8,ap) = | wper) s
and ¢y is given by eq. (4.70). As in the case of the quark distribution (4.82),
the found gluon distribution does not depend on 2, and serves as the initial
distributions at some fixed scale Q3.

The motivation for the above identification of the diffractive gluon distri-
butions is the structure in the curly brackets on the r.h.s of eq. (4.83). It is
identical to the structure resulting from the DGLAP evolution with one split-
ting of the gluon into the ¢q pair.

The combined initial parton distributions (4.82) and (4.84), depicted in
Fig.4.12, allow complete description of the leading twist part of diffractive
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Figure 4.12: The diffractive quark distribution (4.82) and the gluon distribution
(4.84) (multiplied by z = zp ) from the saturation model as a function of
for zp = 0.0042 at the initial scale Q%.

DIS. They serve as the initial conditions for the DGLAP evolution equations.
DGLAP evolution in this case means that the diffractive system becomes more
complicated due to additional parton emissions.

The longitudinal, higher twist contribution requires a separate treatment. It
becomes important for large values of 3, where the ¢q and the ggg production
from transverse photons is negligible. Thus we add this contribution to the
evolved leading twist part. The complete expression of the structure function
reads

Y = gy L (4.85)

(3)L

where FQD T is given by

FPOUD =236 54P(6,Q% ap), (4.86)
!

with the full DGLAP evolution. The longitudinal structure function Fqu is
found using relations (4.61) and (4.62) in which the integration over z is done

Q%(1-8)

3 s E K /Q°
FL— — - e —— / dk? 2(k ,
qq 167T4BD TP zf: f (1 _ ,3)4 0 18 2 ¢0( )

1-8Q?

(4.87)
with ¢¢ defined as in eq. (4.80) with the Bessel functions Ki, J; replaced by
Ky, Jy. From the above expression we see that Fqu is one power down in Q?
with respect to the transverse counterpart FqTq, see eq. (4.79), being higher twist
contribution.

In summary, Eqs. (4.82) and (4.84) may serve as initial conditions for the
evolution equations in the analysis of diffractive DIS with the diffractive struc-

ture function given by (4.85). For the comparison with the data see [155].
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4.4.2 Regge factorization

The scaling property of the dipole cross section, i.e. that 6 is a function of
the dimensionless ratio r/Ry(z), has the remarkable consequence for the zp-
dependent of the found diffractive parton distributions.

Introducing the dimensionless variables k& = kRo(z) and 7 = r/Ro(z) in
(4.82) and (4.84), and assuming Q3 to be a fixed scale, we find the following
factorization

pr(ﬁa Tp) = m CIJIZD(B) ) (4.88)
1
9P (B,zp) = ey po g"(B) . (4.89)

We have introduced a notation similar to that in (4.16) for the S-dependent
factors. This type of factorization is similar to Regge factorization but in fact
has no connection with Regge theory. It merely results from the scaling prop-
erties of the saturating cross section ¢. Since the evolution does not affect the
zp-dependence of the DPD, the factorized form will be valid for any scale Q2.
Now, we can rewrite eq. (4.86) as
D3)(LT) _ 1 2 o P 2
F, = o) Efjef Baf (8,Q%) (4.90)
in which the zp-dependence is factored out. The Q?-dependence of the distri-
butions q}P is introduced by the evolution equations.

In the saturation model the parameter A = 0.29 in the relation Ry(z) ~ z*/2
was determined from a fit to inclusive DIS data only [94]. The same value
holds for diffractive interactions, thus we find a definite prediction for the zp-
dependence of the leading twist diffractive structure function

FPOUD) g 12 (4.91)

At present, the bulk of diffractive data in DIS support the factorized form
(4.91). They are usually interpreted [86, 87| in terms of the ¢t-averaged pomeron
intercept agp, i.e.

o (4.92)

Such a dependence has been introduced in the spirit of the Ingelman—Schlein
model, with the t¢-integration performed, FQD(?’) ~ [dtf(zp,t) ~ x}l;mlp.
Thus, according to (4.91) and (4.92) we find

A
ap = §+1 ~ 1.15, (4.93)

which is in remarkable agreement with the values found at HERA, ap =
ap(0) — 0.03 = 1.17 by H1 [86] and ajp = 1.13 by ZEUS [87]. More de-
tailed analysis, see [95], allows to predict @p = ap(.yy) as shown in Fig. 4.13
for the two values of the diffractive mass.
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Figure 4.13: The effective pomeron slope as predicted in the saturation model
as a function of Q? for two values of the diffractive mass Mx. The data are
from the ZEUS collaboration.

FQD(?’) in the saturation model contains more than leading twist. This means

that the dependence (4.91) is not generally valid. It is especially important
for § — 1, i.e. in the small diffractive mass region. From the analysis of
Section 4.3.3 we know that the twist-4 longitudinal structure function dominates
there. Thus the expected dependence on zp for S & 1 is stronger than in the
intermediate range of the diffractive mass M? ~ @2,
pE)  ppe3) Lo

F, = F; er R o) e , (4.94)
which clearly violates the universality of the effective pomeron intercept in
different regions of diffractive mass. The first indication of that effect was
indeed observed at HERA [87], and the saturation model gives a satisfactory
explanation, see Fig. 4.13 and [95] for more details.

At this point we do not agree with the Ingelman-Schlein model in which
a universal pomeron intercept behaviour resulting from Regge factorization is
assumed. The lack of universal Regge factorization should be distinguished
from the possible violation of the zp-factorization due to subleading reggeon
exchanges [86], discussed in Section 4.2.2. This effect is not described by the
saturation model, and is important for higher values of x p than those considered
in the high energy limit in which the analyzed formulae were derived.

The large twist-4 component also offers an alternative to the strongly con-
centrated at 5 = 1 gluon distribution, found in the purely leading twist DGLAP
analysis of DIS diffraction [86].

Fig. 4.14 summarizes our studies of DIS diffraction based on the relation
(4.73) with the saturation model for the dipole cross section. This figure should
be compared to Fig. 4.5 in which the results from the model with the soft
pomeron and reggeon exchanges were shown. We see that a good description
of data is obtained with the saturation model, including the region of large g
(the two rightmost columns in Fig. 4.14).These results were obtained without
tuning additional parameters to those found in the inclusive data analysis. Of
course, the reggeon contribution cannot be described by the saturation model.
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Figure 4.14: The comparison, as in Fig. 4.5, of the results from the analysis
based on the saturation model with the H1 collaboration data. Q* values are in

units of GeV?.



Chapter 5

Summary and outlook

In this dissertation we have presented a description of DIS at small 2 which uses
the ideas of parton saturation. The presentation is based on the ten published
articles listed in Introduction.

Before the main results are discussed, the background material on deep
inelastic scattering is provided in Chapter 2. This includes the standard de-
scription with the help of the QCD parton model with the DGLAP evolution
equations [12, 13, 14] as well as the discussion of the small-z limit of DIS. In
this limit, the notion of a hard pomeron is introduced based on considerations
leading to the BFKL equation [25]. This equation replaces the DGLAP evolu-
tion equations. Also a different factorization formula [25, 33] for the calculation
of the nucleon structure functions exists at small z, which uses the unintegrated
gluon structure function describing the hard (BFKL) pomeron. The structure
functions in such a description strongly rise with decreasing x, thus they ulti-
mately violate unitarity. The unitarization corrections which tame the strong
rise are realized by considering additional interactions between gluons in the
nucleon. This mechanism leads to a picture of parton saturation in which the
gluons form a strongly correlated system [39]. In this case the linear DGLAP or
BFKL evolution equations are modified by nonlinear terms. The precise form
of these corrections is still under the investigation.

The current experiments on small-z DIS performed at HERA call for an-
swering the question about the role of parton saturation (unitarization) effects
for the measured processes. We have analyzed this problem in the dipole pic-
ture of inclusive DIS at small z in Chapter 3. In this picture the unitarity
conditions are naturally formulated. The main element of the description is the
phenomenological parameterization of the dipole—proton cross section which in-
corporates the main features of parton saturation [94]. The three parameters
of such a model are determined from a fit to all available data on lepton-proton
scattering at small z < 0.01. In the discussed approach a good description of
both the DIS data and the transition to low Q? region is obtained. By a careful
analysis of the role of the light quark mass in the ¢ dipole, the photoproduc-
tion limit can formally be achieved with a good agreement with the data. The
heavy flavour inclusive production in DIS is also analyzed. The saturation ef-
fects in the dipole-proton cross section parameterization are crucial for good
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description of the data in a broad range of Q2. They are also responsible for
a new scaling law in inclusive o+, cross section at small x, which is predicted
by the model and successfully confronted with the data [98]. The constructed
description allows to study more formal aspect of the QCD based description of
DIS such as the twist expansion of the structure function F» [99]. We provide
an explanation for the observed in other analyses small size of the the higher
twist corrections and estimate the region of validity of the twist expansion at
small z.

A crucial test for the developed description is provided by diffractive pro-
cesses in ep DIS. In these processes the incoming proton stays intact after the
scattering, losing a small fraction of its initial momentum. As we explained
in detail in Chapter 4, the dipole picture with the saturation effects is very
successful in providing explanation of DIS diffraction. In this case the process
is viewed as elastic scattering of the qq or gg dipole off the proton. The same
dipole—proton cross section as in inclusive DIS can be used. Thus, we do not
need to tune any further parameters. In this sense we obtain a unified for-
mulation of inclusive and diffractive DIS with a very good agreement with the
data [144]. The basic feature that diffractive DIS has the same dependence
on Q2 and z as inclusive electroproduction is naturally explained in our ap-
proach due to the saturation features. This approach can be confronted to that
which uses Regge theory with the concept of the soft pomeron and subleading
reggeon exchanges [117, 114, 115, 120, 121]. The subleading reggeon exchanges
cannot be described by the saturation model, but the soft pomeron aspect can
be analyzed by looking at diffractive parton distributions [99]. We find Regge
factorization property for them as the prediction of the saturation model with
the correct energy dependence measured at HERA. In contrast, in the Regge
approach these features are postulated. We also quantify the role of the twist-4
qq contribution from longitudinal photons for the description of the diffractive
data at small values of the diffractive mass (8 = 1). This contribution violates
the universality of Regge factorization in the large S region and also provides
a natural alternative to the strongly concentrated at 8 ~ 1 diffractive gluon
distribution found in the Regge based models.

The future work should be concentrated on the analysis of nonlinear unita-
rization corrections to the linear QCD evolution equations. The new equations
are expected to provide the basis for the proposed parameterization of the dipole
cross section. With respect to this program, the most promising is the analysis
performed by Kovchegov [66, 67] after the saturation model was formulated.
In this approach, the BFKL equation, formulated in the dipole representation,
is generalized by taking into account multipomeron exchanges in the large N,
limit. The resulting nonlinear equation has a solution which contains essential
features of our parameterization of the dipole cross section. The future analysis
will concentrate on the application of this formalism to description of the DIS
data [156].



Appendix A

Solution to the BFKL
equation

We are looking for the spherical symmetric solution of eq. (2.82) written for the
dimensionless function

flw, k1, ko) = ki F(w, |ki], [ksl,0). (A.1)

After performing the angular integration in eq. (2.82) using

2m d¢o _ 21
/0 ( - (A.2)

a — bcos ¢) a2 — b2

for a > b > 0, the following spherically symmetric form of the BFKL equation
is found

wflw, ki k) = k?6%(k; — ko) (A.3)

7 k2 k2 — k2| VAR k]

This equation can be diagonalized using the Mellin transform of f with respect
to kl

Ncas 70de2 kQ {f(wak’akQ) - f(waklakQ) + f(waklakQ) } )
0

fla) = [ (’“—%)Vf(w,kl,kg), (A4)

where the inverse relation reads
1 E2\7 .
fwdnie) = g [ v () Fw (A5)

and the integration contour C' is to be chosen to the right of all singularites of

A

f(w,~) in the y-plane.
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Integrating both sides of eq. (A.3) over k? with a factor as in (A.4), we find

| TaE? T
wf(w,y) = ;+a5/ e /dk% (A.6)
0 0

(ﬁ)ﬂ flw, k' ka) = flw, k1, k) _I_f(W,kl,kQ)
k2 k2 — k2| VAt kN

where a; = N.as/m. Now, we change the integration variable: k2 — v =
k' /k?, and perform the integration over k? to obtain

+ a;K(7) flw), (A.7)

N | =

wflwy) =

where K() is the Lipatov kernel

S A e v/ ==t
YT w1 Var

= 2¢(1) —P(y) — (1 —7) (A.8)

and () is the digamma function. We use the following representation of (-y)
to obtain the last equality, valid for Re v > 0

d 1 y—1 _
W) = -l = == [ o S (A.9)

with yg = —9(1) = 0.57721 being Euler’s constant. K () can be analytically
continued onto the whole complex plane, except the points v = 0,+£1, +2...
where simple poles occur.

From (A.7) the solution in the (w,y)-space can easily be found

5 1/m

flwy) = (A.10)

w = dslc(7) .
The solution in the (s, k)-space,

1 dy (k2 7/ dw s\¥ 1
Fls. k1. ko 0) = —— — | = o\ o) e Al
(3, k1, k2, 0) mk? /C 2mi <k%> o2 \sg) w—aK(y)’ ( )

is obtained using eq. (A.5) and the inverse Mellin transform,

1
‘7:(8,]{)1,]{)2,0) = 2_ dw (i

™ Jor

w
S > F(w,kl,kg,(]), (A.12)
0

where the contour C’ is to the right of all w-plane singularities of F(w, ).



Appendix B

Dipole transformations

Here we prove two basic relations which are crucial for the dipole picture rep-
resentation of inclusive and diffractive v*p cross sections. We start from

{Dl(ik) B D1(<k++ll)} _ % ik (1 B eﬂ'r.1> z; 0 K.(Qr), (B1)

where K is the Bessel-Mc Donald function and D(k) = k? + @2. In order to
prove the above relation let us write the L.h.s of eq. (B.1) as

kyq ki +1
4k, 62(k; — k _ } _
/ 107 (ks ){D(kl) D(ky +1)
:/d2k1/ d’r pir(ki—k) { ki ki+l1 } _
(2m)? D(k;) D(k; +1)
:/@ e—ir-k/d2k1 ik ky _ ki +1 .
2m 2m D(ki) D(ki +1)

The r.h.s of eq. (B.1) is found after integration over k; with the help of the
relation

? r —
/% expiik - r} % =i Q- Ki(Qn). (B.2)

In the same way we can prove the second basic formula

1 1 Pr jr1 A
- = [ —e ™" [1-e"") K B.3
{D(k) D(k+1)} or ( ¢ ) o(@Qr), (B-3)
where the relation analogous to (B.2) looks as follows
[ 5K explin ) s = Ko@) (B.4)
— e . g . .
o PUE T D 0LkT
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with Ky being the Bessel-Mc Donald function.

Eq. (B.2) can be obtained from eq. (B.4) as a result of differentiation with
respect to r and the relation K| (z) = —K;(z). Therefore, we only need to
prove relation (B.4).

This can easily be done by performing the angular integration on the Lh.s
of eq. (B.4) with the help of the well known relation

exp{ikr cos ¢} = Jo(kr) + 2 Z i" Jp(kr) cosng (B.5)

n=1

where J,, are the Bessel functions. Thus, we find

2k . 1 0 2w
d’k etk / i dk_2 / s exp{ikr cos ¢} =
27 D(k) 0o K2+Q° Jo 27

© Ldk [?d =
/U / % {Jg(kr)+22i"Jn(kr)cosn¢}=

k2 + Q n=1

/OO k JU k?" EK()(@’I“).
0 B2+Q
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