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Preface

Quantum Chromodynamics (QCD) is the most successful fundamental theory of strong interactions.
Since the time of its beginnings, over three decades ago, it has been extensively developed and tested
in numerous experiments. Nevertheless, at the present state of the art, the theory is far from being
completely solved or even fully explored. On the contrary, there are many effects predicted by QCD
which still lack firm experimental evidence. Similarly, numerous experimental facts, sometimes very
basic, wait for comprehensive theoretical description.

The deep inelastic electron–proton scattering (DIS) is oneof the most important QCD processes.
The standard theoretical approach to DIS is based on the collinear factorization between the long and
short distance parts of the theory. The latter can be described within perturbative approach since the
hard scale is provided by the high virtuality of the photonγ∗ and, as a result, the strong couplingαs is
small. However,αs is always accompanied by the large logarithm of virtuality so thatαs lnQ2 ∼ 1.
Therefore, the key element of the proper description of DIS in this approach is the necessity to resum
an infinite class of terms of the type(αs lnQ2)n.

In the high energy limit, in which the center-of-mass energyof the γ∗p systemW 2 ≫ Q2, the
above description of DIS becomes questionable. This limit corresponds to small values of the Bjorken
variablex ≃ Q2/W 2 and now the large logarithmsln(1/x) should be taken into account leading to
the infinite resummation of terms(αs ln(1/x))n. This is referred to as thek⊥ factorization or the
high energy factorization approach. In the limit of smallx, the proton appears as a dense system of
soft gluons. The strong rise of the gluon number with decreasing x was one of the most important
findings of HERA experiments. In contrast to the regime of DISin whichQ2 is the only large scale,
here, the interactions between gluons can give sizable effect. In particular, the growth of gluon density
is expected to slow down due to the recombination processes,which are non-negligible in a dense
system. This goes under the name of gluon saturation and is necessary to ensure unitarity of theγ∗p
cross section. The first part of this Thesis is devoted to the issue of proton structure in the transition
region between the “dilute” and “saturated” regime.

The state of the saturated QCD matter is described by theory of the color glass condensate (CGC).
This state can be created in DIS at lowx or in the high energy collisions of heavy nuclei. In the latter
case, the CGC phase turns after the collision into the new state of matter called the quark gluon plasma
(QGP). The experimental data from the gold–gold collisionssuggests that the latter state has been
attained at RHIC. The evidence is providede.g.by the observed suppression of leading particles.

The properties of QGP can be studied by analyzing modifications of jets created in the collisions
of heavy ions. The attenuation of yields of high momenta particles measured at RHIC supports this
idea. The theoretical framework used to describe jets is similar to that developed for the case of DIS. In
particular, one also performs the infinite resummation of terms containing large logarithms generated
by soft and collinear gluons. However, the satisfactory theoretical description of the interactions of jets
with the dense QCD matter is still not available. Instead, one uses realistic models of jet modifications.
This allows to study the properties of QGP and on the other hand, confronted with the data, may guide
the theoretical investigations. The study of jets modified by the dense medium is the subject of the
second part of this Thesis.
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The outline of the dissertation is the following.
Chapter 1 serves as an introduction in which we review basic facts concerning QCD and establish

notation. There, we present the standard approach to DIS in the framework of the collinear factor-
ization and introduce the concept of parton distribution function. We also discuss the linear evolution
equation, called DGLAP equation.

In Chapter 2, we focus on the DIS in the limit of lowx (or equivalently high energy of theγ∗p
collision). We discuss the framework ofk⊥ factorization and the BFKL evolution equation, which
allows to calculate the unintegrated gluon distributions in the regime of dilute system. There, we also
establish the relation between the collinear andk⊥ factorization. Finally, in Chapter 2, we point out the
deficiencies of the BFKL equation in the regime of dense gluonic systems and the necessity to account
for the saturation effects in this limit.

In Chapter 3, we present the study of the heavy flavor production in deep inelastic scattering in
the framework of a saturation model based on QCD. The model was proposed by Golec-Biernat and
Wüsthoff and further improved by Bartels, Golec-Biernat and Kowalski. We demonstrate that this
model is not only able to precisely fit the HERA data but also tocorrectly predict the charm and
beauty quark contributions to the proton structure function as well as some other quantities.

In Chapter 4, we introduce the basic QCD equation, which captures the essential features of satu-
ration, namely the BK equation. We show that solutions of this equation are in qualitative agreement
with the assumptions of the saturation model from Chapter 3.We also describe a specific method of
analyzing the BK equation proposed by Munier and Peschanski, called the traveling waves approach.
This method allows to obtain solutions of the BK equation in the limit of asymptotically smallx.

In Chapter 5, we study, in the framework of the traveling waves approach, the asymptotic solutions
of the most developed form of the BK equation, namely with therunning coupling and the NLL BFKL
kernel. We obtain solutions for the scattering amplitude aswell the saturation scale. We also explore
the possibility of adopting our asymptotic result to the phenomenological energies.

In Chapter 6, we discuss the essential facts concerning jetsand their characteristics. We introduce
the notion of the fragmentation function, which is an objectcomplementary to the parton distribu-
tion function used in the description of DIS. There, we also discuss the the perturbative equation for
fragmentation functions called MLLA as well as its solutions.

In Chapter 7, a new approach to access the properties of medium created in heavy ion collisions at
the LHC is proposed, namely by studying change of the hadronic composition of jets. As a theoretical
framework, we use the formalism from Chapter 6 supplementedby the radiative energy loss model
of Borghini and Wiedemann. We analyze the impact of the modification of parton shower caused by
the medium on the abundances of pions, kaons and protons. We provide predictions for the hadronic
spectra and ratios which can be tested as soon as the data fromthe ALICE experiment is available.

The summary of the Thesis is given in Chapter 8, which is followed by three appendices.

The original work, presented in this Thesis, is based on the following publications

• “Heavy flavour production in DGLAP improved saturation mode l”
K. J. Golec-Biernat and S. Sapeta, Phys. Rev. D74, 054032 (2006)

• “QCD traveling waves beyond leading logarithms”
R. B. Peschanski and S. Sapeta, Phys. Rev. D74, 114021 (2006)

• “Jet hadrochemistry as a characteristic of jet quenching”
S. Sapeta and U. A. Wiedemann, arXiv:0707.3494 [hep-ph], CERN-PH-TH-2007-111 (2007)
to be published in Eur. Phys. J. C



Chapter 1

Introduction

1.1 QCD essentials

Quantum Chromodynamics (QCD) [1–4] is a non-Abelian local gauge theory describing the strong
interactions of quarks and gluons. The Lagrangian of QCD is required to be invariant under the trans-
formations from the SU(3) group. The postulate of the SU(3) color symmetry stems from the fact
that only color singlet states are observed in experiment. Indeed in nature we have mesons (qq̄) and
baryons (qqq) rather than free quarks. Consequently, all the propertiesof the particles that we measure
in experiment are color-independent.

The SU(3) group is a Lie group specified by eight generatorsT a, which form the Lie algebra [1]

[T a, T b] = ifabcT c, (1.1)

wherefabc are called the structure constants of the group anda, b, c = 1, . . . , 8. Two representa-
tions (R) of the SU(3) group are of particular importance. The first isthe fundamental representation
(R ≡ F ). The generators in this representations are the 3×3 matricesT a

mn(F ) = 1
2λ

a
mn, where

m,n = 1, 2, 3 andλa are the Gell-Mann matrices. The quark is a three-dimensional vector in the
color space, with colors being red, green, blue. The elements of the SU(3) group in the fundamen-
tal representation act on a quark state and change its color.The second important representation is
theadjoint representation(R ≡ A). Here, the generators have the form of the 8×8 matrices given by
T a

bc(A) = −ifabc. This matrices act in the eight-dimensional space of gluon states. For any representa-
tionR one can construct an object

∑

a T
a
ik(R)T a

kj(R) = CRδij called the quadratic Casimir invariant.
The value of the constantCR in the fundamental representation is given byCF = (N2

c − 1)/(2Nc)
whereas in the adjoint representation byCA = Nc, whereNc is the number of colors. Therefore, for
the case of SU(3) we haveCF = 4

3 andCA = 3.
The QCD Lagrangian density reads [1]

L = −1

4
Tr [Fµν F

µν ] +
∑

f

q̄f
m (iD/−mf )mn q

f
n + Lgauge-fixing+ Lghost, (1.2)

with Fµν = F a
µν T

a where

F a
µν =

[

∂µA
a
ν − ∂νA

a
µ − g fabcAb

µA
c
ν

]

. (1.3)

The quark field with flavorf and massmf is denoted byqf whereas the gluons fields byAµ, where
µ, ν are the Lorentz indices. The sum in Eq. (1.2) runs over the number of active flavorsnf . We have
also introduced the notationD/ ≡ γµDµ, whereγµ are the Dirac matrices satisfying{γµ, γν} = 2gµν ,

7



8 1.1. QCD essentials

n, ν

a, µ

c, ρ n, ρ

a, µ

g g

b, ν m, ν

m, µb, νa, µ

d, σ

c, ρ

a, µ

g2

b, ν

Figure 1.1: Feynman graphs for QCD in the ghost-less gauge. The solid lines represent quarks whereas
the curly lines correspond to gluons.

with the metricgµν = diag(1,−1,−1,−1). ByDµ we denote the covariant derivative, which depends
on the fieldsAa

µ and is defined as

Dµ[A] = ∂µ + i g Aa
µ T

a. (1.4)

The strength of the interaction is specified byg, which is called thecoupling constant. Hereafter, we
will use also the quantities

αs =
g2

4π
or ᾱs =

Nc

π
αs. (1.5)

The first two terms in the Lagrangian (1.2) describe the quarkfields qf
n, the gluon fieldsAa

µ and
their interactions. This part of the Lagrangian is by construction invariant with respect to the SU(3)
group transformation [3]

q′(x) = U(x) q(x), F ′
µν(x) = U(x)Fµν(x)U−1(x), (1.6)

[Dµ[A] q(x)]′ ≡ Dµ[A′] q′(x) = U(x)Dµ[A] q(x), (1.7)

whereU(x) = exp (θa(x)T a) is in the fundamental representation. The invariance of theLagrangian
density (1.2) with respect to the gauge transformations (1.6) and (1.7) means that there is an infinite
number of configurations of fieldsAµ(x) which are physically equivalent. These equivalent fields are
related to each other by the gauge transformation.

The quantization of the gauge fields is possible only if some specific gauge is chosen and fixed.
This is necessary to avoid double counting,i.e. considering the physically indistinguishable configura-
tions. Such a quantization with constraint, by the method ofLagrange multipliers, gives rise to the third
term in Eq. (1.2). In addition, in the case of the non-Abeliantheory such as QCD, for some gauges,
one is forced to introduce extra fields into the formalism, the so calledghosts, which are described by
the last term in Eq. (1.2).

In particle physics we are interested in calculating quantities such as decay widths or cross sections
for scatterings. They all depend on the squared amplitudes for the transition between some incoming
and outgoing states. In the region of small coupling one can expand the amplitude in powers ofg and
calculate terms order by order. This theoretical frameworkis calledperturbative QCD(pQCD). The
natural language of the perturbative theory are Feynman graphs representing propagation of quarks and
gluons as well as their interactions. For the sake of example, we depict in Fig. 1.1 the propagators of the
gluon and the quark as well as the quark-gluon, three-gluon and four-gluon vertices. The appearance
of the three-gluon vertex is a nontrivial property of QCD since it means that the self-gluon interaction
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is present already at the lowest orderO(g). The three-gluon vertex arises from the third, non-Abelian
term in the field strength tensor (1.3). The Feynman graphs together with additional set of rules allow
to write the expression for amplitude in an efficient an unique way. One should, however, keep in mind
that the Feynman rules may differ significantly in differentgauges. This proves to be very useful since
it allows to choose the most suitable gauge for each problem.

In the regime of large coupling other techniques must be usedsuch ase.g. lattice QCD. In this
approach the theory is formulated in the Euclidean space, which is in turn discretized into the four-
dimensional lattice with spacinga. Local gauge invariance is preserved. The action obtained by this
procedure is used to calculate the expectation values of various operator associated, for instance, with
hadronic masses orqq̄ potential. The lattice spacinga must be much smaller than the size of the
studied object,e.g. the hadron radius. In the following, we will refer to all the effects which cannot be
studied in the perturbative theory as thenon-perturbative effects.

We see that the value of the coupling is of crucial importancefrom the point of view of applicabil-
ity of the perturbative QCD techniques. But so farg is a constant so how one can speak about various
limits of QCD? It turns out that when one tries to calculate amplitudes at higher orders one encounters
the expressions containing momentum integrals which are divergent as momentum goes to infinity
(UV divergences). The integrals can be formally calculated, e.g. by introducing a cut-off parame-
ter µ. Such procedure is calledregularizationand exists in many various versions. The expressions
which are obtained have the terms which are finite and the terms which are infinite after removing the
cut-off. The reason why the divergent terms appear is that the couplingg from the Lagrangian (1.2),
which we call “bare” coupling, is not a correct expansion parameter and has to be redefined. The
bare coupling absorbs the divergent terms and gives finite, experimentally measured quantity which
we call “physical coupling”. This procedure is calledrenormalization. Similar procedure has to be
also applied to the bare mass an the bare fields from (1.2). Subsequently, the Lagrangian density (1.2)
can be rewritten in terms of physical (i.e. renormalized) quantitiesΦren(µ),mren(µ) andgren(µ). This
new Lagrangian naturally splits into two parts. The first part has the form which is identical to (1.2)
but with the physical quantities instead of bare. The secondpart consists of the so called counterterms
which are formally divergent. These divergences cancel however the divergences from the “bare-like”
part so the perturbation theory based on the renormalized Lagrangian gives finite results. The problem
is, however, not fully solved since we have an arbitrary parameterµ in the Lagrangian. Moreover, the
Lagrangian depends on the details of the regularization procedure. Such a situation is in principle al-
lowed provided that we require that all observables are independent of the choiceµ. This requirements
leads to therenormalization group equations. One of them determines the evolution of the coupling

µ2∂αs

∂µ2
= β(αs). (1.8)

The functionβ(αs) introduced above has a perturbative expansion. For the caseof perturbative QCD
(αs ≪ 1) this function is negative,β(αs) < 0, which means that the coupling decreases with in-
creasingµ2. This is a fundamental property of the theory, calledasymptotic freedom, since due to the
smallness of the coupling at high energies quarks behave effectively as free particles. In contrast, in
Quantum Electrodynamics (QED)β(αem) > 0 and the coupling grows with the scale. At the lowest
orderβ(αs) = −bα2

s whereb = (11CA − 2nf )/(12π) and the Eq. (1.8) can be solved analytically
giving

αs(µ
2) =

1

b ln
(

µ2

Λ2

) . (1.9)

The constantΛ is a fundamental parameter of QCD. This is, by definition, thescale at which the
coupling calculated perturbatively diverges.Λ can be determined from experiment. Its value depends,
however, on the precise definition (which involvese.g. the number of flavors and renormalization
scheme) and varies between 100 MeV and 300 MeV.
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Besides the asymptotic freedom, the second important feature of QCD isconfinement. This is a
non-perturbative phenomenon and has to do with the fact thatfree quarks or gluons are not observed
in experiment. Instead, only the color singlet states of theSU(3) group are registered. Indeed, lattice
studies show that the potential between the pair of quarks islinear in energy. Thus, it would require
infinite amount of energy to separate the two color charges.

1.2 Space-like branching and deep inelastic scattering (DIS)

We begin our discussion of the high energy limit of QCD from one of the most important processes
which has served as a testing ground for the theory right fromits origin. Let us consider the scattering
of a charged lepton with four-momentumk off a hadron with four-momentump with the outgoing
particles being the electron with momentumk′ and anything else. Such a process is calleddeep
inelastic scattering(DIS). The lepton and the hadron interact via exchange of a virtual photon1 like
depicted in Fig. 1.2. The emitted photon carries four-momentum q equal to the change of the electron

k

k’

q

p

Figure 1.2: Kinematics of deep inelastic lepton-hadron scattering.

momentumq = k′ − k. One usually defines in this context the following set of invariants [3]

Q2 = −q2,

x =
Q2

2p · q ,
ν = p · q,
y =

ν

k · p, (1.10)

where−Q2 is the virtuality of the exchanged photon whereasx, known as the Bjorken variable, mea-
sures the inelasticity of the process, withx = 1 corresponding to the elastic scattering. Finally,y is
interpreted in the hadron rest frame as the electron energy transferred to the hadron normalized to the
energy of the incoming electron. It is useful to introduce the notation for the center-of-mass energy in
theγ∗p system, which can be expressed byQ2 andx

W 2 ≡ (p + q)2 = Q2

(
1

x
− 1

)

. (1.11)

1Strictly speaking, also theZ0 boson exchange can take place. Here we restrict ourselves tothe situations with the
interaction via virtual photon.
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The cross for the DIS process can be factored into a leptonic and a hadronic piece [3,5]

dσ

dxdQ2
=

2πα2
em

x2s2Q2
LµνWµν , (1.12)

whereαem is the electromagnetic coupling. The leptonic part can be completely determined from
QED, and assuming that only photon is exchanged, we obtain

Lµν = 2
(
kµk′ν + kνk′µ − gµν k · k′

)
. (1.13)

The hadronic tensor describes the interaction of the virtual photon with a complex target and only
general expression forWµν can be written [3]

Wµν =
1

4π

∑

n

〈p|Jν(0)|n〉〈n|Jµ(0)|p〉 (2π)4δ4(q + p− pn), (1.14)

whereJµ is the electromagnetic current and the sum runs over the complete set of final states. Using the
conservation ofJµ and the parity conservation one may derive the most general form of the hadronic
tensor

W µν =

(

gµν − qµqν

q2

)

F1(x,Q
2) +

(

pµ +
1

2x
qµ

)(

pν +
1

2x
qν

)
1

ν
F2(x,Q

2), (1.15)

which leads to the following expression for the DIS cross section

d2σ

dxdQ
=

4πα2
em

Q4

{
[
1 + (1 − y)2

]
F1(x,Q

2) +
1 − y

x

[
F2(x,Q

2) − 2xF1(x,Q
2)
]
}

. (1.16)

In the above, we have introduced twostructure functions, F1 andF2, which contain the information
about the hadron probed by the virtual photon. This functions cannot be calculated within pQCD for
the case of the proton which, due to its small mass, is a non-perturbative object.

Alternatively, one can introduce the functionsFT andFL which are related to theγ∗p cross section
with the transversely and longitudinally polarized photon, respectively

FT ≡ Q2

4π2αem
σT = 2xF1, (1.17)

FL ≡ Q2

4π2αem
σL = F2 − 2xF1, (1.18)

and we also have
F2 = FT + FL. (1.19)

The expansion (1.16) is general and can be used with any modelof the hadron structure. For
instance, one may assume that the hadron consists of elementary objects with spin12 , calledpartons,
and that the virtual photon interacts with the hadron by interacting electromagnetically with individual
partons. Thisnaive parton modelwas proposed before the advent of QCD. Its main prediction was
the so calledBjorken scaling, observed at that time in the DIS data from SLAC, which means that in
the limitQ2 → ∞ and fixedx the structure functionF2(Q

2, x) → F2(x). Moreover, the longitudinal
structure function vanishes and we obtain the Callan-GrossrelationF2(x) = 2xF1(x), or equivalently
FL(x) = 0. Thex-Bjorken in the naive parton model is equal to the fraction ofthe proton momentum
carried by the struck parton.

From the QCD viewpoint, the partons introduced in the above model should be identified with
quarks. However, Quantum Chromodynamics supplements the above picture by introducing gluons.
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This leads to the logarithmic violation of the Bjorken scaling, as well as to the nonzero value of
FL. We see already at this stage that the longitudinal structure function probes directly the gluonic
content of a hadron. As mentioned above, the structure functions of proton cannot be calculated
within the perturbation theory. Nevertheless, what can be determined is how these functions change
with Q2. Before we derive the evolution equations forF2 let us try to identify which classes of
Feynman diagrams give the leading contributions.

1.3 Leading logarithmic approximation (LLA)

Let us consider the situation in which instead of a hadron we have a massless quark as the target. In
this case the tensorWµν may be calculated perturbatively. It is related to the imaginary part of the
forward elastic scattering amplitudeTµν by the optical theorem

Wµν =
1

2π
ImTµν . (1.20)

Thus, instead of summing over all possible final states it suffices to consider the elasticγ∗–parton
scattering. Then, theparton structure functions, which we denote asF̂i, can be extracted fromWµν

using Eq. (1.15).

Sudakov variables

It proves to be useful to represent all parton four-momentak in the following form, known as the
Sudakov decomposition

kµ = α q′µ + β p′µ + k⊥µ, (1.21)

k2 = αβs− k2
⊥µ, (1.22)

wheres ≡ 2 p′ · q′ and the vectorsq′ andp′ lie on the light cone whereask⊥ is perpendicular to both
of them

q′2 = p′2 = 0, (1.23)

q′µk⊥µ = p′µk⊥µ = 0. (1.24)

For the case ofγ∗p (γ∗-parton) scattering we obtain (keeping the notation from the previous section)

qµ = q′µ − xp′µ, pµ = p′µ +
m2

p

s
q′µ ≈ p′µ, (1.25)

where typically the target massm2
p ≪ Q2 ands ≈ 2 p · q.

1.3.1 Born level

The lowest order (Born level) diagram is shown in Fig. 1.3a. With aid of Eq. (1.20) we obtainWµν ∼
e2qδ((p + q)2), with eq denoting the quark electric charge. This, in turn, leads to

F̂2(x) = e2qδ(1 − x). (1.26)

Hence, in this casêF2 depends only onx, so we obtain the result compatible with the Bjorken scaling
(this time for quark). The delta function means that at the lowest order only the elastic photon-quark
collision can occur. This way we have rediscovered the naiveparton model for the case of theγ∗q
scattering.
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Figure 1.3: Deep inelastic scattering off quark: (a) lowestorder (Born level), (b) one gluon emission -
ladder diagram (c) one gluon emission - interference diagram.

1.3.2 One and multi-gluon emission

Let us now allow for one gluon being emitted from the quark line. In such a case we encounter two
classes of diagrams: the ladder diagram of Fig. 1.3b and the interference diagrams like the one depicted
in Fig. 1.3c.

Since this time we work in the framework of QCD, the choice of gauge for the gluon field becomes
an issue. It turns out that the most physically transparent picture appears when one adopts thelight-
cone gaugedefined as [6]

Aa
µq

′µ = 0, (1.27)

with q′ being the light-like vector defined in Eqs. (1.21), (1.23) and (1.24). This choice of gauge
ensures that gluons have only two physical (i.e. transverse) polarizations. More importantly, in the
light-cone gauge (1.27) the contribution of the ladder diagram of Fig. 1.3b to the hadronic tensor can
be schematically written as

Wµν ∼ αs

2π

∫ Q2

d|k2
⊥|

|k2
⊥|

, (1.28)

whereas the interference diagram depicted in Fig. 1.3c gives

Wµν ∼ αs

2π

∫ Q2

d|k2
⊥|

|k2
⊥|

|k⊥|. (1.29)

Hence, due to the logarithmic divergence in transverse momentum (or virtuality) the ladder diagram
gives the dominant contribution to the tensorWµν in the case ofγ∗–quark scattering. This is known
as thecollinear enhancement. The suppression of the interference diagram with respect to the ladder
diagram results from the absence of the second gluon propagator.

The above result can be generalized to the case withn emitted gluons. The dominant contribution
comes from the diagram shown in Fig. 1.4a in which each gluon emission provides a singular integral.
The corresponding contribution toWµν reads

Wµν ∼
(αs

2π

)n
∫ Q2

m2

d|k2
⊥ n|

|k2
⊥n |

∫ |k2
⊥n|

m2

d|k2
⊥n−1|

|k2
⊥n−1|

· · ·
∫ |k2

⊥ 2
|

m2

d|k2
⊥ 1|

|k2
⊥ 1|

=
1

n!

(
αs

2π
ln
Q2

m2

)n

, (1.30)

where we have introduced an arbitrary small cut-offm2 on the transverse momentum to regularize
the logarithmic divergence. This divergence appears sincewe consider here the theory with massless
quarks.



14 1.3. Leading logarithmic approximation (LLA)
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Figure 1.4: Multi-cell ladder diagrams forγ∗–quark deep inelastic scattering.

Formula (1.30) reveals the fundamental idea behind the LLA approach. For the processes in which
the hard scaleQ2 ≫ m2 is involved, despite the smallness of the coupling, we haveαs lnQ2/m2 ∼ 1
due to the large collinear logarithms. This, in turn, implies that in order to obtain the full LLA result
one has to sum an infinite number of the ladder diagrams. Moreover, the collinear divergent integrals
are accompanied by the infrared divergent integrals such that for the diagram of Fig. 1.4a we have [4]

Wµν ∼ 1

n!

(
αs

2π
ln
Q2

m2

)n

(1.31)

×
∫ 1

0

dβn

βn
δ

(

1 − x

βn

)∫ 1

βn

dβn−1

βn−1
· · ·
∫ 1

β2

dβ1

β1
P̂qq

(
βn

βn−1

)

P̂qq

(
βn−1

βn−2

)

· · · P̂qq

(
β1

1

)

,

whereβn is the Sudakov variable (for quark) defined in Eq (1.21) and

P̂qq(z) = CF
1 + z2

1 − z
(1.32)

is theunregularized splitting function. P̂qq(z) corresponds to the process in which the quark changes
its momentum fromk to zk via gluon emission. Hence, we see that the dominant contribution to the
hadronic tensor comes from the ladder diagrams with strongly ordered transverse momenta

m2 ≪ |k2
⊥ 1| ≪ |k2

⊥ 2| · · · ≪ |k2
⊥n| ≪ Q2. (1.33)

The longitudinal momentum fractions decrease when one moves along the ladder from the quark to
the photon

1 ≥ β1 ≥ β2 · · · ≥ βn ≥ x. (1.34)

The energy divergence which appears in Eq (1.32) vanishes ifone adds the contributions coming from
self-energy (virtual) corrections to the ladder diagrams as well as the corrections to the photon vertex.
This leads to theregularized splitting functions. In general, they have a perturbative expansion

Pqq(z, αs) = P (0)
qq (z) +

αs

2π
P (1)

qq (z) + . . . . (1.35)
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To obtain the complete picture of the deep inelasticγ∗–quark scattering at the leading order, one should
also include other types of ladder diagrams like those shownin Figs. 1.4b and 1.4c. They contain the
remaining possible emissions with respect toq → qg described byPqq(z). These are:q → gq with the
corresponding splitting function denoted asPgq(z), g → qq with Pqg(z) and finallyg → gg associated
with Pgg(z). The full set of the regularized, leading order (LO) splitting functions reads [7]

P (0)
qq (x) = CF

[
1 + x2

(1 − x)+
+

3

2
δ(1 − x)

]

, (1.36)

P (0)
qg (x) = TR

[
x2 + (1 − x)2

]
, TR =

1

2
, (1.37)

P (0)
gq (x) = CF

[
1 + (1 − x)2

x

]

, (1.38)

P (0)
gg (x) = 2CA

[
x

(1 − x)+
+

1 − x

x
+ x(1 − x)

]

+ δ(1 − x)
11CA − 4nfTR

6
, (1.39)

where we have introduced theplus distributiondefined by the integral with a smooth functionf(x) as
∫ 1

0
dx

f(x)

(1 − x)+
≡
∫ 1

0
dx

f(x) − f(1)

1 − x
. (1.40)

The DIS splitting functions have been so far calculated alsoat the next-to-leading (NLO) [8,9] and the
next-to-next-to leading order (NNLO) [10,11].

The leading orderunregularizedsplitting functionsP̂ (0)
ik (x) (i.e. the functions from Eqs. (1.36)-

(1.39) without the plus prescription and the terms proportional toδ(1 − x)) have the interpretation of
the probabilities of splitting of the partonk into the partoni with the momentum fractionx and the
partonj with momentum fraction1−x. Therefore, these functions are positive definite for0 < x < 1.

Finally, we can write the expression for the quark structurefunction at LLA

F̂2(x,Q
2,m2) = e2q x

[

δ(1 − x) +
∑

n

1

n!

(
αs

2π
ln
Q2

m2

)n

Pn(x)

]

, (1.41)

where byPn(x) we denoted the multiple integral like the one from the secondline of Eq. (1.31) but
summed over all possible combinations of the regularized splitting functions.

1.4 Collinear factorization

The quark structure function̂F2 calculated within LLA exhibits collinear (or mass) divergences which
have been temporarily regularized in Eq. (1.41) by introducing the cut-offm2. The appearance of
the collinear divergences can be understood by noticing that the limit k⊥ → 0 corresponds to the
soft part of the strong interaction for which the perturbation theory approach breaks down. Below
certain momentum scale one cannot speak about quarks and gluons any longer. Quarks and gluons
are not, however, directly observed in experiment. Instead, they constitute hadrons. The distributions
of partons inside hadrons (hereafterparton distribution functionsor pdfs), denoted byq(x,Q2) and
g(x,Q2) for quark and gluons respectively, are not calculable in pQCD since they contain input from
non-perturbative regime of the theory. Nevertheless, the hadron structure function can be written as
the convolution of the quark and the gluon structure functions, F̂ q

2 andF̂ g
2 , at some scaleµ2

F ≫ Λ2

with q(x, µ2
F ) andg(x, µ2

F ) distributions which absorb the collinear divergences

F hadron
2 (x,Q2) = x

∫ 1

x

dz

z

{
∑

q,q̄

q(z, µ2
F )F̂ q

2 (
x

z
,Q2, µ2

F ) + g(z, µ2
F )F̂ g

2 (
x

z
,Q2, µ2

F )

}

, (1.42)
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where the sum runs over all flavors of quarks and anti-quarks.The above formula is a non-trivial
property of QCD which comes under the name of thecollinear factorization theorem. It has been
proved to all orders inαs [12].

Collinear factorization deals with the logarithmic singularities. There are, however, also regular
terms inF̂ q andF̂ g which are to a certain degree arbitrary. For instance, some of them may be absorbed
into the quark or gluon distribution, which alone are not observables. This defines thefactorization
scheme. In particular, in theDIS factorization schemeall gluon contribution is absorbed into the quark
distribution and the structure function acquires especially simple form

F hadron
2 (x,Q2) = x

∑

q,q̄

e2qq(x,Q
2). (1.43)

What makes the concept of parton distribution functions themost attractive is the fact that once
they are determined for a given hadron from one process, theycan be used in any other process. This
means that parton distribution functions have the propertyof being universal.

1.5 DGLAP evolution equation

The result (1.42) has to be independent of the valueµ2
F since the factorization scale can be chosen

arbitrary provided that it stays in the perturbative regime. This leads to the condition that the derivative
of the right hand side of Eq. (1.42) with respect toµ2

F must be identically zero. Hence, we obtain the
evolution equations for the quark and the gluon density [7,13–15]

µ2 ∂

∂µ2

(
q(x, µ2)
g(x, µ2)

)

=
αs(µ

2)

2π

∫ 1

x

dz

z

(
Pqq(

x
z , αs(µ

2)) 2nfPqg(
x
z , αs(µ

2))
Pgq(

x
z , αs(µ

2)) Pgg(
x
z , αs(µ

2))

)(
q(z, µ2)
g(z, µ2)

)

,

(1.44)
where byq(x, µ2) we mean the sum of quarks and anti-quarks of all flavors,i.e. the so calledsin-
glet distribution. The above equation is known as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) equation [7, 13–15] and is an analogue of the renormalization group equation for evolution
of the running couplingαs(µ

2). Similarly to the renormalization group equation it allowsto calculate
the change of the function with scale but the absolute value at a given scale cannot be determined
without specifying an initial condition which is not provided by the theory itself.

1.5.1 Determination of parton distribution functions from DIS data

As pointed out at the end of Section 1.4, determination of pdfs is of great practical relevance. There-
fore, huge effort is being constantly made by many groups, which provide various sets of pdfs, to refine
their results. Among the recent ones, MRST2006 [16] and CTEQ6.5 [17] sets of pdfs are the most com-
mon. The strategy usually adopted is the following. One parametrizes the quark and gluon distribution
functions at some reference scaleQ2

0 in a rather general form, for instance
∑

iAix
αi
∑

k Bk(1−x)βk

in the case of MRST. The parameters are determined from the global fit to the experimental data,
with the DIS data being the most important input. The values of pdfs at scales different thanQ2

0 are
calculated by solving numerically the DGLAP equations (1.44). This is done currently up to the next-
to-next-to leading order. Typically,Λ is left as a free parameter so this is also a method to pin down
the value of this fundamental parameter of QCD.

1.5.2 Solution for gluon density at lowx

The leading order DGLAP equation can be solved analyticallywith help of the Mellin transform. In
this Thesis we are interested in the high energy limit of QCD,which for the case of DIS means that
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W 2 is large. This, in turn, via the relation (1.11), corresponds to low values ofx. It turns out that
for such a case quarks may be neglected in the first approximation and we obtain from Eq. (1.44) the
diagonal equation for the gluon density

µ2∂g(x, µ
2)

∂µ2
=
αs(µ

2)

2π

∫ 1

x

dz

z
P (0)

gg (z)g
(x

z
, µ2
)

. (1.45)

This equation can be written in a more compact form after introducing the variablet, which absorbs
the one-loop running coupling (1.9)

t =
1

2πb
ln

ln(µ2/Λ2)

ln(Q2
0/Λ

2)
, (1.46)

whereQ2
0 is the starting scale of the evolution at which the initial condition must be specified. The

DGLAP equation becomes

∂xg(x, t)

∂t
=

∫ 1

x
dzP (0)

gg (z)
x

z
g
(x

z
, t
)

. (1.47)

Taking the Mellin transform, defined and discussed in Appendix A, leads to

∂g̃n(t)

∂t
= γ̃(0)

n g̃n(t), (1.48)

where the quantitỹγ(0)
n , defined as the logarithmic derivative of the Mellin moment of the gluon

distribution g̃n(t), is called theanomalous dimensionand for the case of Eq. (1.47) it coincides with
the Mellin transform of the splitting function

γ̃(0)
n =

∫ 1

0
dz zP (0)

gg (z)zn−1. (1.49)

Due to properties of the Mellin transform (see Appendix A) the DGLAP equation (1.47) becomes an
algebraic equation (1.48), which can be instantly solved. After applying the inverse Mellin transform
we arrive at

xg(x, t) =

∫

C

dn

2π
g̃n(0) exp

(

n ln(1/x) + γ̃(0)
n t
)

, (1.50)

whereg̃n(0) is the Mellin moment of the initial condition and the integration contour,C, runs parallel
to the imaginary axis to the right of all singularities of theintegrand. In the double logarithmic limit
(DLLA), Q2 → ∞ andx → 0, the above integral can be calculated by the saddle point method and
we obtain [18]

g(x,Q2) ∼ 1

x
exp

√

4Nc

πb

lnQ2/Λ2

lnQ2
0/Λ

2
ln

1

x
. (1.51)

Hence, indeed we see that the gluon density is enhanced in theregion of smallx growing faster than
any power ofln(1/x).



Chapter 2

Deep inelastic scattering at lowx

The LLA description of the DIS processes is supposed to be valid when the photon virtualityQ2 is
much grater than any other scale. In such case terms of the type αs lnQ2 ∼ 1 give the dominant
contribution to the cross section. However, in the region ofsmallx, which in the case of DIS, through
the relation (1.11) is equivalent to the limit of largeW 2 ≃ Q2/x, the energy logarithms start to be
important. The LLA formalism contains only those energy logarithms which are accompanied by the
collinear logs. Hence, for the case of smallx it DIS should, in principle, work correctly in the double
logarithmic limit. As we see in Fig. 2.1, the kinematic region of HERA is not of DLLA type since when
we decreasex we reduce at the same timeQ2 instead of increasing it. In this case the single energy
logarithms should give the most important contribution. Consequently, one would expect that in order
to properly describe DIS at lowx a scheme in which the single logarithmic terms of the typeαs lnW 2

are resummed should be designed. Such a resummation, which in addition keeps exact transverse
momentum dependence, has been accomplished by Balitsky, Fadin, Kuraev and Lipatov [19–22]. It
results in the evolution equation in energy. At the leading order, the resummed terms are of the type

(

ᾱs ln
W 2

W 2
0

)n

, (2.1)

with ᾱs defined in Eq. (1.5), andW 2
0 being a constant introduced for dimensional reasons. At the

next-to-leading order, corrections suppressed by one power of the coupling are added

ᾱs

(

ᾱs ln
W 2

W 2
0

)n

. (2.2)

In Section 2.1 we discuss various facts concerning the BFKL equation at the leading and higher
orders. We introduce the framework of thek⊥ factorization in which the BFKL description of the high
energy collision is formed. The relation between thek⊥ factorization and the collinear factorization
is established in Section 2.2. The BFKL equation is supposedto be valid only in the limit of the
dilute system of gluons. The possible approaches to handle the dense gluonic system are discussed in
Section 2.3.

2.1 k⊥ factorization and BFKL evolution equation

The amplitude for elasticγ∗p scattering in the limit of largeW 2 (or equivalently smallx) can be
represented diagrammatically as in Fig. 2.2a, wheret ≈ −q2 is the square of the total momentum
transfer which is, in turn, dominated by its transverse componentq. The inclusive DIS cross section is

18
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Figure 2.1: HERA kinematic plane.

obtained via the optical theorem as a cut of this diagram [23]

σT,L(W 2) =
G

(2π)4

∫
d2k1

k2
1

d2k2

k2
2

ΦT,L(k1,q)Φp(k2,q)F(W 2,k1,k2,q)

∣
∣
∣
∣
∣
q=0

, (2.3)

whereki andq are the transverse momenta andΦT,L(k1,q) andΦp(k2,q) are the so called photon and
proton impact factors. The above equation is known as thek⊥ factorization formula. The constantG
is a color factor which depends on the process.

The central blob in Fig. 2.2a corresponds to the functionF(W 2,k1,k2,q) and represents the
object exchanged betweenγ∗ and the proton, which is called thehard Pomeron. It is by definition
a color singlet state and, in the BFKL description of high energy collisions, it has the form of a gluon
ladder as depicted in Fig. 2.2b for the forward case,q = 0. The BFKL equation is an equation for
F(W 2,k1,k2,q). At the leading order and in the forward case it has the form [23]

ωF̃(ω,k1,k2, 0) = δ2(k1 − k2) + K0 • F̃(ω,k1,k2, 0), (2.4)

where the kernelK0 is the integral operator defined as

K0 • F̃(ω,k1,k2, 0) =
ᾱs

π

∫
d2k′

(k1 − k′)2

[

F̃(ω,k′,k2, 0) −
k2

1

k′2 + (k1 − k′)2
F̃(ω,k1,k2, 0)

]

,

(2.5)
andF̃(ω,k1,k2, 0) is the Mellin transform ofF(W 2,k1,k2, 0). The first term on the right hand side
of Eq. (2.5) corresponds to the emission of the real gluon with transverse momentumk′ whereas the
second describes the virtual contribution.

The leading order BFKL equation (2.4) was derived in themulti-Regge kinematics

αi ≫ αi+1, |l⊥ i| ≃ |l⊥ i+1| ∼
√
s0, (2.6)

where we exploited the Sudakov decomposition (1.21) for themomenta of the horizontal gluons from
Fig. 2.2b, li = αip

′ + βiq
′ + l⊥ i. The constant

√
s0 ≪ W , which cannot be determined at the

leading order, is of the magnitude of a typical transverse momentum. It is not difficult to check, using
Eqs. (1.21) and (1.22), that the strong ordering inαi leads to oriented in the opposite direction ordering
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Figure 2.2: Deep inelastic scattering in the high energy limit: (a) structure ofγ∗p amplitude (b) ex-
change of the BFKL Pomeron.

in βi. Finally, when the light-like vectorsp′ andq′ are chosen to be parallel to thez axis in theγ∗p
collinear frame, we obtainyi − yi+1 ≃ lnαi/αi+1, where

yi =
1

2
ln
Ei + lz,i

Ei − lz,i
(2.7)

is the physical rapidity. Hence, the first condition from Eq.(2.6) is equivalent to the strong ordering in
rapidity

yi ≫ yi+1. (2.8)

In contrast to the DGLAP equation, here the transverse momenta are not order. They are instead
integrated over the whole phase space. It is worth to mentionthat there is no collinear divergence
in the BFKL equation (2.4) since the expression in the squarebrackets in Eq. (2.5) compensates the
logarithmic divergence of the integral ask′ → k1.

The vertical gluons arereggeized. This means that the standard gluon propagator (in the Feynman
gauge)Dµν(k2

i ) = −igµν/k
2
i is replaced by

Dµν(k2
i ) = −i gµν

k2
i

(
sij

s0

)ω(k2
i )

, (2.9)

wheresij = (li+ li+1)
2 andαG(k2

i ) = 1+ω(k2
i ) is the Regge trajectory of the gluon. Gluon reggeiza-

tion arises as a property of the color octet exchange channel. In Figs. 2.2a and 2.2b reggeization is
represented by the dashes on gluon lines.

Another important element introduced in the BFKL equation is theeffective vertexdenoted as
Γσi

µiνi+1
(ki, ki+1) and indicated in Fig. 2.2b by the dark blobs. It is obtained byadding a horizontal

gluon with momentum(ki − ki+1)
µi to all gluon lines.

The photon impact factor, which appears in the formula (2.3), can be calculated perturbatively. The
two graphs which contribute at the leading order are shown inFig. 2.3. The corresponding expressions
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for the transversely and longitudinally polarized photonsin the forward case are [5,23]

ΦT (k, 0) = 4αemαs

∑

f

e2f

∫ 1

0
dz

∫

d2l (2.10)

×
{

[z2 + (1 − z)2]

{
l

D(l)
− l + k

D(l + k)

}2

+m2
f

{
1

D(l)
− 1

D(l + k)

}2
}

,

ΦL(k, 0) = 16αemαsQ
2
∑

f

e2f

∫ 1

0
dz

∫

d2l z2(1 − z)2
{

1

D(l)
− 1

D(l + k)

}2

, (2.11)

where±l are the two-dimensional transverse momentum vectors of thequarks in the dipole as depicted
in Fig. 2.3 and we also introduced the following notation

D(l) = l2 + Q̄2, (2.12)

Q̄2 = z(1 − z)Q2 +m2
f . (2.13)

The sum in Eqs. (2.10) and (2.11) runs over the flavors,f , of the qq̄ pair withmf being the quark
(anti-quark) mass.

The proton impact factor has the non-perturbative nature. It proves to be convenient to combine it
with the functionF(x,k1,k2, 0) into one object called theunintegrated gluon distribution

f(x,k) =
1

(2π)3

∫
dk2

k2
2

Φp(k2, 0)k
2F(x,k,k2, 0), (2.14)

where, to simplify the notation, we did not write the explicit dependence on the momentum transferq

in f . In fact, for the purpose of the further discussion it is sufficient to restrict ourselves to the forward
case,q = 0. This is because in the remaining part of this chapter as wellas in Chapters 3–5 we are
interested in calculating fully inclusive quantities, which can be obtained from the forward scattering
amplitude via the optical theorem (1.20).

The BFKL equation for the Mellin moments of the unintegratedgluon distribution, assuming the
spherical symmetry of̃f(ω,k) and denotingk2 ≡ k2, has the form

ωf̃(ω, k2) = f̃0(k2) + ᾱsk
2

∫ ∞

0

dk′2

k′2

{

f̃(ω, k′2) − f̃(ω, k2)

|k′2 − k2| +
f̃(ω, k2)√
4k′4 + k4

}

, (2.15)

where the first term corresponds to the case in which only two gluons (i.e. the ladder without rungs)
are exchanged. Thek⊥ factorization formula is now given by

σT,L(x,Q2) =
G
2π

∫
dk2

k4
ΦT,L(Q2, k)f(x, k2), (2.16)
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Figure 2.4: Lipatov kernel at leading order.

where the constant for the case of DIS we haveG = 1
2 . Performing the Mellin transform with respect

to k2 leads to the following form of the BFKL equation

ωf̂(ω, γ) = f̂0(γ) + ᾱsχ(γ)f̂(ω, γ), (2.17)

with χ(γ) being the Lipatov kernel, shown in Fig. 2.4 and given by

χ(γ) = 2ψ(1) − ψ (γ) − ψ (1 − γ) , (2.18)

whereψ is the digamma function (logarithmic derivative of theΓ function)

ψ(γ) =
d

dγ
ln Γ(γ), ψ(1) = −γE, (2.19)

andγE ≈ 0.577 denotes the Euler constant. It is easy to check that applyingthe inverse double Mellin
transform to Eq. (2.17) results in yet another form of the BFKL equation for the unintegrated gluon
distribution

∂

∂ ln(1/x)
f(x, k2) = ᾱs χ

(
∂

∂ ln(k2/k2
0)

)

f(x, k2), (2.20)

wherek2
0 is an arbitrary constants which only adjust the dimension. The above form of the BFKL

equation will turn out to be particularly suitable for our further discussion.

2.1.1 Solution of the leading order BFKL equation in the forward case

The full solution of Eq. (2.4) is given by

F̃(ω,k1,k2, 0) =

∞∑

n=0

∫ ∞

−∞
dν

(
k2
1

k2
2

)iν
ein(θ1−θ2)

2π2k1k2

1

ω − ᾱsχn(ν)
, (2.21)

with the transverse vectors represented in the radial coordinates:k1 = (k1, θ1) andk2 = (k1, θ2). We
have introduced also the function

χn(ν) = 2ψ(1) − ψ

(
n+ 1

2
+ iν

)

− ψ

(
n+ 1

2
− iν

)

. (2.22)
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The leading behavior of the result (2.21) at largeW 2 corresponds to the large real part in theω plane.
The functionχn(ν) decreases with increasingn so the leading contribution comes fromχ0(ν). More-
over,χ0(ν) decreases with increasingν thus we can expand it and keep only the first two terms

χ0(ν) = 4 ln 2 − 14ζ(3)ν2 + . . . , (2.23)

whereζ denotes the Riemann zeta function. Hence, the approximatedsolution becomes

F̃(ω,k1,k2, 0) ≈
1

πk1k2

∫ ∞

−∞

dν

2π

(
k2
1

k2
2

)iν
1

ω − ω0 + a2ν2
, (2.24)

where we have definedω0 = 4ᾱs ln 2 anda2 = 14ᾱsζ(3). The integrand in Eq. (2.24) has a cut from
−∞ to ω0. After performing the contour integration and applying theinverse Mellin transform we
obtain

F(W 2,k1,k2, 0) ≈
1

√

k2
1k

2
2

(
W 2

W 2
0

)ω0 1
√

π ln(W 2/W 2
0 )

1

2πa
exp

(

− ln2(k2
1/k

2
2)

4a2 ln(W 2/W 2
0 )

)

. (2.25)

The above result exhibits the Regge type of the energy dependence, namely, the leading behavior is
power-like (W 2)ω0 . Taking, for instance, the phenomenologically motivated value of the coupling
ᾱs = 0.2 results in

σT,L ∼ F ∼ (W 2)0.5 ∼ x−0.5. (2.26)

This corresponds to the interceptαIP = 1 + ω0 greater than one and that is why the exchanged gluon
ladder is referred to as thehard Pomeron.

The leading order result (2.25) has a number of drawbacks which make it rather academic. Apart
from the fixed couplinḡαs and arbitrary parameterW 2

0 the valueω0 ≈ 0.5 is too large to correctly de-
scribe the lowx growth of the structure functionF2 measured at HERA. Moreover, the function (2.25)
satisfies the diffusion equation,i.e. with increasingW 2 the relevant range of transverse momenta
broadens as

√
lnW 2. Thus, it may happen that it enters the non-perturbative, infrared domain. The

problem of diffusion is the more severe the larger the difference ink⊥ between the colliding objects.
Hence, the collision of two highly virtual photons withQ2

1 ∼ Q2
2 is better suited for studying the BFKL

evolution than the DIS scattering where the virtual photon and the proton have significantly different
virtualities. All this gives a strong motivation to go the the next-to-leading order.

2.1.2 BFKL kernel at next-to-leading order

As mentioned at the beginning of this chapter, at the next-to-leading order terms with large single
logarithms accompanied by en extra power of coupling are added. This amounts to the following
change of the Mellin transform of the BFKL characteristic function

χNLL (γ) = χ0(γ) + ᾱsχ1(γ), (2.27)

whereχ0(γ) is the leading order result (2.18) andχ1(γ) the contribution coming from the summation
of subleading logarithms of the type (2.2). In principle, the series (2.27) can be extended to any higher
order. In practice, however, already the calculation ofχ1(γ) took almost a decade which gives an idea
about the complexity of the problem. Nevertheless, it turnsout that the structure of the collinear and
anti-collinear limit of the kernel (corresponding toγ → 0 andγ → 1, respectively) can be guessed by
imposing on the result the requirement of consistency with the renormalization group.

In order to understand the structure of the higher order corrections, let us consider scattering of
two objects with virtualities−k2

1 and−k2
2 , werek2

1, k
2
2 > 0. The collinear limit corresponds to the

DIS process in which the absolute value of the photon virtuality is much larger than that of the target,
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k2
1 ≫ k2

2 . The anti-collinear limit matches the symmetric situation, k2
2 ≫ k2

1 . Below, following [24],
we shall sketch the derivation of these terms ofχ1(γ), which are relevant in the collinear and anti-
collinear limit.

First, we notice that using the property of the digamma function, ψ(γ) = −1/γ + ψ(1 + γ), and
keeping inχ0(γ) only the terms important at the collinear and anti-collinear limit gives

χcoll
0 (γ) =

1

γ
+

1

1 − γ
. (2.28)

The corresponding result in the momentum space after multiplying by ᾱs has the form

Kcoll
0 (k2

1 , k
2
2) = ᾱs

Θ
(
k2
1 − k2

2

)

k2
1

+ ᾱs
Θ
(
k2
2 − k2

1

)

k2
2

. (2.29)

The question we want to address in what follows is: which additional contributions to the terms
from Eq. (2.28) or equivalently (2.29) can we expect at the next-to-leading order? It turns out that
they can come from three sources: the running of the coupling, the non-singular terms in the splitting
functions and the choice of the energy scale.

Running coupling effects

The coupling in QCD runs with the energy scale. From the DGLAPevolution we known that the
highest scale is usually the proper argument of the coupling. Hence, on the right hand side of Eq. (2.29)
the fixed coupling should be replaced byᾱs(k

2
1) in the first term and bȳαs(k

2
2) in the second term.

The relation between the two has the form

ᾱs(k
2
2) =

ᾱs(k
2
1)

1 + b ᾱs(k2
1) ln

k2
2

k2
1

, (2.30)

and for largek2
1 this can be approximated asᾱs(k

2
2) ≃ ᾱs(k

2
1) − b ᾱ2

s(k
2
1) ln

(
k2
2/k

2
1

)
. After applying

the Mellin transform to Eq. (2.29) with running couplings, we obtain an extra term with respect to
Eq. (2.28) which is a next-to-leading order contribution

χcoll,αs
1 (γ) = − b

(1 − γ)2
. (2.31)

Regular terms of splitting function

Taking into account the non-singular terms of the splittingfunction physically means considering the
ladder in which one of the splittings does not satisfy strongordering in energy (rapidity), that is one
large energy logarithm is lost. In the collinear limit of thehigh energy scattering this implies that
the DLLA terms(ᾱs ln k2 ln(1/x))n are replaced bȳαs ln k2(ᾱs ln k2 ln(1/x))n−1. Resummation of
this class of terms will give the contribution suppressed byᾱs and therefore belonging toχ1(γ). The
additional large collinear logarithm, not accompanied by the large logarithm of energy, after the Mellin
transform will convert into the1/γ term. Symmetric situation takes place in the anti-collinear limit
and altogether we obtain

χ
coll, split
1 (γ) =

A1

γ2
+

A1

(1 − γ)2
, (2.32)

whereA1 = −11/12 is the leading (inω which is the Mellin conjugate ofx) term from the gluon
splitting function,Pgg. In the above, the number of quark flavors,nf , was set to zero for simplicity.
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Figure 2.5: Next-to-leading order correction to the BFKL kernel

Energy scale choice

This source of the higher order corrections is more intricate. Let us recall that at the leading order
we resume terms of the type

(
ᾱs ln

(
W 2/W 2

0

))n
, whereW 2 is the center of mass energy. So far we

did not discuss the constantW 2
0 simply because its choice does not affect the leading order result (the

corrections contribute to higher orders). However, since this time we are interested in the next-to-
leading order contributions we have to address the issue ofW 2

0 more carefully. In the symmetric case,
k2
1 ≈ k2

2 , the choiceW 2
0 = k1k2 seems to be the most natural and, at the leading order, one resumes

the following terms
(

ᾱs ln
W 2

k1k2
ln
k2
1

k2
2

)n

. (2.33)

However, if we want to study the collinear (DIS) limitk2
1 ≫ k2

2 we are rather interested in terms
(
ᾱs ln(1/x) ln(k2

1/k
2
2)
)n

, with x = k2
1/W

2, thus the choiceW 2
0 = k2

1 is preferred. If use the leading
order result resummed with the symmetric scale and scrutinize it in the collinear limit we discover that
some additional terms arise, namely

(

ᾱs ln
W 2

k1k2
ln
k2
1

k2
2

)n

=

(

ᾱs ln
1

x
ln
k2
1

k2
2

)n

+
n

2

(

ᾱs ln
1

x
ln
k2
1

k2
2

)n−1(

ᾱs ln2 k
2
1

k2
2

)

+ . . . . (2.34)

The first piece is just the leading order contribution for theasymmetric scale choice. However, the
second part, which is formally next-to-leading, contains an additionaldouble collinear logarithmac-
companied by single coupling. The renormalization group does not allow for existence of such terms
so they must be canceled at the next-to-leading order. Therefore, we expect the following contribution
to χ1(γ)

χcoll, scale
1 (γ) = − 1

2γ3
− 1

2(1 − γ)3
, (2.35)

where1/γ3 results from the Mellin transform of the double collinear logarithm and the second term,
proportional to1/(1 − γ)3, arises from considering the anti-collinear limit.
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Full solution

The complete next-to-leading order correction to the BFKL kernel in the Mellin space was calculated
by Fadin and Lipatov [25] and independently by Ciafaloni andCamici [26]. It has the form

χ1(γ) = − π2 cos(πγ)

4 sin2(πγ)(1 − 2γ)

(

3 +
2 + 3 γ (1 − γ)

(3 − 2 γ)(1 + 2 γ)

)

− b
2

(
χ2

0(γ) − ψ′(γ) + ψ′(1 − γ)
)

+
ψ′′(γ)

4
+
ψ′′(1 − γ)

4

+

(
67

36
− π2

12

)

χ0(γ) +
3

2
ζ(3) +

π3

4 sin(πγ)
− φ(γ), (2.36)

where

φ(γ) =

∞∑

n=0

(−1)n
[
ψ(n + 1 + γ) − ψ(1)

(n+ γ)2
+
ψ(n + 2 − γ) − ψ(1)

(n+ 1 − γ)2

]

. (2.37)

The first line in (2.36) comes from the non-singular term of the splitting function. The first term
proportional tob in the second line is a contribution of the running coupling and the rest of this line
should be identified with the double collinear logarithmic terms of Eq. (2.35). The last line of (2.36)
does not have a clear interpretation and it is free of double or triple poles inγ.

The full NLL contribution,χ1(γ), is shown in Fig. 2.5. The correction turns out to be huge and
produces numerous pathologies. In particular, the Pomeronintercept becomes negative very quickly.
For instance, takinḡαs = 0.2 we obtain at the LL saddle pointγ = 1

2

ωNLL = ᾱsχ0(1/2)(1 − 6.46) ≃ −0.16, (2.38)

the value which has nothing to do with the energy growth seen in the DIS orγ∗γ∗ scattering data. In
addition,χNLL (γ) has now two complex saddle points which replace the value of theχ0(γ) kernel,
that isγ = 1

2 . This has a dramatic effect on the cross section, which acquires oscillatory behavior as
a function of the transverse momentum already forᾱs ≃ 0.05.

2.1.3 Resummation of terms beyond next-to-leading order

Due to its serious pathologies, the next-to-leading order BFKL kernel is of little practical use. The
large corrections brought byχ1(γ) indicate rather bad convergence of the series. Hence, to obtain a
stable result one would probably need to include several higher order terms of the expansion. The
corrections beyond NLL are, however, unknown and one shouldnot expect them to be calculated
soon. What can be done instead is to try to estimate the leading contributions to each higher order
term, NnLL, and resume them.

One of the possible methods to guess these leading contributions is by studying the collinear limit
of the BFKL kernel [24, 27–29]. In fact, this approach provesto be very efficient, as we have seen
in the preceding section, where in order to guess the NLL corrections the method was applied to the
LL kernel. The double logarithmic terms,1/γ3, encountered in the NLL kernel written for the scale
W 2

0 = k1k2, are necessary to cancel the corresponding terms produced by the LL kernel when the
scale is changed toW 2

0 = k2
1 . Such a change from the symmetric to the asymmetric scale is equivalent

to the shift of the argument of the kernel,γ → γ − ω/2. The requirement of vanishing of the double
collinear logarithms in the DGLAP limit,W 2

0 = k2
1, follows from renormalization group and, since it

must be satisfied at all orders, one could use the method from Section 2.1.2 to determine terms NnLL
in the collinear limit for arbitraryn. However, it is essential to understand that the pathologies similar
to those found for the NLL kernel will persist even if we go to avery large but finite NnLL order. This
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Figure 2.6: The exponentλ from the cross section parametrizationσγ∗p ∼ x−λ. The dashed curve (a)
corresponds to the LL result (2.26). The solid curve (b) results from using the improved LL BFKL
kernel (2.39) proposed in [30, 31]. The dotted curve (c) is obtained if only the terms up to the order
O(ᾱs) are kept in the kernel (2.39). The large and negative corrections observed in this case correspond
to the pathologies of the NLL BFKL kernel (2.36). Figure from[31].

is because every higher order contribution cancels the double logarithms of the preceding order but
brings its own instead. Thus, it is necessary to perform the resummation for alln from 0 to∞.

Hence, our goal is to modify the BFKL kernel known exactly, for the scaleW 2
0 = k1k2, at ordern

in such a way that it is free of double collinear logarithms after changing the scale toW 2
0 = k1k2 or,

equivalently, after applying the shift ofγ → γ + ω/2. Moreover, the modified kernel truncated at the
orderαn

s has to reproduce the exact NnLL result.
We start from the following modification of the asymmetric kernel, proposed in [30,31]

χa
0(γ, ω) = 2ψ(1) − ψ(γ) − ψ(1 − γ + ω). (2.39)

In the collinear limit, this kernel behaves as1/γ, hence it is free of spurious double collinear loga-
rithms. Similarly in the anti-collinear limit. At the symmetric scale the above kernel takes the form

χs
0(γ, ω) = 2ψ(1) − ψ

(

γ +
ω

2

)

− ψ
(

1 − γ +
ω

2

)

. (2.40)

This result expanded and truncated atᾱs correctly recovers the singular structure of the exact NLL
kernel taken in the collinear limit. In particular, the double logarithmic term1/γ3 with the right coef-
ficient ispredicted. The physical motivation beyond the modification (2.39) is clear and well-founded.
It follows form imposing on the leading order BFKL equation (2.15) the kinematic constraint on the
transverse momentum of the horizontal gluons from the ladder of Fig. 2.2b,l2i⊥ < (αi/αi+1)k

2
i+1⊥.

The improvement obtained by exploiting this condition is truly remarkable, as shown in Fig. 2.6. Yet,
we can still obtain a better result.

Suppose that we know the BFKL equation not only at the leadinglogarithmic accuracy but beyond,
up to the order NmLL. The construction of the proper symmetric kernel should proceed as follows.
We start from the requirement that at the scaleW 2

0 = k2
1 our kernel must be free of double logarithms

which means that it has to have the form

χasym(γ) =

N∑

n=0

n+1∑

k=1

ᾱn
s dn,kDk(γ), (2.41)
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where the functionsDk(γ) have only the divergence1/γk. If we known this kernel up to orderm
then by the shift we obtain the symmetric kernel. If we now modify our NmLL kernel in analogy
with Eq. (2.40) we will unambiguously reproduce all the regular termsO(ᾱn

s ) for n ≤ m and the
double logarithmic termsO(ᾱn

s /γ
k) for 2n + 1 − m ≤ k ≤ 2n + 1 andn > m. The subleading

double logarithmic terms and regular terms forn > m will depend on the specific choice of the
functionDk(γ). This ambiguity is reflected in the existence of a number of resummation schemes.
The differences between results obtained from various schemes quantifies the uncertainty of the regular
parts ofDk(γ).

In our study presented in Chapter 5 we will use the NLL BFKL kernels improved by the collinear
resummation. The discussion of three specific schemes is given in Section 5.1.

2.2 Relation between collinear andk⊥ factorization

Thek⊥ factorization formula for the DIS cross section, given in Eq. (2.16), is valid at lowx and at any
perturbative value ofQ2. Therefore, in the limitQ2 → ∞ it should give the result compatible with the
DLLA limit of the cross section (or the structure function) obtained in the framework of the collinear
factorization.

The photon impact factors given in Eqs. (2.10) and (2.11) canbe integrated overl by introducing
the Feynman parameterτ to deal with the products in the denominators

1

AB
=

∫ 1

0
dτ

1

[A+ τ(B −A)]2
. (2.42)

This leads to [23]

ΦT (k) = 4παemαs

nf∑

q=1

e2q

∫ 1

0
dz

∫ 1

0
dτ

k2

z(1 − z)Q2 + τ(1 − τ)k2

×
[
τ2 + (1 − τ)2

] [
z2 + (1 − z)2

]
, (2.43)

ΦL(k) = 32παemαs

nf∑

q=1

e2q

∫ 1

0
dz

∫ 1

0
dτ

k2

z(1 − z)Q2 + τ(1 − τ)k2

× [z(1 − z)τ(1 − τ)] , (2.44)

where, as before,−Q2 is the photon virtuality andk the transverse momentum of the exchanged
gluon, as shown in Fig. 2.3. For simplicity, we assume that quarks are massless. Let us substitute the
above expressions into thek⊥ factorization formula (2.16) and differentiate with respect to lnQ2. In
the double logarithmic limit, which corresponds toQ2 → ∞, the major part of the integration over
k2 ≡ |k|2 comes from the regionk2 ≪ Q2. Hence, after performing the integral overz we may neglect
terms suppressed byk2/Q2. It turns out that in this limit only the transverse photons contribute. We
obtain

∂F2(x,Q
2)

∂ lnQ2
= 2

nf∑

q=1

e2q
ᾱs

6

∫ 1

0
dτ

[
1

2

(
τ2 + (1 − τ)2

)
] ∫ Q2

dk2

k2
f(x, k2). (2.45)

The expression in the square brackets is just the splitting functionP (0)
qg (τ) defined in Eq. (1.37). The

integration overτ is trivial and it results in the factor23 . Hence, we can write

∂F2(x,Q
2)

∂ lnQ2
=

nf∑

q=1

e2q
ᾱs

9

∫ Q2

dk2

k2
f(x, k2). (2.46)
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Similar logarithmic derivative of the structure functionF2 can be obtained in the DLLA limit in the
framework of the collinear factorization. Differentiating Eq. (1.43) and substituting∂q/∂ lnQ2 by the
corresponding DGLAP equation with neglected quarks on the right hand side gives

∂F2(x,Q
2)

∂ lnQ2
=

nf∑

q=1

e2q
ᾱs

Nc

∫ 1

x
dzPqg(z)

x

z
g
(x

z
,Q2

)

. (2.47)

Since at highQ2 the functionx
z g(

x
z , Q

2) strongly decreases with the increasingx
z , the largest contribu-

tion comes from the regionz ≈ 1 and we are allowed to neglect thez dependence of the gluon density.
This gives the integral ofPqg(z) identical as in Eq. (2.45). Finally we obtain

∂F2(x,Q
2)

∂ lnQ2
=

nf∑

q=1

e2q
ᾱs

9
xg
(
x,Q2

)
. (2.48)

The comparison of Eqs. (2.46) and (2.48) allows us to establish the relation between the integrated and
the unintegrated gluon distributions valid in the DLLA limit, namely

xg(x,Q2) =

∫ Q2

dk2

k2
f(x, k2). (2.49)

The lower limit of integration overk2 in the above equation lies, in general, in the non-perturbative
domain. Therefore, in principle, one should also possess a meaningful description off(x, k2) in this
region in order to correctly use the relation (2.49).

2.3 Unitarity and saturation

In the preceding sections we have discussed two complementary approaches to the description of the
QCD dynamics. On one hand this is the DGLAP equation, which governs the evolution of parton
densities with the hard transverse scaleQ2. In the DLLA limit, Q2 → ∞ andx → 0, the integrated
gluon density resulting from this approach behaves as

xg(x,Q2) = exp

{

2
√

ᾱs ln(Q2/Q2
0) ln(1/x)

}

. (2.50)

On the other hand the solution of the lading order BFKL equation gives the unintegrated gluon density
of the form

f(x, k2) ∼ (k2)1/2x−λ exp

{

−A ln2(k2/k2
0)

ln(1/x)

}

, (2.51)

whereA is a positive constant. What the two above results have in common is that the growth of the
gluon density with energy is never slowed down. This statement remains valid also at higher orders.
However, when the gluon density becomes very high one expects the gluon merging processes to
become important. The untamed growth of parton density is anunwanted feature also because it leads
to the cross sections which, at large center-of-mass energys behave likesλ, and hence grow faster
than allowed by the Froissart-Martin bound [32,33]

σtot(s) ≤ const· ln2 s, (2.52)

which means that unitarity is violated. An equation which takes into accountgluon saturationat high
densities was first derived in the DLLA limit by Gribov, Levinand Ryskin (GLR equation) [34,35]

∂2xg(x,Q2)

∂ ln(1/x)∂ ln(Q2/Λ2)
= ᾱsxg(x,Q

2) − 4α2
sNc

3CFR2

1

Q2
[xg(x,Q2)]2, (2.53)
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Figure 2.7: Multiple Pomeron exchange diagrams: (a) fan diagram (b) Pomeron loop diagram.

whereR is the proton radius. The factor ahead the quadratic term wascalculated by Mueller and
Qiu [36]. The effect of slowing down the growth of the gluon density, or equivalently unitarizing
the cross section is obtained by resummation of the diagramswith multiple Pomeron exchanges. As
argued in [34,35], for the case of DLLA it is sufficient to include only a subclass of all graphs, the so
calledfan diagrams, which are depicted in Fig. 2.7a whereas other types, in particular diagrams with
Pomeron loops shown in Fig. 2.7b, may be neglected. The cigarshape blobs in Fig. 2.7 denote the
triple Pomeron vertices.

The original idea of Gribov, Levin and Ryskin triggered an enormous activity both on the theory
and phenomenology side. On one hand it resulted in a number ofequations which unitarize the BFKL
growth and incorporate parton saturation. In particular, Balitsky obtained in [37] an infinite hierarchy
of coupled equations forn-point Wilson line operators, valid at lowx. An equation identical in the
largeNc limit to the first equation of the Balitsky hierarchy was independently derived by Kovchegov
[38]. Thus, it is usually referred to as the Balitsky-Kovchegov (BK) equation. We will discuss its
properties in detail in the Chapter 4. The BK equation is a mean field approximation of the QCD
evolution. In contrast, the Balitsky hierarchy describes also fluctuations of the color field. Later on,
the equation equivalent the Balitsky hierarchy, known as the JIMWLK equation was derived [39–44].
It can be used to calculate the scattering amplitudes in the framework of the color glass condensate
[45,46].

On the other hand various phenomenological models were formulated which managed to ac-
count for a wide range of the DIS data. Among them, the color dipole model of Golec-Biernat and
Wüsthoff (GBW) [47,48] and its further improvement by Bartels, Golec-Biernat and Kowalski (BGK
model) [49] turned out to be particularly successful. The study performed in the framework of these
two models is the subject of the next chapter.



Chapter 3

Heavy flavor production in DIS in the
saturation model

As shown in the original papers of Golec-Biernat and Wüsthoff [47,48], the GBW saturation model [47]
was not only able to describe both the lowx structure functionF2 and the diffractive structure function
FD

2 measured at HERA, but also it incorporated all the essentialelements of saturation in a rela-
tively simple way. With the advent of the more precise data [50–52] this model needed, however,
an improvement in order to provide better description ofF2 at large values of the photon virtuality
(Q2 & 20 GeV2). This was attained by Bartels, Golec-Biernat and Kowalski (BGK model) [49] by
incorporating into the saturation model [47] a proper gluondensity evolving according to the DGLAP
equation.

Since the time of the first successful attempt of Golec-Biernat and Wüsthoff other descriptions of
DIS, based on the saturation physics, have appeared. These include the Regge-like model of Forshaw
and Shaw [53–55] the model of Iancu, Itakura and Munier [56] which tries to reconcile the BFKL
description with the theory of the color glass condensate aswell as the model of McDermott, Frankfurt,
Guzey and Strikman [57]. Also the BGK model extended by incorporating the impact parameter
dependence has been analyzed by Kowalski, Motyka and Watt [58]. For more details on these models
seee.g. the review given in [59].

Nevertheless, an important element was missing in the analyzes based on the BGK model as well as
most of other approaches (except [58]), namely, the heavy quark contribution to the structure function
F2. The recent data from HERA [60–62] shows that this contribution cannot be neglected by any
means since it reaches up to30%.

The main goal of the study presented in this chapter is to takeinto account heavy quark production
in the DGLAP improved saturation model and confront it with the recent data. This analysis does not
introduce new parameters to those already present. Once theparameters of the dipole cross section
are determined from a fit to the total structure functionF2, they can be used topredict the charm
and beauty contributionsF cc̄

2 andF bb̄
2 . In addition, the longitudinal structure functionFL and the

diffractive structure functionFD
2 can also be predicted.

We start from introducing the color dipole formalism in Section 3.1. Subsequently, we explain
the main features and recall the known results concerning the GBW and BGK models, respectively, in
Sections 3.2 and 3.3. In Sections 3.4 and 3.5 we describe the fits of the GBW and BGK models with
heavy quarks. The issues of critical line and geometric scaling are discussed in Section 3.6. Predictions
for the charm and beauty as well as the longitudinal structure function are presented in Section 3.7.
Finally the conclusions are given in Section 3.8.

The results presented in Sections 3.4-3.7 are based on the original publication [63].
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Figure 3.1: Theγ∗p interaction in the dipole formalism at smallx.

3.1 Color dipole formalism

Thek⊥ factorization formula (2.16) may be rewritten in various ways. The form which is particularly
suitable for discussion of saturation phenomena is the so called dipole representationin which theγ∗p
cross section is given by

σT,L(x,Q2) =

∫

d 2r

∫ 1

0
dz
∑

f

|Ψf
T,L (r, z,Q2)|2 σ̂ (x, r), (3.1)

The above formula can be obtained directly from Eq. (2.16) and the impact factors (2.10) and (2.11)
after using the following relations

∫

d2l

{
l

D(l)
− l + k

D(l + k)

}2

= Q̄2

∫

d2rK2
1 (Q̄r)

(

1 − e−i r·k
)(

1 − ei r·k
)

, (3.2)

∫

d2l

{
1

D(l)
− 1

D(l + k)

}2

=

∫

d2rK2
0 (Q̄r)

(

1 − e−i r·k
)(

1 − ei r·k
)

, (3.3)

where the notational shorthands from Eqs. (2.12) and (2.13)were used. The physical interpretation of
Eq. (3.1) is the most transparent in theproton rest frame, where the process may be diagrammatically
represented as in Fig. 3.1. The quantityΨf

T,L, called thephoton wave function, describes the splitting
of the photon with the virtuality−Q2 into thecolor dipole, that is aqq̄ pair separated byr in the
transverse plane. Quark and anti-quark carry the fractionz or 1 − z of the light cone momentum of
γ∗, respectively. For the case of the transversely and longitudinally polarized photon|Ψf

T,L|2 takes the
form

|Ψf
T (r, z,Q2)|2 =

3αem

2π2
e2f

{

[ z2 + (1 − z)2 ] Q̄2K2
1 (Q̄ r) + m2

f K
2
0 (Q̄ r)

}

, (3.4)

|Ψf
L (r, z,Q2)|2 =

3αem

2π2
e2f

{

4Q2 z2 (1 − z)2K2
0 (Q̄ r)

}

, (3.5)

where we denotedr ≡ |r|. Since the formation time of theqq̄ pair is inversely proportional tox in the
smallx limit, it is much larger than the interaction time. Consequently, the values ofr andz which
characterize the color dipole may be regarded as being frozen during the interaction. Therefore, one
can view theγ∗p interaction at smallx as a two-stages process where after the splitting of virtual
photon theqq̄ pair scatters on the proton with thedipole cross section̂σ(x, r), which has the following
relation to the unintegrated gluon distribution

σ̂(x, r) =
2π

3

∫
d2k

k4
αsf(x, k2)

(

1 − e−ikr
)(

1 − eikr
)

. (3.6)
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From Eq. (3.6) one sees that in the limitr → 0 the dipole cross section vanishes. This feature, called
the color transparency, is in accord with our expectations that in perturbative QCD, due to gauge
invariance, the interaction should die out as the object becomes colorless.

It is clear from Eq. (3.6) that the dipole cross section contains information about the gluonic content
of the proton. The dipole-proton interaction may involve single ladder exchange and, in such case,
would correspond to the BFKL result for the unintegrated gluon distribution. However, since the
integration in (3.1) includes also large distancesr, the dipole cross section should be valid as well
in this, non-perturbative region. Therefore, some modeling for the interactions of the large dipoles is
needed.

3.2 Golec-Biernat and Ẅusthoff saturation model

In the GBW model the dipole cross section is given by [47]

σ̂(x, r) = σ0

{

1 − exp

(

− r2

4R2
0(x)

)}

, (3.7)

whereR0(x), called thesaturation radius, was proposed in the following form

R0(x) =
1

Q0

(
x

x0

)λ/2

. (3.8)

One defines also thesaturation scaleas the inverse of the saturation radius

Qs(x) =
1

R0(x)
= Q0

(
x

x0

)−λ/2

. (3.9)

The above choice of the form of̂σ(x, r) andR0(x) was motivated by the following arguments

• for small values ofr the dipole cross section behaves likeσ̂ ∼ r2, hence it admits the color
transparency in accordance with the perturbative QCD predictions,

• for large values ofr the dipole cross section saturates reachingσ0 and that, in turn, results in
σγ∗p ∼ ln(1/x) which is consistent with the Froissart-Martin unitarity bound (2.52),

• for largeQ2 and smallx the leading behavior of the proton structure function isF2 ∼ x−λ, with
λ to be fitted, which on one hand agrees with what is observed in the DIS data and on the other
hand reproduces the BFKL result.

Hence, in the GBW model the BFKL-like one ladder exchanges dominate for small dipoles,
r < R0, whereas forr > R0 the multiple Pomeron interactions and non-perturbative effects be-
come important. This is in qualitative agreement with the GLR result mentioned in Section 2.3 and
also, as we will seen in the next chapter, with the BK equation.

In the original analysis [47] theQ0 parameter was taken asQ0 = 1 GeV. The remaining parameters,
σ0, λ andx0, were fitted to the lowxDIS data from H1 and ZEUS collaborations. The values from [47]
are given in the first row of Table 3.1. In this fit only three light quarks were considered with a common
massmq = 140 MeV, which was adopted in order to allow for the calculation of the photoproduction
cross section in the limitQ2 → 0. By “ndf” we denote the number of experimental points used inthe
fit. Also, the fit with the charm quark,mc = 1.5 MeV, was discussed in [47]. We quote the original
values of the parameters for this case in the second row of Table 3.1.

The dipole cross section from the light quark fit is shown in Fig. 3.2 as a function of the dipole
size for the values ofx changing from10−2 down to10−6. We see that there are two possibilities
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σ0 [mb] λ x0 χ2/ndf
light 23.03 0.288 3.04·10−4 1.18
light + c 29.12 0.277 0.41·10−4 1.50

Table 3.1: Parameters from the original fit of Golec-Biernatand Wüsthoff [47].
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Figure 3.2: Dipole cross section in the GBW model with parameters from the first row of Table 3.1.

to saturate the cross section: either by increasing the dipole size or by decreasingx. By going with
x → 0 we increase the range of the dipole sizes for which the saturation behavior is important in the
γ∗p cross section (3.1). The scaling property of the dipole cross section, with the variabler2Qs(x), is
also reflected in Fig.3.2.

3.2.1 Critical line

The saturation radiusR0 has an interpretation of the mean transverse distance between partons in
the proton. On the other hand the photon with virtualityQ2 can only resolve those objects whose
transverse size is greater than1/Q, which is a typical dipole size. WhenR0(x) ≫ 1/Q proton
appears to the color dipole as a dilute system of partons. In contrast ifR0(x) ≪ 1/Q the proton seen
by theqq̄ pair becomes dense. The form of the dipole cross section (3.7) suggests the definition of
the critical line that separates these two regions of the (x,Q2) space. In the GBW model this line is
specified by the condition that the argument of the exponent in σ̂(x, r̄) equals 1, wherēr = 2/Q was
adopted as the magnitude of the characteristic dipole size.Hence, we obtain

Q2R2
0(x) = 1. (3.10)

This definition is not unique but it gives a meaningful estimate of the transition zone and is useful to
make comparisons between various models.

(3.11)

3.2.2 Geometric scaling

In the GBW model the dipole cross section depends only on the ratio r/R0(x). If we neglect quark
masses and change the variabler → r′ = r/R0(x) in Eq. (3.1), we notice that theγ∗p cross section
becomes a function of a single, dimensionless variableτ = Q2R2

0(x)

σγ∗p(x,Q2) = σγ∗p(τ). (3.12)



Chapter 3. Heavy flavor production in DIS in the saturation model 35

This feature known as thegeometric scalingis a very powerful prediction of the model since it suggests
existence of a fundamental, intrinsic scale related to the phenomenon of saturation. Staśto, Golec-
Biernat and Kwieciński have shown in [64] that the lowx DIS data supports the prediction (3.12) of
the GBW model. As we see in Fig. 3.3, this regularity holds at low x for a wide range ofQ2. As
also reflected in Fig. 3.3, the geometric scaling is to some extent violated. One of the contributions
to the violation of scaling comes from finiteness of the quarkmasses. The original idea of [64] has
been recently checked against the newF2 data and extended to the diffractive processes where the
geometric scaling is also observed [65].
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Figure 3.3: Geometric scaling of lowxDIS data as a function ofτ = Q2R2
0(x) (reproduced from [64]).

3.2.3 Integrated gluon distribution

We conclude the discussion of the saturation model by presenting the integrated gluon distribution.
One can show that taking the dipole cross section (3.7) and keeping only the leading term inQ2 gives

∂F2(x,Q
2)

∂ lnQ2
≃ 1

4π3

∑

f

e2f
σ0

R2
0(x)

. (3.13)

Comparing this result with Eq. (2.48) allows to determine the gluon distribution

xg(x,Q2) =
3

4π2αs(Q2)

σ0

R2
0(x)

, (3.14)

which is valid in the DLLA limit. Although theQ2 dependence appears in Eq. (3.14) through the
coupling constant it is rather far from the prediction of theDGLAP equation given in (1.51). This
element turns out to be important when one tries to fit the model to the more recent data set than the
one used in the original Golec-Biernat and Wüsthoff analysis [47].
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3.3 DGLAP improved saturation model

To account for the proper behavior of the gluon density as a function ofQ2, the refined dipole cross
section was proposed by Bartels, Golec-Biernat and Kowalski in [49] (BGK model or DGLAP im-
proved saturation model)

σ̂(x, r) = σ0

{

1 − exp

(

−π
2 r2 αs(µ

2)xg(x, µ2)

3σ0

)}

, (3.15)

wherexg(x, µ2) is the integrated gluon density calculated at the scale

µ2 =
C

r2
+ µ2

0. (3.16)

It is evolved with the leading order DGLAP equation with running coupling simplified by neglecting
quarks since the model is designed for the lowx region. The starting distribution atQ2

0 = 1 GeV2 was
taken, similarly to the MRST analysis [66], in the form

xg(x,Q2
0) = Ag x

λg (1 − x)5.6 . (3.17)

We observe that

• for small values ofr the cross section reduces to

σ̂(x, r) ≃ π2

3
r2 αs(µ

2)xg(x, µ2), (3.18)

which is the known perturbative QCD result [67] admitting the color transparency property,

• for large values ofr the gluon density and the coupling become frozen at the scaleµ2
0 and the

dipole cross section saturates atσ0 recovering the behavior of the GBW model.

On the whole, the BGK model has five parameters to be fitted: thedipole cross section boundσ0 and
the four parameters of the gluon distribution:Ag, λg, C andµ2

0.
Introducing the realistic gluon distribution in place of (3.14) has a sizable effect onF2, especially

in the region of largeQ2. This is because whenQ2 is large the typical dipole size∼ 1/Q becomes
small and consequently the scaleµ2 ≈ Q2 is big hence the gluon density grows. In contrast, for low
Q2 the large dipoles dominate and the scale of the gluon is closeto µ2

0. In addition, since the gluon
density is nowr-dependent the power governing the lowx rise of the structure function becomes a
function ofQ2 so that we haveF2 ∼ x−λ(Q2).

In the original paper [49] the two fits to the data H1 [50] and ZEUS [51, 52] data withx < 0.01
were performed. Both of them take into account only three light quarks. We recall the results of [49]
in Table 3.2 below.

σ0 [mb] Ag λg C µ2
0 χ2/ndf

Fit 1 (mq = 140 MeV) 23.0 1.20 -0.28 0.26 0.52 1.17
Fit 2 (mq = 0 MeV) 23.8 13.71 0.41 11.10 1.00 0.97

Table 3.2: Parameters from the light quark fits of the BGK model. Notice the different sign convention
of λg used in Eq. (3.17) and the original analysis [49].

In the first fit (Fit 1) the light quark mass was taken at the value known from the GBW model,
mq = 140 MeV, while in the second (Fit 2)mq was set to zero. In addition, the parameterσ0 was not
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fitted in the first case but fixed at the value23.0 mb. In the second case so was done withµ2
0 which

was set to1.0.
As we see from the values ofχ2/ndf given in the last column of Table 3.2, the DGLAP improved

saturation model (BGK model) successfully describes the data. There is, however, one element missing
in the analysis [49], namely the heavy quarks: charm and beauty. The study which we are going to
described in the remaining part of this chapter was meant to fill up this deficiency.

3.4 GBW model fitted to the new HERA data

Before studying the improved version of the saturation model (BGK model) it is interesting to check
how the original model of Golec-Biernat and Wüsthoff fits the new data from HERA [50–52]. We start
from considering the data points withx ≤ 0.01 andQ2 ≥ 0.04GeV2. The number of experimental
points in such a case equals 288. We added in quadrature the statistical and systematic errors in
calculatingχ2. Moreover, the H1 data were multiplied by the factor1.05 to account for slightly
different normalization of the H1 and ZEUS data sets. The results of the fits with and without heavy
quarks are presented in Table 3.3. The obtained values ofχ2/ndf indicate that description of the new

σ0 [mb] λ x0 χ2/ndf
light 16.82 0.315 1.27·10−3 1.96
light + c + b 18.81 0.320 2.91·10−4 2.24

Table 3.3: The parameters of the GBW model fitted to the new data set from HERA for allQ2.

HERA data by the GBW model is rather poor. This has already been pointed out in [49] and should
be attributed to the lack of the proper DGLAP evolution of thegluon distribution in the GBW model,
cf. Eq. (3.14). Since the DGLAP evolution is important mostly for high photon virtualitiesQ2, one
would expect that restricting theQ2 range of the fitted data from above should improveχ2. In Table 3.4
we show the results of such fits. As we see, indeed, the GBW model describes fairly well theF2 data
with Q2 < 20 − 30 GeV2.

σ0 [mb] λ x0 χ2/ndf
light + c + b (Q2 < 50 GeV2) 19.26 0.301 2.50·10−4 1.27
light + c + b (Q2 < 30 GeV2) 19.52 0.290 2.29·10−4 1.04
light + c + b (Q2 < 20 GeV2) 19.73 0.284 2.12·10−4 0.94

Table 3.4: The parameters of the GBW model fitted to the new data set from HERA for three different
upper limits onQ2.

3.5 DGLAP improved saturation model with heavy quarks

Let us now turn to the BGK model. Similarly to the GBW case described in the previous section, we
performed fits with the charm and beauty contributions in thesum in Eq. (3.1) using the recent data
on the proton structure functionF2 from H1 [50] and ZEUS [51, 52]. We considered rangex ≤ 0.01
andQ2 ≥ 0.04GeV2, which gave 288 data points used in the fit. The statistical and systematic errors
were added in quadrature and the H1 data were multiplied by the factor1.05.
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σ0 [mb] Ag λg C µ2
0 χ2/ndf

light + c + b 22.7 1.23 - 0.080 0.35 1.60 1.16
light + c 22.4 1.35 - 0.079 0.38 1.73 1.06

Table 3.5: The parameters from the fit of the BGK model with heavy quarks.
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Figure 3.4: The dipole cross section in the BGK model with andwithout heavy quarks (solid and
dashed lines, respectively) forx = 10−2 . . . 10−6.

To calculate gluon densities at the scales aboveQ2
0 we used the leading order result (1.50) derived

in Section 1.5.2 with the running coupling and the full splitting function (i.e. containing both regular
and singular terms). After transforming the initial condition (3.17) into the Mellin space we obtain the
explicitly real formula for the gluon density

xg(x, t) =
Ag

π
en0 ln(1/x)Γ(4.6)

∫ ∞

0
dyRe

{

Γ(λg + n0 + iy)Γ(4.6)

Γ(λg + 4.6 + n0 + iy)
exp

(

iy ln(1/x)+ γ̃
(0)
n0+iy t

)
}

,

(3.19)
wheret was specified in Eq. (1.46). The parametersAg andλg as well as the constant4.6 = 5.6 − 1
come from the definition of the initial condition (3.17). Theinverse Mellin transform introduces, in
tun, the real numbern0 that lies to the right of all singularities of the integrand in Eq. (3.19).

Similarly to the analysis [47,49], we also modified the argument in the dipole cross section̂σ(x, r)
in the heavy flavor contributions,

x → x

(

1 +
4m2

f

Q2

)

=
Q2 + 4m2

f

Q2 +W 2
, (3.20)

whereW is the energy in the center of mass system ofγ∗p. This is because forQ2 ≪ m2
c,b it is more

appropriate to use the heavy quark mass as a hard scale.
In our fit, we set the light quark mass to zero and took typical values of the heavy quark masses,

mc = 1.3 GeV andmb = 5.0 GeV. By taking light quarks to be massless we excluded the photopro-
duction pointQ2 = 0 from our considerations since in the dipole modelsσγp depends logarithmically
on the quark mass in the limitQ2 → 0. However, for the case of the heavy quarks, when the quark
mass provides the hard scale, the predictions forQ2 = 0 can be made.

We performed two fits with the dipole cross section (3.15), taking into account the charm and
beauty contribution in addition to the three light quarks. In the first fit only charm was considered
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while in the second one both heavy flavors were present. We setthe number of active flavors inαs to 4
and5, respectively and the value ofΛ = 300 MeV in both cases. The fit results for the five parameters
of the model,σ0, A, λg, C andµ2

0, are presented in Table 3.5. As we see, the value ofχ2/ndf is still
good for the fits with heavy flavors. Comparing to the result ofFit 2 from Table 3.2, we notice that the
gluon parameters differ significantly from the light quark fit. In particular, the powerλg is negative
which means that the initial gluon distribution (3.17) grows with decreasingx, in contrast to the fit
with light quarks only when the gluon distribution is valence–like (λg is positive). We have checked
that with the found gluon density, the total proton momentumfraction carried by gluons is around25%
at the inital scaleQ2

0 = 1 GeV2.
In Fig. 3.4 we show the comparison of the dipole cross sections from the present analysis with

heavy quarks (solid lines) and the BGK analysis [49] (Fit 1) with light quarks only (dashed lines). The
effect of heavy quarks is seen in the shift of the dipole crosssection towards larger values ofr, which
means that for a given dipole size saturation occurs at lowerx (higher energy). Similar effect was
observed also in the GBW analysis [47].

Alternatively, when one compares our result with the cross section obtained from the massless
Fit 2 from Table 3.2 one observes that the presence of heavy quarks in the DGLAP improved model
cures the pathological behavior of the dipole cross sectionfound in [49] for the case of massless fit.

3.6 Critical line and saturation scale

The shift of the dipole cross section towards larger values of r has direct impact on the position of the
critical line which in the case of the BGK model, in analogy tothe GBW definition form Section 3.2.1,
is given by the following implicit relation betweenx andQ2

4π2

3σ0Q2
αs(µ

2)xg(x, µ2) = 1 , (3.21)

with the scaleµ2 = CQ2/4 + µ2
0. This equation can be solved numerically to obtain the critical line

shown in Fig. 3.5 as the solid line. The saturation effects are important to the left of this line. For the
comparison, we also show the critical lines from the BGK and GBW analysis with light quarks only.
We observe that the presence of heavy quarks shifts the critical line towards smaller values ofQ2. This
means that for a givenQ2 we need lowerx in order to stay in the domain where the saturation effects
are important. In other words, heavy quarks make saturationmore difficult to observe at present and
also future colliders, which is indicated in Fig. 3.5 by the acceptance regions of HERA and the LHC.

It is appropriate to mention that some time after our analysis [63] appeared also the study of heavy
quarks contribution within the IIM saturation model [56] was done [69]. In order to compare the
critical line obtained in [69] with our result one has to takeinto account its slightly different definition
in both cases. In the BGK model the critical line is defined in such a way that it corresponds to
the value of the dipole cross sectionσ̂0(x, 2/Q) ≈ 0.63σ0 whereas in the IIM model we have the
condition σ̂0(x, 2/Q) ≈ 0.7σ0. In Fig. 3.6 we compare the two critical lines calculated according to
the definition adopted in [69]. As we see, in the region covered by the HERA data,i.e. the region used
in the fit ofF2, the two results are very similar.

As discussed in Section 3.2, the GBW model features theexactscaling behavior of the dipole
cross section,̂σ(x, r) = σ̂(rQs(x)). The BGK dipole cross section (3.15) seems to abandon these
important element. Fortunately, when the heavy quarks are included in fitting the formula (3.1) the
resulting value ofC in the gluon scale (3.16) is small whereasµ2

0 ≈ 1.6 GeV2 is relatively large. It
means that for not too smallr, the dipole cross sections (3.15) effectively features thescaling at large
values ofr with the saturation scale proportional to the gluon distribution at the scaleµ2

0

Q2
s(x) ≃

4π2

3σ0
αs(µ

2
0)xg(x, µ

2
0) . (3.22)
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Figure 3.5: The critical line in the(x,Q2)-plane from various saturation models indicating the position
of the saturation region (to the left of these lines). The shaded areas show the acceptance regions of
HERA and the LHC. The latter region corresponds to the production of an object with the minimal
mass squaredQ2 = 100 GeV2 [68].
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Figure 3.7: The dipole cross section in the BGK model with heavy quarks as a function of the scaling
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s(x) with the saturation scale given by Eq. (3.21). Geometric scaling is preserved for
moderate dipole sizes, and it is broken for small values ofr due to the DGLAP modification.

Indeed, as we see in Fig. 3.7, which shows the dipole cross section as a function of the scaling
variabler2Q2

s(x), the geometric scaling is preserved for moderate values ofr. It is broken, however,
for small dipole sizes due to the DGLAP evolution of the gluonin the dipole cross section.

3.7 Predictions for inclusive structure functions

The parameters of the dipole cross sections (3.15) have beendetermined from the fit to theF2 data.
However, using Eq. (3.1) we can decomposeF2 into the sum of light and heavy quark contributions

F2 = F light
2 + F cc̄

2 + F bb̄
2 . (3.23)

Hence, taking the parameters from Table 3.5, which are now fixed, allows us topredict charm and
beauty contributions separately. The dependence of the structure function on the flavor comes through
the the photon wave functionψf

T,L, which is the function of electric chargeef and quark massmf .
In addition, the modification of the Bjorken variable (3.20)introduces an implicit dependence onmf

throughx. Let us stress, however, that for the case of fits discussed herex-Bjorken is modified only in
the heavy quark contributions to the structure function since we adoptedmq = 0 for the light quarks.

The predictions forF cc̄
2 andF bb̄

2 as functions ofx for differentQ2 bins computed with the param-
eters from the first line of Table 3.5 are presented, as the solid lines, in Figs. 3.8 and 3.9, respectively.
For the comparison, we put also the predictions of the GBW model with the parameters found in [47]
(dashed lines). We see very good agreement with the data fromHERA, both in the normalization and
the slope inx, in contrast to the GBW results which overshoot the data at large values ofQ2. Thus, as
already pointed out in this chapter, presence of the DGLAP evolution in the BGK model is essential for
the correct predictions at largeQ2. In Figs. 3.10 and 3.11 we plot the sameF cc̄

2 andF bb̄
2 contributions

but this time as functions ofQ2. The agreement with the data manifested in Figs. 3.8–3.11 isquite
remarkable given the simplicity of the framework we use. This may be an argument in favor of the
k⊥ factorization as a more efficient way of describing DIS at small x than the collinear factorization.
It can also be considered as an evidence supporting the idea of parton saturation at HERA.

As pointed out in Section 3.5, due to the modification of the Bjorken variable and finite heavy quark
mass one is also able to provide predictions for the photon-proton cross section in the photoproduction
limit, Q2 → 0. We have found, for the HERA energyW = 209 GeV, the values19.3 µb and0.7 µb,
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Figure 3.8: Predictions for the charm structure functionF cc̄
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Figure 3.12: The longitudinal structure function predicted in the BGK model with heavy quarks to-
gether with the H1 estimations for variousQ2 at constant energy W = 276 GeV.

respectively. Surprisingly enough, substituting the massmq = 140 MeV for the three light quarks to
the formula forσγp and performing then the photoproduction limitQ2 → 0, we found177 µb which
agrees with the measured value174 µb up to the experimental errors.

Another interesting quantity that can be predicted using the BGK model with parameters form
Table 3.5 is the longitudinal structure functionFL. In Figure 3.12 we present the longitudinal structure
function from our analysis (solid line) plotted againstQ2 for W = 276 GeV. The experimental points
represent the H1 estimations ofFL [50, 70, 71]. Reasonable agreement is observed, however, the
estimation errors are too large to draw firm conclusions. Fortunately, in the last months of running
of the HERA accelerator, by reduction of the pron beam energy, the center-of-mass energy of the
ep system was decreased to

√
s = 251 GeV and

√
s = 225 GeV. Together with the data collected

before at
√
s = 318 GeV, this allows for the model independent determination ofFL. Hence, one

should expect much more precise data for the longitudinal structure function in the near future. In
Fig. 3.12 we also show the charm and beauty contribution toFL (dashed line). We observe that in our
analysis heavy quarks are important for large values ofQ2 while forQ2 . 10 GeV2 they may safely
be neglected.

3.8 Concluding remarks

In this chapter we studied the production of the charm and beauty flavors in the DGLAP improved
saturation model [49]. Parameters of the model were fixed by the fit of the formula for the proton
structure functionF2 to the recent data from HERA. Good quality of the fit was found with χ2/ndf
close to unity. Therefore, we conclude that the successful description of the inclusiveF2 data at lowx,
which was found for the BGK model with light quarks, is also preserved when the heavy flavors are
considered. We observe, however, a number of differences with respect to the light quark fit from [49].
First of all, the parameters vary significantly for the models with and without heavy flavors, when one
compares the fits with the massless light quarks. This results in the shift of the dipole cross section
towards larger values of the dipole sizesr with respect to the light quark case. As a consequence,
the critical line in the(x, Q2)–plane moves in the direction of smaller values ofQ2 which makes
saturation more difficult to observe.
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The new predictions provided by our analysis concern the charm and beauty structure functions
F cc̄

2 andF bb̄
2 . We found a very good agreement with H1 and ZEUS data in allQ2 bins. The significant

improvement of the slope inx for highQ2 with respect the GBW model is attributed to the DGLAP
evolution.

In addition, the longitudinal structure functionFL has been predicted. We found reasonable agree-
ment with the H1 estimations. However, large estimation errors prevent from making more precise
statement. The comparison with the direct measurements, which is expected soon, will be particularly
interesting.

Finally, we discussed the issues related to the essential features of parton saturation like the sat-
uration scale and geometric scaling. We showed that the saturation scale is effectively present in the
BGK model since the gluon distribution becomes frozen for small values of the factorization scaleµ2.
Similarly, the property of geometric scaling of the dipole cross section, though in principle not exact,
virtually persists for the moderate and large dipoles. It his however slightly violated in the regime of
small dipoles.



Chapter 4

Balitsky-Kovchegov equation and the
traveling waves approach

In the previous chapter we saw that the phenomenological analysis of saturation based on the idea
of Golec-Biernat and Wüsthoff proves to be very successfulin explaining the experimental data from
HERA. The formal derivation of an equation which describes the dense gluonic system and reproduces
all the essential features of the GBW model was presented afterwards, independently by Balitsky and
Kovchegov (BK equation).

In this chapter we discuss the basic features of the leading order BK equation and its solutions.
For this purpose, it proves to be the most convenient to work in thecolor dipole framework, developed
by Mueller [72, 73], which we introduce in Section 4.1. This is an alternative description of the
high energy scattering which leads, however, to the equation equivalent to the BFKL equation from
Section 2.1. In Section 4.1, also the precise relation between the the standard approach, which we have
used so far, and the Mueller’s approach is established. The BK equation is introduced in Section 4.2,
following the original paper of Kovchegov [74]. In Section 4.3 we discuss a method of analyzing
the BK equation called thetraveling wavesapproach, which we will exploit later on in Chapter 5.
This method was introduced to QCD by Peschanski and Munier. In the series of papers [75–77]
they found the relation between the leading order BK equation and the class of equations known in
statistical physics which admit solutions in form of traveling waves. In terms of QCD the traveling
wave solution is equivalent to the property of geometric scaling. In Section 4.4 we quote the derivation
of the original results from [76] for the case of the leading order BK equation. The saturation scale
and the gluon density are calculated in the limit of asymptotically smallx for the equation with fixed
as well as with the running coupling. The obtained results are in agreement with the expression for
Q2

s(x) found earlier in [78] using a very different method.

4.1 BFKL equation from Mueller’s dipole approach

As we have explained in Section 3.1, DIS at lowx may be viewed as the two-stages process where at
first γ∗ forms a color dipole (qq̄ pair) which in turn interacts with the hadronic target. In the framework
of the Mueller dipole model the whole energy evolution takesplace in theqq̄ system rather than in the
hadron target as in the standard description from Section 2.1, based on the notion of the unintegrated
gluon distribution.

In Fig. 4.1a, we represent schematically the color dipole scattering off a target (a hadron or a
nucleus). The quark and anti-quark coordinates in the transverse plane are denoted by (x, y), respec-
tively. In the largeNc limit, the emission of the gluon from theq or q̄ line proves to be equivalent to
the splitting of the parent dipole into the two dipoles at (x,z) and (z,y). The whole procedure may
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Figure 4.1: Color dipole approach: (a) In the largeNc limit, the energy evolution amounts to iterative
dipole splittings and together with the single scattering of the system of dipoles leads to the BFKL
equation. (b) Relation between vectors of the dipole position in the transverse plane ,x andy, the
impact parameter,b, and the dipole size,r.

be iterated and one obtains the probabilistic picture of dipole splittings. This, in turn, leads to the
evolution equation for thedipole scattering amplitude, which in the coordinate space has the form

∂

∂ ln(1/x)
N (x,x,y) =

ᾱs

2π

∫

d2z
(x− y)2

(x − z)2(z − y)2
[N (x,x, z) + N (x, z,y) −N (x,x,y)] .

(4.1)
In the derivation of Eq. (4.1) it was assumed that in the single scattering only one dipole from the
projectile interacts with the target.

For the purpose of our discussion, it is convenient to replace the coordinates (x,y) by the dipole
radiusr = x−y and the impact parameter vectorb = (x+y)/2. The corresponding relations between
the vectors in the transverse plane are depicted in Fig. 4.1b. The elastic dipole scattering amplitude,
N (x, r,b), is related to the total dipole cross section, which we have introduced in Section 3.1, by the
optical theorem (see for instance [79])

σ̂(x, r) = 2

∫

d2bN (x, r,b) . (4.2)

The evolution equation (4.1) is equivalent to the BFKL equation written in the coordinate space. To see
this, let we assume for simplicity that the amplitude depends only on the dipole size,i.e.N (x, r,b) =
N (x, r). After applying the Fourier transform toN (x, r)/r2

Ñ (x,k) =
1

2π

∫
d2r

r2
e−ik·rN (x, r), (4.3)

assuming in addition the azimuthal symmetry and denotingk2 ≡ k2, we obtain from (4.1) the follow-
ing equation for the transform (4.3) of the dipole amplitude

∂

∂ ln(1/x)
Ñ (x, k2) = ᾱs χ

(

− ∂

∂ ln k2/k2
0

)

Ñ (x, k2), (4.4)

with χ being the Mellin transform of the BFKL kernel (Lipatov function) defined in Eq. (2.18). Fi-
nally, after using the relation betweeñN (x, k2) and the unintegrated gluon distributionf(x, k2) from
Eq. (2.14)

ᾱsf(x, k2) = k4 ∇2
k Ñ (x, k2) = 4k2 ∂2

ln(k2/k2
0
) Ñ (x, k2), (4.5)

one arrives at the BFKL equation in the form given in Eq. (2.20).
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One notices that the arguments of the leading order BFKL kernel in Eqs. (2.20) and (4.4) differ by
the minus sign. This should be connected with the factork2 in the relation (4.5) between the uninte-
grated gluon distributionf(x, k2) and the functionÑ (x, k2). This additional power ofk2 corresponds
to the shift of the Mellin variableγ → γ + 1. One can easily check that the Lipatov kernel (2.18) with
the shifted argument givesχ(γ + 1) = χ(−γ) which explains the difference in sign.

4.2 BK evolution equation

As we have already mentioned in Section 2.3, the linear evolution equations, like DGLAP or BFKL,
predict the untamed growth of the gluon density with decreasing x-Bjorken, which eventually leads to
violation of unitarity. This indicates that in order to correctly describe dense gluonic systems one has
to take into account not only splittings but also mergings ofgluons. In terms of the Pomeron exchange,
this means that also the multi Pomeron exchange diagrams should be resummed. The first equation
of this sort was obtained by Gribov, Levin and Ryskin [34, 35]. The GLR equation is valid, however,
only in the DLLA limit.

The non-linear equation for the dipole scattering amplitude, N , valid at lowx and for all values
of Q2, which is supposed to correctly describe the dense system ofgluons, was found independently
by Balitsky [37] and Kovchegov [38] (BK equation). It was derived, strictly speaking, for the case
of the scattering of virtual photon on large nucleus with theatomic numberA. Similarly to the GLR
equation, discussed in Section 2.3, also here only the fan diagrams of Fig. 2.7a are resumed. This is
because, as argued in [38,74], other classes of multi Pomeron exchange graphs, like for instance those
depicted in Fig. 2.7b, which contain Pomeron loops, are suppressed by powers ofA and therefore can
be neglected.

The BK equation was originally formulated in coordinate space [38], where it has the form

∂

∂ ln(1/x)
N (x,x,y) =

ᾱs

2π

∫

d2z
(x − y)2

(x − z)2(z − y)2
(4.6)

× [N (x,x, z) + N (x, z,y) −N (x,x,y) −N (x,x, z)N (x, z,y)] .

The quadratic term, which arises from the triple Pomeron vertex and enters Eq. (4.6) with a minus
sign, is responsible for reducing the power-like BFKL growth of the gluon density and in this way
unitarizes the cross section. In the language of the Mueller’s dipole approach, here, in contrast to
Eq. (4.1), also the simultaneous interaction of two or more dipoles from the projectile is present. In
the region of phase space in which gluon densities are small this non-linear term may be neglected and
the BK equation (4.6) reduces to the BFKL equation (4.1).

One can rewrite the BK equation (4.6) in momentum space [74].Assuming in addition large size
of the nucleus (which allows to neglect impact parameter dependence) and azimuthal symmetry the
equation takes the form

∂

∂ ln(1/x)
Ñ (x, k2) = ᾱs χ

(

− ∂

∂ ln k2/k2
0

)

Ñ (x, k2) − ᾱs Ñ 2(x, k2), (4.7)

with Ñ defined in (4.3). The above equation in momentum space reduces to the BFKL equation (4.4)
in the dilute regime and in the double logarithmic limit, after using the relation (2.49), it recovers the
Gribov, Levin Ryskin result (2.53).

As demonstrated in the original paper of Kovchegov [74], Eq.(4.7) admits the solution which
consists of two parts. This translates directly into the asymptotic (lowx) behavior of theF2(x,Q

2)
structure function. More precisely, one or the other part ofthe solution dominates depending on
whetherQ2 is grater or smaller than some separation scale, decreasingwith x, called in this context
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the saturation scaleand denoted byQ2
s(x). In the caseQ2 > Q2

s(x) the exchange of single BFKL
Pomeron dominates. If we increase energy or decreaseQ2 so thatQ2 < Q2

s(x) the saturation scale
starts acting like a cut-off on the transverse momenta and this way reduces the growth ofF2. Hence,
the structure function predicted by the BK equation behavesat asymptotically smallx like [74]

F2(x,Q
2) ∼

{

x−(αIP −1) for Q2 > Q2
s(x),

ln(1/x) for Q2 < Q2
s(x).

(4.8)

We see that the emergence of the saturation scale from the BK equation and its implications of the
behavior ofF2 are in agreement with the assumptions of the GBW model discussed the previous
section.

Since the time the above the original result was obtained by Kovchegov, the properties of the
leading order BK equation have been intensely studied usingboth analytic and numerical methods.
One of the most important features established in many various ways [75–77] is the so calledgeometric
scaling. It means that the solution of Eq. (4.7) is a function of a single variable combined fromx and
k, namelyk/Qs(x). This, in turn, leads to the prediction of scaling for theγ∗p cross section

σγ∗p(x,Q2) = σγ∗p(Q2/Q2
s(x)). (4.9)

The above property has been indeed found in the lowx DIS data [64] as mentioned already in Sec-
tion 3.2.2. Another interesting quality of the solution of Eq. (4.7), found in [80] and emerging from
the existence of the saturation scale and geometric scaling, is the suppression of the diffusion into the
infrared region known from the leading order BFKL.

Along with study of the leading order BK equation various ways to incorporate the next-to-leading
logarithmic corrections where discussed. This involved inparticular taking into account the running
coupling effects. In the next chapter we discuss the resultsof our study of this type. However, formally
correct extension of the Balitsky-Kovchegov equation to the next-to-leading order has been accom-
plished very recently. The corrections coming from the quark loop were obtained by Balitsky [81] and
independently Kovchegov and Weigert [82]. These two groupsarrived however at different results.
Soon after, it was understood [83] that the discrepancy comes from neglecting in both cases the so
called subtraction terms which were different in the two approaches. Once the subtraction terms are
included, the two calculations give the same result. The gluon contribution was calculated by Balitsky
and Chirilli [84]. The full NLL BK equation turns out to be much more complicated than in the leading
order case and so far little is known about its solutions.

4.3 Traveling waves approach to BK

The Balitsky-Kovchegov equation (4.7) is a non-linear, partial differential equation containing the
infinite order differential operatorχ(−∂ln k2/k2

0
). The exact analytic solution of this equation has not

been found so far. Nevertheless, several approaches have been proposed, in which the BK equation
can be solved approximately. The particularly interestingmethod was developed by Peschanski and
Munier [75], who found the relationship between the BK equation and a class of nonlinear equations
known from statistical physics. The asymptotic solutions of these equations have the form of a wave
front. If certain conditions are fulfilled, the shape and thevelocity of this front does not depend on the
initial condition but it is determined solely by the linear part of the equation.

In what follows we introduce in detail the method of traveling waves and explain how it can be
useful to study the BK equation. In addition, we present the derivation of the asymptotic solutions of
the leading order BK equation in the limit of smallx following the original papers [75,76]. These so-
lutions will be the starting point for the next chapter, where the next-to-leading logarithmic corrections
to the BK equation will be studied in the framework of the traveling waves approach.
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The starting point is to observe that the leading order BFKL kernel, which determines the behavior
of the linear term in the BK equation (4.7), may be expanded around some valueγc and truncated at
the second order

χ(−∂L) ≃ χ(γc)1I + χ′(γc)(−∂L − γc1I) +
1

2
χ′′(γc)(−∂L − γc1I)

2, (4.10)

where, hereafter, we adopt the notational shortcutL = ln(k2/k2
0), with an unspecified constantk2

0,
which only adjusts the dimension, and introduce rapidity defined asY = ln(1/x) . The constant
γc is at this stage a parameter. Later on, we will explain how to choose its value optimally. The
above approximation referred to as thediffusive approximationis justified when8ᾱsY ≫ L [75].
By substituting the expansion (4.10) into Eq. (4.7) and after redefining variables so thatt = c1Y and
x = c2L+ c3Y , with c1, c2 andc3 being known constants, the leading order BK equation with fixed
coupling reduces to

∂tu(x, t) = ∂2
xu(x, t) + u(x, t) − u(x, t)2, (4.11)

which is the Fisher or Kolmogorov, Petrovsky and Piscounov (F-KPP) equation [85, 86]. The F-
KPP equation (4.11) has been known for a long time and its properties are very well understood (see
e.g.[87]). It belongs to a wider class of equations admitting theasymptotic solutions in the form of
the traveling waves. The equation from this class satisfies the following conditions

(i) the equation is non-linear,

(ii) u = 0 is anunstablefixed point,

(iii) u = 1 is astablefixed point.

The traveling wave solution means thatu(x, t) in the limit of larget has the form of the wave front
u(x, t) ∼ f(x −m(t)). The functionm(t) encodes information about the front velocity and can be
determined by studying solely the linear limit of the F-KPP-like equation. The precise form of the
solution of the F-KPP equation is given in the next section. There, we discuss also the issue of the
front velocity.

The existence of traveling wave solutions is particularly appealing from the point of view of
QCD since it translates directly to the property of geometric scaling of the functionN (L, Y ) =
N (L−m(Y )) ≡ N (k/Qs(x)). (For notational simplicity, to this end, we drop the tilde and byN we
denote the amplitude in the momentum space.) The original work of Munier and Peschanski [75] was,
in fact, the first demonstration of geometric scaling for theBK equation based on the fully analytic
approach.

Before we turn to the detailed description of how the traveling wave solution emerges from Eq. (4.11),
let us notice that the BK equation in the diffusive approximations satisfies all the above conditions (i)-
(iii). Indeed,N = 0 andN = 1 are the fixed point solutions and the former is moreover unstable
since a small perturbation from zero results in the BFKL typegrowth ofN . This conclusion does not
change if one considers the BK equations with running coupling or with a higher order kernelχ.

4.3.1 F-KPP equation

Let us introduce, using the example of the F-KPP equation, some basics facts about the solutions of the
above mentioned class of nonlinear problems, which we will,in turn, use to study the properties of the
Balitsky-Kovchegov equation. Traveling waves are formed due to presence of the non-linear damping
term. However, some characteristics of the solution in the neighborhood of the front and at asymptotic
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Figure 4.2: The tree possible shapes of the wave front at large timet: (a) γ0 < γc, the results keeps
the memory of the initial condition, (b)γ0 = γc, (c) γ0 > γc, the slope of the front is given by the
universal value ofγc apart from the narrow forward part with diminishes with time.

values oft can be determined from the linearized form of the equation. The general solution of the
linear part of Eq. (4.11) is a superposition of plane waves

u(x, t) =

∫

C

dγ

2πi
u0(γ) exp (−γ (x̄+ υWF t) + ω(γ)t ) , (4.12)

whereω(γ) is the Mellin transform of linear operator from the considered equation andC is the stan-
dard contour of the inverse Mellin transform (see Appendix A). The variablex̄ = x − υWF t is the
position in the frame of the wave front, which moves with the velocity υWF. By the wave frontwe
mean here the leading behavior of the package which can be calculated from Eq. (4.12) with aid of
the saddle point method. The condition introduced by this method leads toυWF = ω′(γc). Each wave
(labeled byγ) from the package moves with the phase velocity

υph(γ) =
ω(γ)

γ
, (4.13)

and by definition the shape of the waveγ observed in the frame moving with the velocityυph(γ) is
time independent. So is the shape of the wave front observed in its own frame, which gives the second
condition for the wave front velocity namelyυWF = ω(γc)/γc. However, this is true only when the
initial conditionu0(γ) does not introduce singularity that could dominate the saddle point phase factor.
Assuming for the moment that the above holds, we may compare the two conditions forυWF and obtain

γc ω
′(γc) = ω(γc), (4.14)

which is in fact a closed definition ofγc. It turns out that Eq. (4.14) is identical with the conditionfor
the minimum of the phase velocity (4.13).

As signaled above, form of the initial conditionu0(γ) is of crucial importance since it determines
which of the two possible asymptotic solutions is reached. Assuming quite general form ofu(x, t = 0),
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namelyu(x, 0) = 1 for x ≤ 0 andu(x, 0) = exp(−γ0x) for x > 0, we obtain for large times

u(x, t) ∼
{

exp(−γ0 x̄) if γ0 < γc,
exp(−γc x̄) if γ0 ≥ γc.

(4.15)

Hence, three distinct cases are possible. In the first case,γ0 < γc, the traveling wave asymptotic
solution keeps the memory of the initial condition. The wavefront moves with velocityυ = ω(γ0)/γ0

and its slope at larget equalsγ0 as shown in Fig. 4.2a. In the second case, which we call critical,
γ0 = γc, the wave front velocity equals the minimal phase velocity,which we will also refer to as the
group velocity, υ = ω(γc)/γc = υg. This situation is depicted in Fig. 4.2b. In the third case,γ0 > γc,
information about the initial condition is lost at larget and the asymptotic properties of the solution,
encoded in the values ofγc andυg, are determined solely by the form of the linear part of Eq. (4.11).
The wave front velocity equals minimum of the phase velocitywhich is, in turn, the same as the group
velocity. As shown in Fig. 4.2c, at larget the slope of the wave front equalsγc except for the small
forward part which decreases witht.

The general form of the solution of the F-KPP equation and other equations satisfying the condi-
tions (i)-(iii), is known also beyond the asymptotic limit (4.15). As shown in [88], for the caseγ0 > γc

and larget we have

u(x, t) = tαG

(
x̄+ c(t)

tα

)

exp (−γc(x̄+ c(t))) , (4.16)

where the time derivative ofc(t) is given by ċ(t) ≃ βtk−1. The parametersα, β and k can be
determined by a matching procedure as we will show in what follows. Here, let us only comment that
tα gives the order of the width of this part of the front which is characterized by the slopeγc. In turn,
the functionċ(t) provides correction to the front velocity,υWF, which is not exactly equal to the group
velocity in the sub-asymptotic regime.

4.3.2 Initial condition for QCD

Let us come back to QCD. The remaining element which has to be specified before we attempt to study
solutions of the BK equation by the traveling waves method isthe form of the initial condition. As
explained in Section 4.1, the functionN (L, Y ) is a Fourier transform ofN (r, Y )/r2, whereN (r, Y )
is the dipole elastic scattering amplitude related, through the optical theorem, to the total dipole-
proton cross section. Here, for simplicity, we assume that one can neglect the dependence on impact
parameter. We have already mentioned that for small dipolesone expects from the amplitude to posses
the color transparency property. In fact, we know preciselythat

N (r, Y )
∣
∣
∣
small r

∼ r2, (4.17)

which translates through (4.3) to the momentum space and takes the form

N (k, Y )
∣
∣
∣
largek

∼ 1

k2
∼ e−L. (4.18)

Hence, we can read from the above formula that for the case of QCD, γ0 = 1 . This value is to be
compared withγc characteristic for a particular form of the BK equation under consideration.

4.4 Solution of the leading order BK equation

4.4.1 Fixed coupling case

In Section 4.3 we saw that the leading order BK equation with fixed coupling and in the diffusive
approximation is equivalent to the F-KPP equation. To demonstrate this one must change variables
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so thatt = c1Y andx = c2L + c3Y . However, since the BK equation (4.7) itself satisfies all the
conditions (i)-(iii), it belongs to the desired class and, as demonstrated in [76], can be studied directly
in the form (4.7).

The general solution of the linear part of the BK equation (4.7) is given by (cf. Eq. (4.12))

N (L, Y ) =

∫
dγ

2πi
N0(γ) exp (−γ L+ ᾱsχ(γ)Y ) , (4.19)

whereχ(γ) = χ0(γ) is the LL BFKL kernel (2.18). Following the general method discussed in
Section 4.3.1, we identifyω(γ) = ᾱsχ(γ) and write the expressions for the phase and group velocity

υph(γ) = ᾱs
χ(γ)

γ
, υg = ᾱs

dχ(γ)

dγ

∣
∣
∣
∣
γ=γc

. (4.20)

The critical valueγc is determined from the saddle point condition at largeY , which in this case has
has the form

γc χ
′(γc) = χ(γc), (4.21)

and gives the valueγc ≃ 0.6275. We see that, sinceγ0 > γc for the case of the LL BK equation with
fixed coupling, we are in the regime in which the asymptotic solution will not keep the memory of the
initial condition. In the diffusive approximation Eq. (4.7) takes the form

∂Y N (L, Y ) = −υg∂L N (L, Y ) +
1

2
ᾱsχ

′′(γc)(∂L + γc1I)
2 N (L, Y ) − ᾱs N 2(L, Y ). (4.22)

After substituting the Ansatz (4.16), with the identification x = L, t = Y andu = N , into the above
equation we obtain the ordinary differential equation for the functionG(z)

1

2
ᾱsχ

′′(γc)Y
−α d2

d2z
G(z) + (αzY α−1 − ċ(Y ))

d

dz
G(z) + Y α−1(γc ċ(Y )Y − α)G(z) = 0, (4.23)

where by dot we mean the derivative with respect toY and we have also denotedz = Y −α(L−υgY +
c(Y )). If we want the different terms in Eq. (4.23) to contribute tothe leading order in1/Y we must
setα = 1

2 andk = 0. Then, collecting all the terms leading in the limit of largeY , which for the case
of Eq. (4.23) are proportional toY −1/2, we obtain

ᾱsχ
′′(γc)

d2

d2z
G(z) + z

d

dz
G(z) + (2βγc − 1)G(z) = 0. (4.24)

In order to recover the asymptotic solution (4.15), the function G(z) must behave likeG(z) ∼ z for
z → 0. This fixesβ = 3/(2γc) and the solution of Eq. (4.24) is given by

G(z) = const·
√

2

ᾱsχ′′(γc)
z exp

(

− z2

2ᾱsχ′′(γc)

)

. (4.25)

Finally, the result for the gluon density, written in terms of k andY , reads [76]

N (k2/Q2
s(Y ), Y ) = const·

√

2

ᾱsχ′′(γc)
ln

(
k2

Q2
s(Y )

)(
k2

Q2
s(Y )

)−γc

exp

(

− ln2
(
k2/Q2

s(Y )
)

2ᾱsχ′′(γc)Y

)

,

(4.26)
where we have defined the saturation scale

Q2
s(Y ) = k2

0 exp

(

ᾱs
χ(γc)

γc
Y − 3

2γc
lnY

)

, (4.27)

wherek2
0 is an undetermined constant. The form of the dipole scattering amplitude (4.26) exhibits

geometric scaling at asymptotic values ofY . However, in the sub-asymptotic region, this scaling is
violated by the last exponential term. Also, we see that the two terms in the saturation scale (4.27),
∼ Y and∼ lnY , are universal,i.e. they depend only on the form of the BFKL kernel.
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4.4.2 Running coupling case

Let us now, still following [76], consider Eq. (4.7) extended by takingᾱs to be running withL accord-
ing to ᾱs = 1/(bL), whereb = (11CA − 2nf )/(12Nc). Then, the Balitsky-Kovchegov equation takes
the form

bL∂Y N (L, Y ) = χ(−∂L) N (L, Y ) −N 2(L, Y ). (4.28)

Here, we sketch briefly how this equation can be solved in the framework of the traveling waves
approach. Detailed derivation will be given in the next section, where the more general equation is
studied. As explained in [76], the solution of the linearized version of Eq. (4.28) can be expressed in
terms of the double Mellin transform

N (L, Y ) =

∫
dγ

2πi

∫
dω

2πi
N0(γ, ω) exp

(

−γL+ ωY +
1

bω
X(γ)

)

, (4.29)

with

X(γ) =

∫ γ

γ̂
dγ′ χ(γ′), (4.30)

andγ̂ being an arbitrary constant. The saddle point integration overω gives

N (L, Y ) =

∫
dγ

2πi
N0(γ) exp

(

−γL+
√
Y

√

4X(γ)

b

)

. (4.31)

This result has the same “wave package structure” as the expression (4.12), which leads us to the
identification of

√
Y with time and(1/γ)

√

4X(γ)/b with the phase velocity. By finding minimum
of the latter we obtain the group velocityυg. However, hereυg depends on the arbitrary constantγ̂
introduced in Eq. (4.30). Hence, one imposes the conditiondυg(γ̂)/dγ̂ ≡ 0 and arrives at the value
of the critical parameterγc ≃ 0.6275, which is identical as in the case of the LL BFKL equation with
fixed coupling. Finally, we have

υg =

√

2χ(γc)

bγc
. (4.32)

In analogy to the fixed coupling case, after exploiting Eq. (4.16), one arrives at the differential equation
for G(z) in which the parameters must be set toα = 1

3 andk = 1
3 . By keeping only the leading terms

in 1/Y this equation reduces to the Airy equation which gives

G(z) = const· Ai

(

ξ1 +

(
γc υg b

χ′′(γc)

) 1

3

z

)

, (4.33)

whereξ1 = −2.338 is the rightmost zero of the Airy function. The resulting gluon density is

N (k2/Q2
s(Y ), Y ) = const· Y 1

6

(
k2

Q2
s(Y )

)−γc

Ai



ξ1 +

(√

2bγc χ(γc)

χ′′(γc)

) 1

3

ln

(
k2

Q2
s(Y )

)

Y − 1

6



 ,

(4.34)
and the saturation scale takes the form

Q2
s(Y ) = k2

0 exp





√

2χ(γc)

bγc
Y +

3

4

(

χ′′(γc)
√

2bγc χ(γc)

) 1

3

ξ1 Y
1

6



 . (4.35)

Similarly to the fixed coupling case also the above solution admits geometric scaling property for
Y → ∞, which is violated in the sub-asymptotic regime. However, as we see by comparing Eqs. (4.27)
and (4.35), the dependence of the saturation scale onY differs significantly between the cases with
fixed and running coupling.



Chapter 5

Balitsky-Kovchegov equation beyond the
leading order

It is natural to ask whether the traveling waves method, introduced in the previous chapter, can be also
applied to the BK equation with the NLL kernel and, if so, which asymptotic solutions one obtains.
For the case of fixed coupling, the result has been obtained in[89]. The case of the running coupling,
which has not been considered so far, is the subject of the study presented in this chapter.

The LL BK equation (4.7) in the limit of the dilute system of gluons reduces to the LL BFKL
equation (4.4). Similarly, the NLL BK equation must reduce to the NLL BFKL equation. However,
due to its pathologies, the NLL BFKL kernel should not be applied directly. Instead, one ought to
replace it by one of the improved kernels, discussed in Section 2.1.3, which contains a class of higher
order corrections. The resummed kernels acquire dependence onω, which is the Mellin conjugate of
the rapidityY . In addition, as we will see in the next section, such kernel may depend explicitly on
the coupling. Hence, the BK equation with the running coupling and the improved NLL BFKL kernel
can be written as

bL ∂Y N (L, Y ) = χ(−∂L, ∂Y , ᾱs)N (L, Y ) −N 2(L, Y ). (5.1)

In what follows, the kernels resummed in three specific schemes, called S3, S4 [27] and CCS [28,29],
will be considered. These schemes are introduced briefly in Section 5.1. We stress, however, that
our results can be easily applied to the case of any resummed kernel. In Section 5.2 we present the
detailed calculations which lead to the asymptotic solutions of Eq. (5.1), in the limit of largeY . The
issues related to the saturation scale and, in particular, its dependence on the resummation scheme
are discussed in Section 5.3. There, we compare also our results with the previously known results
for the CCS scheme obtained, using a very different method, in [90]. In Section 5.3 we make also
an observation how, within the formalism of traveling waves, one can account for the sub-asymptotic,
non-universal terms, relevant at phenomenological energies. In Section 5.4 we give the summary of
our study of saturation in the deep inelastic scattering.

The results presented in Sections 5.2 and 5.3 are based on theoriginal publication [91].

5.1 Schemes of collinear resummations of the NLL BFKL kernel

In Section 2.1.3 we pointed out the necessity to improve the NLL BFKL kernel by supplementing it
with the resummed class of higher order corrections. In particular, we discussed the approach based
on the study of the collinear and anti-collinear limits of the kernel in which, after imposing the renor-
malization group constraints, one is able to unambiguouslyreproduce the most divergent parts of the
higher order corrections. The sub-leading and the regular terms are, however, arbitrary and they are

55
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parametrized differently in various resummation schemes.Here, we discuss briefly three schemes in-
troduces in [27–29]. The kernels resummed in these schemes will be used in our study of the BK
equation described in the succeeding in Sections 5.2 and 5.3.

S3 scheme

In this scheme [27], considered for the symmetric choice of scale, the kernel from Eq. (2.40) is modi-
fied according to

χ
(0)
S3 (γ, ω) = (1 − ᾱsA)

(

2ψ(1) − ψ
(

γ +
ω

2
+ ᾱsB

)

− ψ
(

1 − γ +
ω

2
+ ᾱsB

))

. (5.2)

The term of the order̄αs from χ
(0)
S3 is given by

χ
(0)
S3, 1 = − 1

2γ3
− B

γ2
− A+ π2

6

γ
+ O(1), (5.3)

and the constantsA andB are fixed in such a way that the divergences1/γk of the NLL kernel,χ1(γ),

from (2.36) fork = 1, 2, 3 are reproduced byχ(0)
S3 . Then,χ(0)

S3, 1 has to be subtracted fromχ1 to avoid
double counting and we obtain

χS3(γ, ω, ᾱs) = χ
(0)
S3 (γ, ω) + ᾱs

(

χ1(γ) − χ
(0)
S3, 1

)

. (5.4)

The second term is finite since we removed all poles inγ = 0 andγ = 1. The kernel is exact up to
NLL and, due to the modification (5.2) of the first term in (5.4), it is free of double logarithms after
changing the scale toW 2

0 = k2
1 or W 2

0 = k2
2 . Hence, it does justice to the renormalization group

requirements.

S4 scheme

This scheme, which was also proposed in [27], is similar in spirit to the above, however, here, instead
of the kernel (5.2), the following function is used

χ
(0)
S4 (γ, ω) = χ0(γ) −

1

γ
− 1

1 − γ
+ (1 − ᾱsA)

(
1

γ + ω
2 + ᾱsB

+
1

1 − γ + ω
2 + ᾱsB

)

. (5.5)

Sinceψ(γ) = 1/γ + O(γ), the definitions (5.2) and (5.5) differ only by regular termsadmitting the
same collinear limit. The constantsA andB are determined as in the S3 scheme and the full answer is
given by

χS4(γ, ω, ᾱs) = χ
(0)
S4 (γ, ω) + ᾱs

(

χ1(γ) − χ
(0)
S4, 1

)

, (5.6)

whereχ(0)
S4, 1 is calculated in analogy toχ(0)

S3, 1. Again, all poles are removed from the second term in
Eq. (5.6).

CCS scheme

Here, the resummed kernel for the symmetric scale choice hasthe form [28,29]

χCCS(γ, ω) = χs
0(γ, ω) + ω

χ̃1(γ, ω)

χs
0(γ, ω)

. (5.7)
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with χs
0 defined in Eq. (2.40). One arrives at the above results after making the following steps. First,

the double logarithmic termsO(ᾱs/γ
3) contained in the function (2.40) are subtracted from theχ1

kernel to avoid double counting. These are

χ0(γ)

2

(
−ψ′(γ) − ψ′(1 − γ)

)
. (5.8)

In contrast to the S3 and S4 schemes, the quadratic and singlepoles, are not eliminated fromχ1. They
are instead changed in the same manner as in Eq. (2.40) for theleading order kernelχ0. That is the
1/γ pole becomes1/(γ + ω/2) and the1/(1 − γ) pole is replaced by1/(1 − γ + ω/2). This is done
by subtracting the unchanged poles fromχ1 and adding the changed ones. Altogether, the we obtain

χ̃1(γ, ω) = χ1(γ) −
χ0(γ)

2

(
−ψ′(γ) − ψ′(1 − γ)

)
−A1(0)ψ

′(γ) +A1(ω)ψ′
(

γ +
ω

2

)

−(A1(0) − b)ψ′(1 − γ) + (A1(ω) − b)ψ′
(

1 − γ +
ω

2

)

+
π2

6
(χs

0(γ, ω) − χ0(γ)) ,

(5.9)

where by takingA1(ω) in the shifted poles the resummation of running coupling andfinite terms of
splitting functions effects is included. Ultimately, the coupling is replaced by the ratioω/χs

0(γ, ω) =
ᾱs + O(ᾱ2

s). Hence, the NLL BFKL kernel is correctly reproduced to the order ᾱs.

5.2 BK equation with NLL BFKL kernel and running coupling

In this and the succeeding sections we study the BK equation (5.1) with the running coupling and the
resumed NLL BFKL kernelχ(−∂L, ∂Y , ᾱ). In some schemes, like the CCS scheme, the kernel does
not depend explicitly on the coupling. In those which in which the explicit dependence appears,e.g.
S3, S4 schemes, we fix̄αs in the kernel at some phenomenologically motivated value. In order to
simplify the notation we do not write the dependence onᾱs explicitly in what follows. In principle,
the NLL corrections could affect also the nonlinear term from (5.1). However, as we explained in the
previous chapter this will not change the traveling-wave properties since they are determined solely by
the linear part of the equation.

Following the method developed in [76], applied already in Section 4.4.2 to the leading order case,
we first write the solution to the linearized version of Eq. (5.1). It has the form of the double Mellin
transform [28]

N (L, Y ) =

∫
dγ

2πi

∫
dω

2πi
N0(γ, ω) exp

(

−γL+ ωY +
1

bω
X(γ, ω)

)

, (5.10)

where this time the functionX depends also onω

X(γ, ω) =

∫ γ

γ̂
dγ′ χ(γ′, ω), (5.11)

with γ̂ being an unspecified constant. With such a form ofX in the limit of largeL, using the saddle
point method, one recovers the relation

ω = ᾱsχ(γ, ω). (5.12)

The saddle point integration overω, justified in the limit of largeY , results in

N (L, Y ) =

∫
dγ

2πi
N0(γ) exp

(

− γL+ F (ωs)Y
)

, (5.13)
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where we introduced

F (ωs) =
1

Y b ωs

(

2X(γ, ωs) − ωsẊ(γ, ωs)
)

, (5.14)

and the condition for the saddle pointωs is given by the implicit equation

Y bω2
s −X(γ, ωs) + ωsẊ(γ, ωs) = 0. (5.15)

The last term arises due to the dependence of the resummed NLLkernel onω. We adopted the notation
in which the prime means the derivative with respect toγ whereas the dot means the derivative with
respect toω. Now we face the problem of extracting the leading behavior of ωs from the implicit
relation (5.15). If we expandX(γ, ω) nearω = 0

X (γ, ω) =

∞∑

p=0

X(p)(γ, 0)

p!
ωp, (5.16)

and similarly expand the derivativėX, after substituting both quantities into Eq. (5.15) we obtain

[

Y b+
1

2
Ẍ (γ, 0)

]

ω2
s = X (γ, 0) −







∞∑

p=3

1

p(p− 2)!
X(p) (γ, 0)ωp

s






. (5.17)

The leading behavior for asymptoticY, is ωs ∼ Y −1/2. It is easy check that, the subleading cor-
rections, are of the order ofY −3/2. Hence, as we will show later on, they may contribute only to
non-universal sub-asymptotic terms.

5.2.1 Traveling wave critical parameters

Since we are interested in the NLL corrections to the first twouniversal terms from the saturation scale
it suffices to truncate Eq. (5.17) at the second order inωs. This gives

ωs =

√

X (γ, 0)

Y b+ 1
2Ẍ(γ, 0)

, (5.18)

which we use as an argument of the function defined in Eq. (5.14). Hence, the formula (5.13) for the
gluon density takes the familiar form

N (L, Y ) =

∫
dγ

2πi
N0(γ) exp(−γL+ Ω(γ)t), (5.19)

where now time is interpreted as
t =

√

Y + Y0, (5.20)

with Y0 = Ẍ(γ, 0)/2b and the dispersion relation reads

Ω(γ) =

√

4

b
X(γ, 0) . (5.21)

Noteworthy, here, the rapidityY in the time definition is shifted byY0 with respect to the leading order
result. The constantY0 absorbs the arbitrary parameterγ̂ from Ẍ(γ, 0). Similarly to the LL case the
equation for the minimum of phase velocity provides the definition of γc

γc Ω′(γc) = Ω(γc). (5.22)
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Figure 5.1: Graphical determination of the critical exponent γc for three resummed NLL kernels. The
curve corresponding to the CCS scheme (atω = 0) coincides with the LL curve.

However, γc determined in such a way still depends on the arbitrary constant γ̂ via the function
X(γ, 0). Thus, requiringυg to be independent of the choice ofγ̂ leads to the conditiondυg(γ̂)/dγ̂ =
0 = dυg(γc)/dγc. This is because the dependence of the velocity onγ̂ comes throughγc only. Apply-
ing this condition to Eq. (5.21) leads to

γcχ
′(γc, 0) = χ(γc, 0) ⇒ υg =

√

2χ(γc, 0)

b γc
, (5.23)

and the arbitrariness related toγ̂ is eliminated.
As we see from (5.23), the value ofγc at the NLL level in general depends on the resummation

scheme. This is shown in graphical form in Fig. 5.1. Geometrically, the value ofγc is given by the
tangent to the characteristic function of the kernel, different for each NLL scheme. Note also that the
curve corresponding to the CCS scheme atω=0 is nothing else than the LL curve (cf. Eq. (5.7)), and
thus the critical parameters are the same in this case. This holds for any other “implicit” scheme which
recovers the LL kernel atω=0.

5.2.2 Asymptotic solution of the BK equation

The linearized version of the BK equation (5.1) with the kernel expanded aroundω = 0 up to the
second order and the rapidity variableY changed to the time variablet =

√
Y + Y0 is given by

bL

2t
∂tN =

{

“LL”
︷ ︸︸ ︷

− b
2
υ2

g ∂L +
1

2
χ′′( ∂2

L + 2γc ∂L + γ2
c )

+
1

2t
χ̇ ∂t −

1

2t
χ̇′ ∂L∂t −

1

2t
χ̇′ γc∂t +

1

8t2
χ̈ (∂2

t − 1

t
∂t)

︸ ︷︷ ︸

“NLL”

}

N , (5.24)

were we have used the form of the group velocity from Eq. (5.23) and introduced the following no-
tational shorthands:N ≡ N (L, Y ), χ ≡ χ(γc, 0) and similarly for the derivatives of the kernel. We
singled out two parts in the above equation. The part denotedas “LL” has already been present in the
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LL case (cf. Eq. (33) from [76]). The remaining part called “NLL” contains new terms which originate
from the dependence of the resummed NLL BFKL kernel onω. In analogy with the leading order case
we use the Ansatz (4.16) which transforms Eq. (5.24) into theordinary differential equation for the
functionG(z).

The NLL equation (5.24) taken in the limiṫχ, χ̇′, χ̈ → 0, when the “NLL” part vanishes, must
recover the LL result. This can be obtained only by setting the free parametersα andk to the values
determined already in Section 4.4.2, namelyα = 1

3 andk = 1
3 . If we now write the equation forG(z)

and organize it in terms of the powers of time,t, we notice that the leading terms are proportional
to t−1/3. Therefore, in the “NLL” part we should keep only those termswhich contribute to the order
t−1/3. As can be easily checked and as is demonstrated explicitly in Appendix B, the leading behavior
of the time derivatives ofN from the “NLL” piece ist1/3. However, since each derivative is multiplied
by at least the factort−1 this means that the terms in “NLL” part contribute only at theordert−2/3.
Consequently, the BK NLL linearized equation in this approach has exactly the same form as in the
LL case and reduces to the Airy equation

d2

d2z
G(z) =

bγcυg

χ′′(γc, 0)
(z − 4β)G(z). (5.25)

The conditionG(z) ∼ z asz → 0 allows to fix the constantβ to

β = −1

4

(
χ′′(γc, 0)

γc υg b

)1

3

ξ1, (5.26)

whereξ1 = −2.338 is the zero of the Airy function. Finally, the result for the gluon density is given by

N (L, t) = const· t 1

3 · Ai





(√

2γcb χ(γc, 0)

χ′′(γc, 0)

) 1

3

ln
k2

Q2
s(t)
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1

3 + ξ1



 ·
(

k2

Q2
s(t)

)−γc

, (5.27)

and the saturation scale up to a multiplicative constant,k2
0 , has the form

Q2
s(t) = k2

0 exp





√

2χ(γc, 0)

bγc
t+

3

4

(

χ′′(γc, 0)
√

2γcb χ(γc, 0)

) 1

3

ξ1 t
1

3



 . (5.28)

Hence, the solution of the BK equation with the resummed NLL kernel and running coupling, written
in terms oft andL, has the same functional form as the solution for the LL kernel found in [76]
and recalled in Section 4.4.2, Eqs. (4.34) and (4.35). In particular, in the saturation scale the leading
exponential term proportional to the time variablet is supplemented by the second universal term in
t1/3, sub-leading by ordert−2/3. There are, however, two potential sources of differences between
the solutions at the LL and NLL level. First is the NLL BFKL kernel, χ(γc, 0), which is in general
different for various resummation schemes. Second difference is the definition of time. Namely, in the
NLL case, see Eq. (5.20), we have the shift ofY by some undetermined constantY0. Both the issue of
the resummation scheme andY0 dependence will be addressed in the next section.

5.3 Saturation scales beyond leading order

The saturation scale (5.28) obtained for the BK equation with running coupling and the resummed
NLL BFKL kernel contains a dimensional constantk2

0 , which cannot be determined in the framework
of the traveling wave approach. Therefore, for the qualitative studies, it is convenient to define the
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Figure 5.2: The logarithmic derivativeλt
s for various resummation schemes calculated atY0 = 0 and

ᾱs = 0.15.

logarithmic derivatives ofQ2
s. One possible definition, which is motivated by the result (5.28), has the

form

λt
s(Y ) =

d lnQ2
s(Y )

dt
. (5.29)

Another commonly adopted definition, reads

λeff
s (Y ) =

d lnQ2
s(Y )

dY
. (5.30)

The relation between the two derivatives isλt
s(Y ) = 2t λeff

s (Y ).
From Eq. (5.29) we obtain

λt
s(Y ) =

√

2χ(γc, 0)

bγc
+

1

4

(

χ′′(γc, 0)
√

2γcbχ(γc, 0)

) 1

3

ξ1 t
− 2

3 . (5.31)

We recall that the timet is defined by Eq. (5.20), so it contains the arbitrary constant Y0. In Fig. 5.2
we showλt

s from Eq. (5.31), withY0 = 0, as a function of
√
Y for the three different resummation

schemes S3, S4 and CCS and the value of the couplingᾱs = 0.15. The result depends on the scheme
used. In the limit

√
Y → ∞ the logarithmic derivativeλt

s approaches its asymptotic value equal to
the group velocityυg. As we see in Fig. 5.2, in agreement with Eq. (5.23), the valueof υg is also
scheme-dependent.

5.3.1 CCS scheme

By construction, the NLL BFKL kernel resummed in this schemeand taken atω = 0 reduces to the
LL kernel. Indeed, from Eq. (5.7) we haveχCCS(γ, ω = 0) = χ0(γ). In mathematical terms, this
means that the CCS scheme falls into the same universality class of solutions as the equation with the
LL kernel and running coupling constant.

The result for the saturation scale from the evolution equation with the NLL BFKL kernel re-
summed in the CCS scheme was also obtained earlier, using a different method, by Triantafyllopou-
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los [90]. In this approach applied first to the LL case in [78],one considers only the linear evolu-
tion supplemented by the absorbing boundary conditions. This results at LL level have been shown
in [75–77] to agree with the traveling waves approach for fixed and running coupling.

The NLL result [90] goes beyond the asymptotic regime, whichunavoidably requires some parame-
trization of the subleading, non-universal terms. Extracting the asymptotic analytic form of the solution
found in [90] (cf. Eqs. (58) and (59) therein) , and after changing it to our notations, one obtains

λt
s(Y )

∣
∣
∣
from [90]

=

√

2χ(γc, 0)

bγc
+

1

4

(

χ′′(γc, 0)
√

2γcbχ(γc, 0)

) 1

3

ξ1

(

t−
√

2b

γcχ(γc, 0)

)− 2

3

. (5.32)

We see that the two results (5.31) and (5.32) are consistent up to the corrections of the ordert−5/3.
However, this are the higher order corrections, which are not expected to be universal and are beyond
the scope of our analysis. In Fig. 5.3 we show the comparison of our result forλt

s from Eq. (5.31)
and the expression (5.32) derived from the result obtained by Triantafyllopoulos [90]. We observe that
they converge for the asymptotic values ofY .
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Let us finally comment on the following observation. Even though our expression for the satu-
ration scale was obtained for asymptoticY it can successfully mimic the results from [90] valid at
phenomenological rapidities. This is attained by adjusting the value ofY0 in the definition of time.
In Fig. 5.4 we compareλeff

s , defined in Eq. (5.30), with appropriateY0, with the same quantity calcu-
lated by Triantafyllopoulos within three scenarios. Thesescenarios are called by the author: BFKL,
L in ω and NLL inω (see [90] for details). Here we mention only that the last case, NLL in ω, con-
tains most of the higher order, non-universal corrections and is therefore expected to give values of
λeff

s which are the closest to those extracted from the experimental data. The agreement manifested in
Fig. 5.4 means that in our approach, varyingY0 plays the rôle of parametrizing typical non-universal
terms,i.e. terms which depend on the initial conditions, details of thekernel, or of the method used
for extracting the asymptotic behavior. We note also that whenY0 is large compare toY the effective
leading energy growth of the saturation scale changes fromeλ

√
Y to eλY . This is because forY0 ≫ Y

we have
√
Y + Y0 ≃ √

Y0 + Y/(2
√
Y0).

5.3.2 S3 and S4 schemes

These schemes give the values ofγc andυg different than those from the LL analysis. In that sense,
one can say that they do not lie in the same universality classas the previous scheme. This is because
the resummed kernels depend explicitly on the the value of the coupling constant. This is depicted in
Fig. 5.5, where one can see how the time derivative of the saturation scale varies with̄αs.

Hence, we obtain the new result from the QCD traveling waves approach that the specific asymp-
totic solutions of the BK equation at NLL accuracy depend parametrically on the resummation schemes.
In our case, we identify two distinct classes or resummationkernels which we call “explicit” and “im-
plicit”.

5.4 Concluding remarks

In this chapter we have studied the Balitsky-Kovchegov equation with the running coupling and the
renormalization group improved NLL BFKL kernel. Using the method of traveling waves we obtained
the asymptotic solution of this equation, valid in the limitof large rapiditiesY . This solution obeys
universality properties,i.e. it is independent of the specific form of the initial conditions, the detailed
form of the kernel and the nonlinearities.

We have found that the results for the gluon density and the saturation scale take the same func-
tional forms as in the case of leading order BK equation with running coupling studied in [76]. This is
because those pieces in the NLL BK equation (5.1) which originate from the dependence of the kernel
onω and are new with respect to the LL BK equation (4.28), do not contribute to the first two universal
terms in the solution. We have shown, however, that the result acquires a parametric dependence on
the scheme in which the NLL BFKL kernel is resummed.

We summarize our discussion of the proton structure, studied in the deep inelastic scattering pro-
cesses, in Fig. 5.6. Perturbative QCD is applicable ifQ2 ≫ Λ2. The non-perturbative regime must
be modeled. The photon with virtualityQ2 can only resolve objects with the transverse size larger
than∼ 1/Q. Hence, increasingQ2 may be interpreted as improving the resolution which leads to the
growth of the number of partons seen by the virtual photon, hence, the increase of the parton distri-
bution functions. In the regime of the moderate values ofx-Bjorken, the rise of parton distribution
functions with increasingQ2 is described by the linear DGLAP equation. As shown schematically
in Fig. 5.6, the spatial density of partons in the transverseplane decreases with improved resolution.
This density can be, however increased if, at the fixed value of Q2, one increases the center-of-mass
energy of theγ∗p system,W 2. This is equivalent to reducingx. If the photon virtuality is not too large
and the system of gluons is dilute the evolution of parton densities withx follows the linear BFKL
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Figure 5.6: Parton densities in the proton and their evolution in the (x,Q2) space.

equation. However, the power-like energy growth generatedby this equation must be slowed down if
the system of gluons becomes dense and one enters the so called saturation regime. The line which
marks the transition to this regime is called the saturationline or the saturation scale. In this Thesis,
we have analyzed, in particular, the proton structure in theregion in the (x,Q2) plane that is close to
the saturation line. In Chapter 3 we studied the phenomenological GBW model and its extensions. In
this chapter we analyzed the nonlinear BK equation.

The properties of the solutions of the BK equation with running coupling and the LL as well
as NLL BFKL kernel are in qualitative agreement with the features of the saturation model from
Chapter 3.

In particular, in both cases the elastic dipole scattering amplitude (or the dipole cross section,
cf. Eq. (4.2)) admit the geometric scaling property. This scaling is, however, not exact. In the saturation
model it is broken by the finite quark mass or the DGLAP evolution of gluon density, as reflected in
the behavior of the dipole cross section in Fig. 3.4. In the solution of the BK equation (5.27) we have,
in turn, the explicit dependence ont, that is on rapidityY , which amounts to the violation of scaling.
Let us stress that the scaling of the cross section, which is to some extent broken is also suggested by
the experimental data as depicted in Fig. 3.3.

The result for the saturation scale obtained in this chapteris, in principle, valid only at asymptot-
ically large values ofY . We have shown,cf. Eq. (5.28), that the leading behavior of the saturation
scale in the limit of large rapidities isQ2

s(Y ) ∼ exp(λ
√
Y + Y0), whereY0 is an arbitrary parameter

in our approach. In the saturation model, in turn, this scale, which is valid also at phenomenological
rapidities has the formQ2

s(Y ) ∼ exp(λY ).
In our study of the BK equation we have found that the dependence of the saturation scale may

effectively look asexp(λY ) provided that one adjusts accordingly the value ofY0. This is because the
non-zero value ofY0 in the traveling waves formalism generates and parametrizes the higher order,
non-universal corrections, which are relevant at phenomenological rapidities. In addition we have
shown that by this simple procedure one reproduces the result from [90] for the non-asymptoticY .

Let us finish the discussion of the saturation physics in DIS by commenting that our considerations
were confined to the mean field approximation in which one neglects the effects of fluctuations in the
number of color dipoles in the photon wave function. These effects are important in the low density
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region of dipoles with very small sizes. As has been shown in [92–99], at extremely smallx one
should expect the geometric scaling to be washed out be the fluctuations. Instead, the new form
of scaling, calleddiffusive scalingappears with the scaling variable of theγ∗p cross section being
ln[Q2/Q2

s(x)]/
√

D ln(1/x), which replacesQ2/Q2
s(x). The values ofx-Bjorken at which this new

type of scaling should be visible are probably very small, especially that, as shown in [100], taking
into account the running coupling effects strongly suppresses fluctuations.



Chapter 6

Time-like branchings and jets

Quarks and gluons can be either exchanged or emitted. In the first case the virtualityt ≡ E2 − p2

is negative,t < 0, and we call the partonspace-like. In the second case,t > 0, we deal with the
time-likeparton. Those partons may, in turn, split into objects with lower virtualities. When the space-
like quark or gluon emits a time-like parton, the process is called space-like (or t-channel) branching.
The deep inelastic scattering, which we have studied in the preceding chapters, is certainly the most
important example of the t-channel process. In analogy, if the time-like parton splits into two time-like
objects, we call the branching time-like (or s-channel). The sequence of time-like branchings leads to
the production of jets of particles. In the current chapter,we discuss the basic facts concerning these
interesting objects as well as introduce a formalism in which they can be studied.

Before we turn entirely to the discussion of the time-like processes, let us try to point out the
similarities of the latter to the space-like processes, studied in detail in the previous part of this Thesis.
The space-like and time-like branching, for the processg → gg, is represented in a diagrammatic form
in Figs. 6.1a and 6.1b, respectively. The leading behavior of the corresponding expressions for the
radiation probability is given by

dσ =
αs

2π

dz

z

dk2
⊥

k2
⊥

for space-like branching, (6.1)

dσ =
αs

2π

dz

z

dθ

θ
for time-like branching, (6.2)

where, in accordance with the notation introduced in Figs. 6.1a and 6.1b,z may be interpreted as the
parent parton energy fraction carried by the emitted gluon whereask⊥ is its transverse momentum. In
the case of time-like branchingθ, denotes the angle between the two gluons created in the splitting.

We see from Eqs. (6.1) and (6.2) that the branching probability is greatly enhanced if the emitted
gluon is collinear, which means that it has small transverse momentum (or equivalently small emission
angle), and thegluon is softwhich means that it carries a tiny fraction of the parent parton energy. In
fact, the formula (6.1) has been already introduced in Chapter 1, see Eqs. (1.28) and (1.31), where
we have shown that it leads to the appearance of the large logarithms of transverse momentum or
energy, which compensate the smallness of the coupling. Here, we see that this formula has its time-
like analogue (6.2), which will lead to the enhancement of the soft and small-angle branchings in the
s-channel.

As argued in Chapters 1 and 2, the infinite resummations are required in order to properly describe
the DIS processes. Due to the similar nature of the gluon radiation in the t- and s-channel, which is
manifested in Eqs. (6.1) and (6.2), the infinite set of graphsmust be also resummed if one studies the
production of highly energetic jets. In the case of DIS the space-like quark or gluon from the hadron
decreases its virtuality by successive emissions of collinear gluons until it reaches the scale of the
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Figure 6.2: Multi-gluon branching processes: (a) Initial-state branching in deep inelastic scattering.
(b) Final state branching in the production of jet.

photon with virtualityq2 < 0. The corresponding multi-gluon emission process, depicted in Fig. 6.2a,
is also called theinitial state branching. In the case of jets the cascade is initiated by the time-like
parton created for instance in thee+e− or pp̄ collision at high center-of-mass energy. Such parton also
looses its virtuality by the series of emissions of collinear (or collinear and soft) gluons, as shown in
Fig. 6.2b, and it hadronizes at the virtuality scale of the hadron mass. This process is called thefinal
state branching.

6.1 Fragmentation of time-like partons

Let focus on the case in which, at the beginning of the evolution, we have a quark or a gluon with
positive virtuality. This parent parton will reduce its virtuality by emitting soft, time-like gluons.
Such process will continue until a non-perturbative scaleQ2

0 is reached. At this virtuality, called the
hadronization scale, we loose the theoretical control over the evolution. All that happens belowQ2

0,
in particular the transition of colored quarks and gluons into colorless hadrons, can be only modeled.
This comes under the name ofhadronization.

The distributions of hadrons inside a quark or a gluon are called the hadronicfragmentation func-
tions. These objects are complementary to the distributions of partons inside a hadron,i.e. the parton
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distribution functions, discussed in Sections 1.4 and 1.5.Similarly to the space-like case, also here
the perturbative and the non-perturbative contributions can be factorized. Hence, the fragmentation
functionDh

a for the partona with positive virtualityQ2 going into the hadronh which carries the
fractionx of the parton light-cone momentum can be written in the form [101]

Dh
a(x,Q2) =

∫ 1

0

dy

y
Db

a(y,Q
2, Q2

0)h
h
b

(
x

y
,Q2

0

)

, (6.3)

whereDa
b (y,Q2, Q2

0) is the partonic andhh
b

(
x
y , Q

2
0

)

the hadronic fragmentation function. The former

is the inclusive distributions of partons of typeb evaluated the scaleQ2
0 in the partona with virtuality

Q2. This function is an entirely perturbative object. The latter, being in contrast non-perturbative,
describes the transition of the partonb with virtuality Q2

0 into the hadronh.
This collinear factorization formula (6.3) is a time-like analogue of Eq. (1.42) and, as in the space-

like case, the evolution ofDa
b (y,Q2, Q2

0) is governed by the equation that can be derived in the frame-
work of pQCD. The analogy is, however, not exact since it turns out that in the case of time-like
evolution the interference terms can be neglected only if the momentum fractionx is of the order of
unity. Customary, one uses the DGLAP equation to calculate the partonic fragmentation function just
for x & 0.1. In these equations, similarly to the space-like case, the evolution parameter is a decreasing
parton virtuality. However, the space-like and time-like splitting functions are the same exclusively at
the leading order. As we will explain in Section 6.2, the destructive quantum interference plays a cru-
cial role in the description of small-x fragmentation. The equation which has to replace DGLAP in
this regime is called MLLA [102, 103]. The evolution parameter in this equation is no longer parton
virtuality but the decreasing angle between two partons created in the splitting. The MLLA equation
is discussed at length in Section 6.3.

To obtain a physical cross section the structure functions have to be convoluted with the cross
section for hard process in which the quark or gluon is created. For instance, if we considere+e−

annihilation at the center-of-mass energy
√
s, the cross section for the inclusive production of hadronh

at the lowest order is given by

1

σtot

dσh

dx
=

∑

q e
2
qD

h
q (x,Q2)

∑

q e
2
q

, (6.4)

whereσtot is the total hadronic cross section,Q =
√
s/2 andx = 2p/

√
s, with p denoting the hadron

momentum.
As signaled already at the beginning of this chapter, due to the collinear enhancement of the gluon

emission, the produced partons are highly collimated in thedirection of the original parent quark or
gluon. Such an object is calledjet. The leading order formula (6.4) corresponds to creation oftwo
back-to-back jets in the processe+e− → qq̄ → (2 Jets). The emission of the large angle gluon off the
quark or anti-quark line is suppressed byαs, which in contrast to the collinear gluon, is not balanced
by the large logarithm. Such process, although less probable, occurs and leads to the three jets event.
Similarly, the events withN jets can be discussed. This goes under the name of theinter-jet structure.
At the same time, each jet has its own substructure characterized e.g. by longitudinal or transverse
momentum distributions of particles as well as by ratios of hadron species. This belongs tointra-jet
structure, which will be the subject of the succeeding sections and thestudy described in Chapter 7.
Let us conclude that the separation of the inter- and intra-jet activity is always somewhat arbitrary,
depending on the precise definition of the jet. This concerns, in particular, the adopted size of thejet
opening angle, which is a polar angle measured with respect to the jet axis.The issue of jet finding
algorithms is, however, beyond the scope of our discussion.Hence, it what follows we assume that we
have a well separated jet characterized by an opening angleθc.
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6.2 Coherent branchings and double logarithmic approximation (DLA)

In this section we are interested in calculating the dominant contribution to the distribution of soft
gluons inside a quark or a gluon or, equivalently, the partonic fragmentation functions. This means
that we are going to study a multi-gluon final states of the type

q(g) → q(g) + g1 + g2 + . . . gN , (6.5)

where the parent quark (q) or gluon (g) may be created for instance in thee+e− or pp collisions.
As in the space-like case, we exploit the freedom of the gaugechoice and this time we select the

planar gaugedefined as [6]
Aa

µn
µ = Ba(x), (6.6)

whereBa(x) is the scalar field taking values in the Lie algebra of SU(3). The gluon propagator in this
ghost-free gauge has the relatively simple form [4]

Gab
µν(k) = δab dµν(k)

k2 + iǫ
,

dµν(k) = gµν − kµnν + nµkν

k · n , n2 < 0. (6.7)

In contrast to the light-cone gauge, discussed in Section 1.3, here the vectorn is not light-like. For the
specific case ofe+e− collision choosingn to be proportional to the total four-momentum of thee+e−

pair proves to be most convenient since this results in vanishing of the interference terms between the
emissions fromq and q̄. Hence, the quark and anti-quark radiate soft gluons independently. We may
also writedµν in terms of the gluon polarization vectorse(λ)

µ (k)

dµν(k) = −
3∑

λ=0

e(λ)
µ (k)e(λ)

ν (k). (6.8)

In the planar gauge the unphysical polarizations,e
(0)
µ ande(3)µ , are strongly suppressed and gluon has,

effectively, only two transverse polarizations. This is the reason why the above gauge is also referred
to as the physical gauge.

Since we study the leading order approximation we need to identify in the first place the regions
of phase space from which the dominant contributions to the cross section come. Let us begin with
a simple process of two gluon emission off a quark

q → q(p) + g1(k1) + g2(k2). (6.9)

The three possible, leading order graphs are shown in Fig. 6.3, whereki = (ωi,ki) is the four-
momentum of theith gluon. The corresponding amplitudes can be written as

Ma = g2 e
(2)p

k2p

e(1)p

(k1 + k2)p
ta2ta1 , (6.10)

Mb = g2 e
(1)p

k1p

e(2)p

(k1 + k2)p
ta1ta2 , (6.11)

Mc = g2e(1)µe(2)νγµνρ(k1, k2,−k)
dρσ(k)

k2

e(2)pσ

kp
i fa1a2ct

c, (6.12)

wherea1, a2, c denote the gluon color indices andta1 , ta2 , tc are the SU(3) generators in the fun-
damental representation. The gluon polarization vectors are e(1) ande(2). Let us examine first the
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(a)

k2 k2

k2

p p p

(b) (c)

k1 k1 k1

Figure 6.3: Two gluon emission graphs off a quark at leading order.

amplitudeMa. In the region of small emission angles the denominator of (6.10) is proportional to
ω2θ

2
2 (ω1θ

2
1 + ω2θ

2
2), whereθ1,2 are the angles betweenp andk1,2. After taking into account phase

space element the contribution to the cross section reads

dσa ∼ α2
s

dω1

ω1

dω2

ω2

θ1 dθ1
θ2
1 + ω2

ω1
θ2
2

dθ2
θ2
. (6.13)

Thus, we see that in the kinematical regionθ2
1 ≫ ω2

ω1
θ2
2 we obtain thedouble logarithmic(DL) terms in

the cross section with one soft energy and one collinear logarithm associated with each gluon emission

σa ∼ α2
s

∫
dω1

ω1

dω2

ω2

dθ1
θ1

dθ2
θ2

= (αs lnω ln θ)2 . (6.14)

This is the region in which the graph from Fig. 6.3a dominates. From symmetry we can instantly
establish that the region in which the amplitudeMb, corresponding to Fig. 6.3b, acquires the DL
enhancement isθ2

2 ≫ ω1

ω2
θ2
1. We also notice that the two regions never overlap so the interference term

of the typeMaM
∗
b is not enhanced logarithmically.

In the above derivation we made no statement about the relative size of the gluon energiesω1

andω2. In fact, without imposing any condition on theω2/ω1 ratio, the only DL contributions come
from the graphs (a) and (b) and the cross section is just a sum of |Ma|2 and|Mb|2 with no additional
interference terms. This is the case of the time-like DGLAP equation. However, we still have the third
graph of Fig. 6.3 c and it turns out that this graph can also contribute to the DL terms in the kinematical
region

ω1

ω2
θ2
1 ≫ θ2

2 ≥ θ2
1. (6.15)

We see that this contribution can be neglected whenω2/ω1 ∼ 1 but it starts to be as important as the
diagrams (a) and (b) in the region of thestrong energy ordering, ω1 ≫ ω2. Moreover, in the this case
the double logarithmic regions of (a) and (c) overlap and therefore one should expect the interference
termsMaM

∗
c to appear in the cross section. The quantum coherence effects are therefore negligible

only for relatively largex and in this regime the DGLAP equation may be used to calculatepartonic
distributions. However, below a certain value ofx, typically 0.1, the interference terms provide sub-
stantial contribution to the cross section.

Instead of analyzing the interference diagrams, it is more convenient to use a slightly different
approach. In the above, we first wrote the diagrams and then associated with them the regions of phase
space where each of the diagrams gives the DL contribution. We could approach the problem from the
opposite direction by starting from considering three distinct angular regions

(I) θ1 ≫ θ2,

(II) θ2 ≫ θ1,

(III) θ12 ≪ θ1 ≈ θ2. (6.16)
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It is easy to check that in (I) only the graph (a) gives the DL contribution. Similarly, graph (c) domi-
nates in the region (III). For the case of (II) we can split the(θ2

1, θ
2
2) plane into the regionθ2

2 ≫ ω1

ω2
θ2
1,

where amplitudeMb dominates, and the regionω1

ω2
θ2
1 ≫ θ2

2 ≫ θ2
1, where bothMa andMc contribute.

It can be shown that in this caseMa + Mc ≃ Mb and the expression (6.11) is valid over the entire
region (II).

We summarize our considerations on the two gluon emission process by writing down the cross
section in the double logarithmic approximation

dσ ∼







|Ma|2 for θ1 ≫ θ2,
|Mb|2 for θ2 ≫ θ1,
|Mc|2 for θ1 ≈ θ2 ≫ θ12.

(6.17)

Other regions of phase space do not provide the terms of the DLtype. This, in turn, means that the
contribution is non-vanishing only when the second gluon isemitted at the angle which is much smaller
than the emission angle of the first gluon. This property is known as thestrong angular ordering. It
can be generalized to the multi-gluon emission processes, which allows to regard this processes as
a probabilistic cascade of independent gluon emissions. Hence, imposing the strong angular ordering
on the parton shower is equivalent to including interference terms. Since we consider only those terms
in the cross section which are enhanced by two large logarithms this approach is known as thedouble
logarithmic approximation(DLA). In general, the DLA cross section forN -gluon emission can be
written as [4]

dσN = dσ0 F2
∏

i

dK(ki), (6.18)

where

dK(ki) =
2CF αs

π

dωi

ωi

d2k⊥,i

2π k2
⊥,i

, (6.19)

anddσ0 denotes the cross section for the hard process in which the parent parton is produced. For
the case ofe+e− collision this is just the annihilation process. The factorF accounts for virtual
corrections. All the gluons in (6.18) are strongly ordered in their emission angles. Here, we discussed
the cascade initiated by a quark, which we will also call in what follows thequark jet. For the case of
the multi-gluon emission process off a gluon,i.e. thegluon jet, the Casimir invariantCF in Eq. (6.19)
has to be replaced byCA.

When analyzing multi-gluon final states, it is useful to introduce the concept of thegenerating
functional. Then, the cross section may be written in the functional form as

dσ{u} = dσ0 Z ({u}) , (6.20)

with

Z ({u}) =
∞∑

N=0

F2
∏

i

∫

Γ
dK(ki)u(ki). (6.21)

We see that theexclusivecross section forN -gluon production can be obtained from Eq. (6.20) after
applyingN functional derivatives and taking the result atu = 0

dσexcl
N =





N∏

j=1

d3k
δ

δu(kj)



 dσ{u}
∣
∣
∣
∣
∣
u=0

, (6.22)

where the functional derivative is defined as
(

δ

δu(ki)

)

u(k) ≡ δ3(ki − k). (6.23)
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The generating functional also allows to calculate theN -gluon inclusivecross section

dσincl
N =





N∏

j=1

d3kj
δ

δu(kj)



 dσ{u}
∣
∣
∣
∣
∣
u=1

. (6.24)

Hence, we see that the functionalZ({u}) contains all information about the intra-jet momentum dis-
tributions.

A gluonic cascade forms the tree-like structure, which can be defined recursively. Let us assume
that we have a partonR, which can be either quark (R = Q) or gluon (R = G), with momentumk
emitted at the angleθ. This parton, after a sequence of splittings, will eventually produce a jet described
by ZR(k, θ; {u}). If, instead of the whole evolution, we consider only the interval dθ, the partonR
can either stay intact or split by emitting a soft gluon. The products of the splitting will evolve to form
the jetsZR(k, θ+ dθ; {u}) andZG(k, θ+ dθ; {u}). This, in turn, leads to the differential equation for
the evolution of the generating functionalZ with the angleθ. The solution can be easily found and has
the form

ZR(p, θ; {u}) = u(p) exp

(∫

Γ

dω

ω

d2k⊥
2πk2

⊥

CR

Nc
γ2
0 [ZG(k, θk; {u}) − 1]

)

, (6.25)

where we have introduced the notational shorthand:γ2
0 = 4Ncαs(k

2
⊥)/(2π). The evolution terminates

whenkθ = Q0, withQ0 being a cut-off on transverse momentum which equals the virtuality at which
hadronization starts. In the above, we took the initial condition

ZR(k, θ; {u})
∣
∣
∣
kθ=Q0

= u(k), (6.26)

which states that if we start the cascade at the hadronization scaleQ0 we can only have the original
partonR in the jet.

One of the most important characteristics of a jet is the single parton distribution. It can be obtained
from the generating functional using

xDi
R(x,ER, θ) ≡ Ei

δ

δ u(ki)
ZR(ER, θ; {u(ki)})

∣
∣
∣
∣
∣
u=1

. (6.27)

The functionDi
R(x,ER, θ) is the distribution (density) of partons of typei in the jet with the opening

angleθ initiated by the partonR. Here, byx we denote the energy momentum fractionx = Ei/ER ≈
|ki|/ER. It is convenient to introduce new variables

ξ = ln
1

x
, ξ′ = ln

Ek

Ei
= ln

x

z
,

Y = ln
ERθ

Q0
, Y ′ = ln

ERθ
′

Q0
,

(6.28)

with z = Ek/ER ≈ |k|/ER andEk, θ′ being the energy and the emission angle of the intermediate
gluons in the cascade. Let us stress that the variableY from Eq. (6.28) is unrelated to the rapidityY
used frequently in the previous chapters. The motivation for the notation introduced here and adopted
in what follows is purely historical. The single power ofx on the left hand side of the definition (6.27)
comes from the Jacobian related to the change of variables fromx to ξ. This is because the functionDi

R

is in fact the differential expression,Di
R ≡ dDi

R/dx, cf. Eq. (6.4). Hereafter, for notational simplicity,
we will not write this Jacobian explicitly, which means thatwe adopt the notationDi

R ≡ x dDi
R/dx.
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Applying the functional derivative to Eq. (6.25) gives theDLA equation for particle spectrumin a
jet which reads

Di
R(ξ, Y ) = δi

Rδ(ξ) +

∫ ξ

0
dξ′
∫ Y

0
dY ′ CR

Nc
γ2
0 D

i
G(ξ′, Y ′ − ξ + ξ′). (6.29)

A few comments are in order. Firstly, let us notice that the shift −ξ+ ξ′ of the second argument ofDR

on the right hand side of Eq. (6.29) means that only cascades with strong decrease of energy contribute
to the spectrum. Secondly, the lack of the virtual term in Eq.(6.29) reflects the fact that in DLA the
recoil effects are not taken into account. In other words, partons do not change their energies even after
the emission of an arbitrary number of soft gluons. In the next section we discuss how this important
deficiency can be treated by formulating the equation which does justice to the exact kinematics.

The next comment concerns the anomalous dimension. This useful quantity, defined as the deriva-
tive of the spectrum with respect to the evolution variable,Y , can be estimated for the case of
DLA from Eq. (6.29). Let us notice that the functionsDi

R,G on both sides of Eq. (6.29) are of the
same order of magnitude. Therefore, the logarithmic integrations have to compensate the coupling,
∫ Y
0 dY ′ ∫ ξ

0 dξ
′αs ∼ 1, which means that the integration overY ′ as well asξ′ acts effectively as the

α
−1/2
s factor

∫ Y

0
dY ′ ∼

∫ ξ

0
dξ′ ∼ α−1/2

s . (6.30)

This should not be surprising given the fact that we are working in the double logarithmic approxi-
mation which by definition keeps only terms of the typeαs ln2 ∼ 1. Differentiating Eq. (6.29) with
respect toY gives

∂YD
i
R(ξ, Y ) =

∫ ξ

0
dξ′

CR

Nc
γ2
0 D

i
R(ξ′, Y − ξ + ξ′). (6.31)

Hence, from the fact thatDi
Q,G ∼ 1 and from Eq. (6.30) we estimate the DLA anomalous dimension

as
γDLA (αs) ∼ ∂YD

i
R(ξ, Y ) ∼ √

αs. (6.32)

We conclude this section by mentioning that the solution of Eq. (6.29) in the limit of large values ofY
has the form

Di
R(ξ, Y ) ∼ exp

(

2γ0

√

(Y − ξ)ξ
)

. (6.33)

It can be easily checked that the above spectrum has a maximumat

ξDLA
max =

1

2
Y, (6.34)

the feature which is often referred to as thehump-backed plateau. Thus, the particle distribution
decreases for large values ofx. This is the consequence of the color coherence since imposing strong
angular ordering significantly reduces the phase space for emission of soft particles. The smallx
decrease of the spectrum is expected also from kinematics, however it would lead to twice as rapid
growth of the peak position withY which is excluded by data.

6.3 Modified leading logarithmic approximation (MLLA)

The double logarithmic approximation to the soft gluonic cascades discussed in the previous sec-
tion gives a very interesting result of the smallx decrease of single particle spectra. However, the
approximation made in DLA happen to be too severe to obtain the qualitative agreement with exper-
imental data. Therefore, a more refined approach was developed by Dokshitzer, Khoze and Troyan
[4,102,103], who included the following subleading effects with respect to DLA:
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• The effects of running of the strong coupling are taken into account withk⊥ of parton being the
argument ofαs.

• The full splitting functions are used instead of solely logarithmically enhanced1/z terms and
all splittings are considered that isg → gg, q → qg andg → qq̄. This means that the decays
with z ∼ 1, which loose one energy logarithm, are also included.

• The configurations with the emission angles comparable in sizeθ1 ∼ θ2 are considered, which
results in the loss of one collinear logarithm. This amountsto the prescription of the exact
angular ordering.

All these effects provide the contributions of the orderαs to the anomalous dimension and of the order√
αs to the particle spectra. So, we can symbolically write

γMLLA (αs) ∼
√
αs + αs, (6.35)

Di,MLLA
R (ξ, Y ) ∼ 1 +

√
αs. (6.36)

We see that in addition to the DL terms now also thesingle logarithmic(SL) contributions are taken
into account. It is highly nontrivial to show that at this accuracy the probabilistic pattern of iterative,
independent emissions may be retained. In fact, as demonstrated in [4, 102, 103], the graphs that
spoil the probabilistic picture also appear. They provide contributions to the anomalous dimension
which are, however, beyond the MLLA accuracy. Hence, the parton decay probability for the process
A→ B + C has the the following form, which replaces the DLA formula (6.19)

dKBA =
α(k2

⊥)

2π
PBA(z)dzV (n)

dΩ

8π
, (6.37)

where

V s
fg(n) =

asg + afg − asf

asfasg
, (6.38)

aik = 1 − ni · nk = 1 − cos θik. (6.39)

The partonic cascade forms a “family” where grand the fatherg emits the fatherf , which in turn emits
the sons. It can be shown that the integration ofV s

fg over the azimuthal angle gives the property of the
exact angular ordering, namely

∫ 2π

0

dφ

2π
V s

fg(n) =
2

asf
Θ (afg − asf ) , (6.40)

whereΘ is the Heaviside step function.
TheMLLA master equationfor the generating functional reads

∂

∂ ln θ
ZA(p, θ) =

1

2

∑

B,C

∫ 1

0
dz
α(k2

⊥)

2π
P̂BA(z) [ZB(zp, θ)ZC((1 − z)p, θ) − ZA(p, θ)] , (6.41)

whereP̂BA(z) are theunregularizedleading order splitting functions. The termZC((1−z)p, θ) comes
from considering also the decays withz ∼ 1 and the virtual termZA(p, θ) reflect the fact that energy
is conserved exactly at each splitting. After applying the functional derivative to (6.41) one obtains the
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Figure 6.4: The possible processes that may give contribution to the parton density inside the quark (a)
or gluon (b) jet at the scaleln θ + δh and lead to the evolution equations (6.42).

system of two coupled equations for the single inclusive parton momentum distributions in the quark
and gluon jet

∂YDQ(x, Y ) =
1

2

∫ 1

0
dz

αs(k
2
⊥)

π
Θ(z(1 − z)Eθ −Q0)

·
{

P̂qq(z)

[

DQ

(x

z
, Y + ln z

)

+DG

( x

1 − z
, Y + ln(1 − z)

)

−DQ(x, Y )

]

+ P̂gq(z)

[

DG

(x

z
, Y + ln z

)

+DQ

( x

1 − z
, Y + ln(1 − z)

)

−DQ(x, Y )

]}

,

∂YDG(x, Y ) =
1

2

∫ 1

0
dz

αs(k
2
⊥)

π
Θ(z(1 − z)Eθ −Q0)

·
{

P̂gg(z)

[

DG

(x

z
, Y + ln z

)

+DG

( x

1 − z
, Y + ln(1 − z)

)

−DG(x, Y )

]

+ 2nf P̂qg(z)

[

DQ

(x

z
, Y + ln z

)

+DQ

( x

1 − z
, Y + ln(1 − z)

)

−DG(x, Y )

]}

,

(6.42)

where the Heaviside theta function guaranties that there are no emissions of partons withk⊥ below
the cut-off valueQ0. The above equations have a clear probabilistic interpretation. Let us consider the
probability of finding some parton with momentum fractionx in a quark with energyE and emission
angle (being the scale or time of the evolution) corresponding toln θ+δh . We denote this distribution
byDQ(x,E, ln θ+ δh). During the intervalδh our initial quark characterized byE andln θ+ δh can
split according toP̂qq(z) or P̂gq(z) producing the quark and gluon with energieszE and(1 − z)E.
Subsequently, the parton with the energy fractionx can be created by fragmentation of the quark and
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gluon withDQ,G(x
z , zE, ln θ) orDG,Q( x

1−z , (1 − z)E, ln θ). There is, however, always a possibility
that during the time of evolutionδh nothing will happen with the initial quark and afterwards itwill
fragment withDQ(x,E, ln θ). Thus, on the whole, the quark with energyE at scaleln θ + δh left
alone for the timeδh produces the following number of partons with energy fractionx

δh

∫ 1

0
dz P̂qq(z)

[

DQ

(x

z
, zE, ln θ

)

+DG

( x

1 − z
, (1 − z)E, ln θ

)]

+ δh

∫ 1

0
dz P̂gq(z)

[

DG

(x

z
, zE, ln θ

)

+DQ

( x

1 − z
, (1 − z)E, ln θ

)]

+

[

1 − δh

∫ 1

0
dz
(

P̂qq(z) + P̂gq(z)
)]

DQ

(

x,E, ln θ
)

. (6.43)

However, by definition, the same number is given, by the quarkfragmentation functionDQ(x,E, ln θ+
δh). Hence, we obtain the equation whose diagrammatic representation is shown in Fig. 6.4a. By tak-
ing the limit δh → 0 we arrive at the first equation from (6.42). Similarly, the second equation,
schematically represented in Fig 6.4b, can be derived.

6.3.1 Solutions of the MLLA equation

The system of equations (6.42) has been approximately solved in the limit of largeY and smallx in
which one can perform the expansion in powers of

√
αs. Keeping only the terms of the orderO(

√
αs)

on the right hand side of Eq. (6.42) (i.e. termsO(1) kept in the distributionsDG andDQ) would reduce
the above equations to the DLA equation with running coupling. When one goes one step further and
keeps also the termsO(αs) (thus termsO(

√
αs) in DG andDQ) one obtains, in the limitx ≪ 1, the

following approximation of Eq. (6.42)

∂YDQ(x, Y ) =
CF

Nc

{∫ 1

0

dz

z
γ2
0(Y + ln z)DG

(x

z
, Y + ln z

)

− 3

4
γ2
0(Y )DG (x, Y )

}

, (6.44)

∂YDG(x, Y ) =

∫ 1

0

dz

z
γ2
0(Y + ln z)DG

(x

z
, Y + ln z

)

− γ2
0(Y ) a1DG (x, Y ) , (6.45)

where

γ2
0(Y ) =

1

β

1

Y + ln z + ln(1 − z) + λ
, λ = ln

Q0

Λ
, (6.46)

and

a1 =
1

4Nc

[
11

3
Nc +

4

3
nfTR

(

1 − 2CF

Nc

)]

, β =
1

4Nc

(
11

3
Nc −

4

3
nfTR

)

. (6.47)

We see, in particular, that at this level of accuracy the equation for the gluon distribution (6.45) is
diagonal. Since Eqs. (6.44) and (6.45) are supposed to be valid in the limit of smallx, the semi-hard
splittingsz ∼ 1 are taken into account only partially and therefore the energy is not conserved exactly.
Nevertheless, with respect to the DLA equation (6.31) the two essential improvements are included in
Eqs. (6.44) and (6.45):

• the recoil effects, accounted for by the negative term proportional to−γ2
0(Y )DG (x, Y ), lead to

the softening of the spectra with respect to DLA,

• the running coupling.
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It is easy to show that at this accuracy the following relation between the distributions in the quark and
gluon jets holds forξ 6= 0

DQ(ξ, Y ) =
CF

Nc

{

DG(ξ, Y ) +

(

a1 −
3

4

)

[∂ξDG(ξ, Y ) + ∂YDG(ξ, Y )] + O(αs)

}

, (6.48)

which replaces the DLA relationDQ(ξ, Y ) = CF /NcDG(ξ, Y ). This means that in MLLA the intra-
jet distributions in a quark and in a gluon differ not only in normalization but also in shape.

The analytic solution of the equation for the gluon jet has been obtained in [4, 102, 103]. In the
Mellin space Eq. (6.45) has the form

(ω + ∂Y ) ∂YDG(ω, Y ) = γ2
0(Y )DG(ω, Y ) − a1 (ω + ∂Y ) γ2

0(Y )DG(ω, Y ). (6.49)

After introducing the functionm(ω, Y ) = γ2
0(Y )DG(ω, Y ) and consecutively changing the variable

from Y to t = −ω(Y + λ), Eq. (6.49) boils down to the Kummer’s equation

t ∂2
t m(ω, t) − (t− (B + 2)) ∂t m(ω, t) −

(

1 − A

ω
+B

)

m(ω, t) = 0, (6.50)

where we have introduced the notation

A =
1

β
, B =

a1

β
. (6.51)

This equation has two independent solutions which are the confluent hypergeometric functionsΦ and
Ψ. Taking into account the initial conditions forDG and∂YDG and transforming the result back toξ
space we finally obtain the solution of Eq. (6.45)

DG(x, Y, λ) =
A(Y + λ)

B(B + 1)

∫
dω

2πi
x−ω K(ω, λ)Φ

(

−A
ω

+B + 1, B + 2,−ω(Y + λ)

)

, (6.52)

where we denoted

K(ω, λ) =
Γ(A

ω )

Γ(B)
(λω)B Ψ

(
A

ω
,B + 1, ωλ

)

. (6.53)

6.3.2 Hypothesis of local parton-hadron duality (LPHD)

The solution (6.52) gives the momentum distribution of partons inside the gluon characterized byY .
Here,λ (or equivalentlyQ0) is a free parameter. Having obtained the partonic spectrum(6.52), can we
say something about the distribution of hadrons inside the gluon? Let us recall that the parameterQ0,
introduced to regularize the collinear divergences (k⊥ > Q0), sets the formal boundary on the pertur-
bative approach. We expect that belowQ0 some non-perturbative description of how partons change
into hadrons should be used. In principle, one could stop thecascade atk⊥ = Q0 and subsequently
employ one of the available hadronization models. Here, however, we are going to proceed differently.

Let us first notice that for large values ofY we can make the approximationY + λ ≈ Y in
Eq. (6.52). Then, the dependence onλ, and therefore onQ0, comes only throughK(ω, λ). It can be
shown thatωλ ∼ λ/

√
Y , so in the limit of largeY , which we discuss here, we haveωλ ≪ 1 and it is

easy to check that

K(ω, λ) ≈ 2

Γ(B)
(Aλ)B/2KB

(√
4Aλ

)

= const, (6.54)

whereKB is the modified Bessel function of the third kind and of the orderB, withB from Eq. (6.51).
The above result suggests that for asymptotically large energies the dependence of the shape of the
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Figure 6.5: Comparison of the MLLA+LPHD predictions with intra-jet distributions of all charged
hadrons measured ine+e− annihilation by TASSO [107] and OPAL [108,109].

spectra on the hadronization scaleQ0 disappears and one can expect the hadronic spectra to be very
similar to the partonic ones.

This observation supports the idea of thelocal parton-hadron duality[104–106] which states that
confinement acts locally in the phase space and consequentlythe hadronic spectra should be very
similar to the partonic spectra differing only by the overall normalization factor, which we will denote
in what follows asKLPHD. This means that perturbative evolution determines all theessential features
of the hadronic system such as distributions, correlationsof particlesetc.

6.3.3 Limiting spectrum

If, as just argued, theQ0 dependence is washed out at largeY , it should suffice to study the spectra at
λ = 0. At this value ofλ

K(ω, 0) = 1, (6.55)

and we obtain the simplified version of Eq. (6.52) which is called the limiting spectrum. It has the
form

Dlim
G (x, Y ) =

AY

B(B + 1)

∫
dω

2πi
x−ω Φ

(

−A
ω

+B + 1, B + 2,−ωY
)

. (6.56)

Strictly speaking, choosing the limiting spectrum is some particular way of modeling confinement.
Using the integral representation of the confluent hypergeometric functionΦ one can derive the ex-
pression for the limiting spectrum which is especially convenient for numerical evaluation [102,103]

Dlim
G (ξ, Y ) = AΓ(B)

∫ π
2

−π
2

dτ

π
e−Bα

[
coshα+ (1 − 2ζ) sinhα

AY α
sinhα

]B/2

· IB
(√

4AY
α

sinhα
[coshα+ (1 − 2ζ) sinhα]

)

, (6.57)

where

α = α0 + iτ, tanhα0 = 2ζ − 1, ζ = 1 − ξ

Y
. (6.58)
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Figure 6.6: Suppression of the high momentum hadrons produced in central Au+Au collisions at
200 GeV at RHIC. Figure from [110].

In Fig. 6.5, we compare the intra-jet distributions of all charged hadrons from thee+e− collisions
at three center-of-mass energies,

√
s, with the results of MLLA+LPHD. The theoretical curves were

obtained from the limiting spectrum (6.57), withQ0 = Λ = 253 MeV, multiplied by the accordingly
adjusted LPHD factorKLPHD. The position of the maximum of the MLLA limiting spectrum (6.57)
reads [4]

ξMLLA
max = Y

[
1

2
+

√
c

Y
− c

Y
+ O(Y −3/2)

]

, (6.59)

with c ≃ 0.29 for nf = 3. As we see it is larger than in the case of DLA,cf. Eq. (6.34). In other words
the MLLA spectrum is softer.

6.4 Jet quenching

The particles observed in experiments are hadrons. However, these are not the degrees of freedom of
the fundamental theory but the bound states of fields that enter the QCD Lagrangian, namely quarks
and gluons. Impossibility of observation of free quarks or gluons has its origin in the essential property
of QCD called confinement. It is argued, however, that the confined phase is not the only possible
phase of QCD but also the state withdeconfinementmay be attained above a certain value of the
energy density. Such phase is referred to as thequark gluon plasma(QGP) and is most likely to be
created in the collisions of heavy nuclei, with large atomicnumberA.

Among several possible signatures of the appearance of QGP one considers the phenomenon of
attenuation of the yield of high-pT particles, calledjet quenching. Hereafter, bypT we mean the
momentum component form the plane that is transverse to the beam axis. At the present state of the
art, the following mechanism is believed to dominate. The partons created in the hard process loose
more energy when they traverse the medium than in the case of the vacuum. This is due to the medium-
induced emission of soft gluons. Hence, the probability that the hadron with high momentum appears
at the hadronization scale is diminished for the case of the heavy ion collision.

To quantify the suppression, one defines thenuclear modification factorRAA. It is formed as the
ratio of the hadron yield in theAA collision to the yield for the case in which one collides the system
being the incoherent superposition ofA protons.

RAA(pT , y, b) =
d2NAA/dpTdy

〈TAA(b)〉d2σpp/dpTdy
. (6.60)
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Here,pT is the component of the hadron momentum transverse with respect to the beam andy is the
rapidity of the hadron,cf. Eq. (2.7). The distance in the transverse plane between the colliding objects
well before the interaction is called impact parameter and we denote it asb. The collisions withb = 0
are called central and the collisions with largeb peripheral. Finally,〈TAA(b)〉 is the Glauber overlap
function which gives the number of binarypp collisions.

The experimental results from RHIC, where two gold ions are collided at
√
s = 200 GeV, provide

the evidence in favor of the attenuation of the high momenta particles [111–114]. As we see in
Fig. 6.6, the magnitude of the suppression of hadrons for central collision isRAA ≃ 0.2. In Fig. 6.6,
data for the modification factor for the case of direct photons is also shown. As we see they are not
suppressed. This is because for photons the medium is transparent since they do not interact strongly.

Unfortunately, the measurements of jets is very difficult atRHIC mostly because of the high back-
ground and relatively low jet energies. However, this will be possible at the LHC and will allow to
test other signatures of jet modification like: jet broadening, softening of the spectra or change of the
hadronic composition.



Chapter 7

Hadronic composition as a characteristic
of jet quenching

Apart from being excellent objects for the precise study of perturbative QCD, jets may serve also
as probes on which new phenomena can leave their signatures.In particular, as briefly discussed in
Section 6.4, if the new state of the deconfined matter called the quark gluon plasma is created, the
jet that traverses it will certainly differ from the jet which develops in the vacuum. This is because
fragmentation pattern changes in the presence of a stronglyinteracting medium. The experimental
result supporting the above picture is the suppression of the high-momentum particles observed at
RHIC [111–114]. These measurements can be accounted for by introducing the mechanism of the
radiative parton energy loss [115–120], in which the additional medium-induced parton splitting leads
to softening of the spectrum and therefore reducing the yield of particles with largepT .

ThepT -distribution of particles, which is the transverse distribution with respect to the beam axis
but the longitudinal distribution with respect to the axis of the jet, is however not the only quantity
that can be affected by the medium. Also, the distribution inthe momentum transverse to the jet
axis is expected to change in the case of medium modified jet. There is however a third class of
characteristics, which may show significant medium effectsand this is the hadrochemical composition
of jet. The current chapter is devoted precisely to this problem.

As a theoretical framework we shall use the perturbative formalism of MLLA, introduced already
in Section 6.3, supplemented by the simplest model of hadronization, namely LPHD. This framework
is known to provide a reliable description of the charged andidentified hadron spectra inside jets
and it allows for easy implementation of the medium effects.The analysis presented in this chapter
considers only some aspects of the medium modification of jets. Nevertheless, an interesting behavior
of the particle spectra and particle ratios can be noticed even in this simplified framework. Moreover,
it can serve as a baseline on top of which other effects can be established.

We begin by discussing in Section 7.1 the possible mechanisms that may lead to the change of
hadrochemistry of the jets which develop in a medium. In the two following sections we introduce
some further facts concerning the MLLA+LPHD formalism. That is, in Section 7.2 the case of jets
with restricted opening angles is discussed and in Section 7.3 we explain how one obtains the MLLA jet
spectra for identified hadrons. A specific model of the mediummodification of jets proposed in [121] is
described in Section 7.4. In Section 7.5, we introduce briefly the model of the underlying event which
provides an estimate of the background expected at the LHC. The predictions for the modification of
jet hadrochemistry at the LHC are given in Sections 7.6, for the case of pure jets, and in Section 7.7,
for the case of jets which are not separated from the background. The concluding remarks concerning
our study of jet quenching are given in Section 7.8.

The results presented in Sections 7.6 and 7.7 are based on theoriginal publication [122].

82
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Figure 7.1: The MLLA+LPHD distribution of all charged hadrons in the jet of energyEjet =
108 GeV for various opening anglesθc, compared to CDF data frompp̄ collisions [129].

7.1 Conceivable mechanisms of hadrochemistry change

A number of mechanisms of parton energy loss may lead to the change of the hadronic composition of
a jet. In particular, the fully realistic model of radiativeenergy loss (see for instance [123–128]) should
take into account the transfer of color between the partons from the cascade and the QCD medium,
since this changes the color flow in the parton shower is thus likely to affect hadronization. Similarly,
other quantum numbers like flavor or baryon number can, in principle, be exchanged between the
medium and the partonic cascade. Another conceivable mechanism would be the recombination of
the partons from the shower with those from the medium. In addition, if the energy loss via inelastic
collisions is non-negligible than one should take into account also the recoil effects. This, in turn, can
lead to the medium components being kicked into the jet cone,which will certainly alter the hadronic
composition of the jet. Finally, the elastic interaction ofthe partons from jet with the medium results
in the enhancement of the parton branching probability.

In this study, we consider solely this last mechanism of medium induced radiative energy loss
that is we take into account only the elastic scatterings between the partons from the cascade and the
medium. Moreover, we do not introduce any changes with respect to the vacuum case at the level of
hadronization.

7.2 MLLA spectra within restricted jet opening angle

In Section 6.3 we wrote the solutions of the MLLA equation in terms of the evolution variableY .
The definition ofY for the case of small angles was given in Eq. (6.28). The solution evaluated at
a given value ofY corresponds to the jet with energyEjet and opening angleθc, which we define as
the half-angle of the jet cone. Therefore, the MLLA formalism allows also to determine the spectra of
hadrons for the jets with restricted opening angles. Whenθc is not very small one should, however,
use the exact definition

Y = ln
Ejet sin θc

Q0
. (7.1)

To illustrate this point we have plotted in Fig. 7.1 the intra-jet distributions of all charged hadrons,
contained inside three different jet subcones of opening anglesθc. As expected, the yield of hadrons is
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Figure 7.2: The distribution (7.5) of charged pions (π+ +π−), kaons (K+ +K−) and (anti)-protons
(p + p̄) in the jet of energyEjet = 14.5 GeV, compared to TPC data one+e− collisions [130]. For
better visibility, rates of kaons and protons are multiplied by the factor 2.5.

greater for the jets with larger aperture. Moreover, with increasingθc, the momentum range broadens
and the peak position moves towards largerξ, that is smaller hadron momenta. We also see that the
MLLA limiting spectra agree fairly well with the data. Let usstress at this point that we used the
common parameters for the three curves that isΛ = Q0 = 235 MeV andKLPHD = 0.555.

7.3 MLLA spectra of identified hadrons

The MLLA formalism also allows to calculate the spectra of identified hadrons. We have already
mentioned that the parameterQ0 specifies the endpoint of the partonic cascade. In the case ofthe
identified spectra one relates this point with the mass of thehadron,Q0 ≈ Mh [105, 106]. In other
words, for the case of heavier hadrons, the perturbative evolution stops earlier and the hadronization
occurs at higher virtuality scale.

In order to calculate the spectrumDG(ξ, Y, λ) for Mh 6= Λ, that isλ 6= 0, one should in principle
perform the complex integration in Eq. (6.52). However, as noticed in Section 6.3.2, at large energies
the dependence onλ, and hence on the hadron mass, comes only via the functionK(ω, λ), defined
in Eq. (6.53), and can be factorized out. Therefore, it is expected in this limit that the shape of the
spectrum forλ ∼ 1 will be very close to the shape of the limiting spectrum and the two spectra will
differ only by normalization fixed by the factor

K0(Mh) =
2

Γ(B)
(Aλ)B/2KB

(√
4Aλ

)

, λ = ln
Mh

Λ
. (7.2)

The energies reached in experiments are, however, not largeenough for this asymptotic result to
be applicable. Nevertheless, as argued in [105, 106], one can correctly describe the spectra that are
presently available by redefinition of the variableζ appearing in Eq. (6.57), which has the interpretation
of normalized rapidity. The more suitable definition of the normalized rapidity is [105,106],

ζ̄ =
y

ymax
, y = ln

Eh + ph

Mh
, (7.3)
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and the limiting spectrum (6.57) may be written as a functionof ζ̄ by substituting

ζ = 1 − 1

Y
ln

cosh ymax

cosh(ζ̄ ymax)
. (7.4)

It can be easily shown that for ultra high energiesζ andζ̄ coincide. There is, however, another element
which has to be taken into account. Namely, in order to properly describe the region of smallξ where
the mass of a particle is comparable with its momentum one hasto correct the original expression
for Dlim

G (ξ, Y ) by using exact definition of momentum fraction that isxp = ph/Ejet rather thanx =
Eh/Ejet which appears in Eq. (6.57). By combining all the elements described above one is able to
express the distribution of identified hadronsh in the gluon jet by the limiting spectrum

xp
dNh

dxp
(xp, Ejet, θc,Mh) = KLPHDK0(Mh) γh

x2
p

x2
p +

(
Mh
Ejet

)2 D
lim
G (ζ(ζ̄), Y, θc), (7.5)

where, following [106], we have introduced the factorγh, which depends on the hadron species. This
factor in commonly used and for instance in the case of kaons it accounts for the fact that the probability
of hadronizing into strange hadrons is reduced due to the larger mass of the strange quark. This effect
is known as the strangeness suppression. For more details onthe derivation of Eq. (7.5), we refer to
Appendix C as well as to the original papers [105,106].

In Fig. 7.2, we compare the distribution (7.5) with the spectra of identified hadrons in jets pro-
duced ine+e− collision, measured by the TPC collaboration. The limitingspectrum was calculated
takingQ0 = Λ ≈ Mπ. The parameters were set toΛ = 155 MeV andKLPHD = 1.22. In accor-
dance with data, one observes that the spectrum becomes harder for more massive hadrons. Also, the
mass-dependent hierarchy of hadron multiplicity is reproduced. To account for the strangeness sup-
pression, following [106], we adoptedγK = 0.73. The relative normalizationK0(Mh) was calculated
from (7.2), in contrast to the original analysis [106], where it was extracted from the fit to the TPC
data.

Since we are not aware of an experimental study of the jet hadrochemical composition as a function
of the jet opening angle, we assume in what follows that the relative distributions of identified hadron
species inside a jet do not change significantly as a functionof θc, so that the definition (7.1) applies
also in this case.

7.4 Borghini-Wiedemann model of medium modification

After discussing the formalism of MLLA+LPHD, which provides a reliable framework for studying
the vacuum jets produces ine+e− or pp/pp̄ collisions, let us turn to the description of jets modified
by the dense QCD medium created in the collisions of heavy ions. There is no unique prescription of
how to model the fragmentation inside a medium. One possibility to introduce the medium induced
gluon radiation into the formalism is to enhance the probability of parton branching. The model
of this sort, in which the singular parts of the unregularized splitting functionsP̂qq(x), P̂gg(x) and
P̂qg(x) are enhanced by one common model-dependent factor(1 + fmed), was proposed by Borghini
and Wiedemann [121]. Such a treatment is motivated by the calculations of medium-induced gluon
radiation of hard partons [123–128]. The regular parts of the splitting functions are beyond control
and they are left unchanged in order to avoid introducing additional parameters. Consequently, we
have [121]

P̂qq(x) = CF

[
2 (1 + fmed)

1 − x
− (1 + x)

]

, (7.6)
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Figure 7.3: Medium modification of the all charged hadrons spectra inside a jet calculated within the
radiative energy loss model of Borghini and Wiedemann [121].
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P̂gq(x) = CF

[
2 (1 + fmed)

x
+ x− 2

]

, (7.7)

P̂gg(x) = 2CA

[

(1 + fmed)
x

1 − x
+ (1 + fmed)

1 − x

x
+ x(1 − x)

]

, (7.8)

P̂qg(x) = TR

[
x2 + (1 − x)2

]
. (7.9)

The above modification is very easy to implement within the MLLA formalism since it amounts solely
to redefinition of the parametersA andB, which appear in Eq. (6.57) as well as in Eq. (7.2) and were
originally defined in Eq. (6.51). In the case of medium modified fragmentation these parameters take
the form

A =
1 + fmed

β
, B =

(
11 + 12 fmed

3
Nc +

2

3

nf

N2
c

)

/(4Ncβ). (7.10)

The LPHD-prescription is adopted unchanged in the model [121].
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As shown in Fig. 7.3, the single particle intra-jet spectra soften when the partonic cascade develops
inside a medium. In Section 6.1 we have explained that these spectra can be interpreted as the frag-
mentation functions. By convoluting the fragmentation function with the parent parton spectrum one
obtains thesingle inclusive spectrumof the leading hadrons that can be used to calculate the nuclear
modification factorRAA. The typical distribution of parent partons is power like1/p

n(pT )
T , wherepT

is the component of the momentum perpendicular to the beam axis. The powern(pT ) depends on the
center-of-mass energy and can be taken either as a constant or a more sophisticated function ofpT . The
simple model of medium modification proposed in [121] is ableto account for theRAA suppression
measured at RHIC. As shown in Fig. 7.4, the correct magnitudeof quenching is obtained both for the
case of partonic spectrum with the constant power,n = 7, as well as with the power parametrized as
n(pT ) = 7 + 0.003p2

T and with the value offmed = 0.8 or fmed = 0.6, respectively.

7.5 Two component model of underlying event

Jets measured in the heavy ion collisions at the LHC will be always accompanied by a large abundance
of the underlying event particles. Therefore, it is important to examine whether the hadrochemistry
of the background is similar to that of the jet or whether theyare qualitatively different. Moreover,
the estimation of the relative yields of the jet and the background particles would allow to asses if the
modification of jets can be observed without separating it from background.

In order to estimate the underlying event we use the model proposed in [132, 133] and further
explored in [134], in which hadrons are produced via two competing mechanisms, recombination and
fragmentation. We limit ourselves to central collisions and we specify the input following [134]. The
transverse momentum spectra of hadrons are modeled by a two-component distribution, showing an
exponential ”thermal” slope at low transverse momentum anddisplaying a characteristic power-law at
high transverse momentum.

We characterize the exponential component of the quark and anti-quark spectrum by the distribu-
tion

wi(R, p) ∼ e−pµuµ(R)/T . (7.11)

This distribution is assumed to be emitted from spatio-temporal positionsRµ = (τ cosh η, ρ cosφ,
ρ sinφ, τ sinh η), which lie in a thermally equilibrated system at temperature T along a space-like
freeze-out hypersurfaceΣ. Here,η is the space-time rapidity,ρ the radial coordinate, and a suitable
hypersurface can be specified by fixingτ =

√
t2 − z2 = const. The system is expanding at position

Rµ with a longitudinally boost-invariant flow profileuµ(R), which displays a velocityυT = tanh ηT

in the transverse direction. Integratingwi along the freeze-out hypersurface is a standard procedure to
find the soft contribution to the quark spectrum,dN soft

a /d2pa,T dy. In the following, we denote bypa,T

the momentum of partons, and bypT the momentum of hadrons.
The hard, power-law contribution to the quark spectrum is determined by

dNhard
a

d2pa,T dy

∣
∣
∣
∣
∣
y=0

= K
C̄

(1 + pa,T/B̄)β̄
. (7.12)

Here, the parameters̄C, B̄ andβ̄ are taken from the leading order perturbative QCD calculations [135]
and the constantK ≃ 1.5 accounts for higher order corrections [132, 133]. Parton energy loss is
modeled by quenching this partonic spectrum via shifting its momentum distribution by∆pa,T (pa,T ) =
ǫ0

√
pa,T , as suggested in [136].

We now explain how these partonic spectra are turned into hadronic yields. For an exponential
spectrum based on (7.11), recombination always wins over fragmentation, since there are exponen-
tially many recombination partners at softpT . For a power-law tail (7.12), however, fragmentation
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wins over recombination, since there are sufficiently many high-pT components which can fragment
into softer ones. Thus, the partonicpa,T -scale at which the power-law contribution (7.12) overcomes
the exponential one sets the hadronicpT -scale at which fragmentation starts to dominate over recom-
bination [132].

The momentum spectrum for mesons and baryons from recombination can be written as [132,134]

dNM,B

d2pT dy

∣
∣
∣
∣
∣
y=0

= CM,BMT

τAT

(2π)3
2Πa γa I0

[
pT sinh ηT

T

]

k2,3(pT ) , (7.13)

whereγa are quark fugacities,CM,B the degeneracy factors for meson and baryon respectively, and
MT their transverse mass.AT = πρ2

0 is the transverse area of the parton system at freeze-out andτ the

hadronization time. Here, we also introduced the shorthandkN (pT ) = K1

[

cosh ηT
T

∑N
a=1

√

m2
a +

p2
T

N2

]

.

The spectrum for hadrons from fragmentation is given by

E
dNh

d3pT

=
∑

a

1∫

0

dz

z2
Dh

a(z,Q2)Ea
dNhard

a

d3pa,T
(7.14)

with Dh
a(z,Q2) denoting the fragmentation function of a partona into a hadronh. We use KKP

fragmentation functions [137].
It has been shown [132–134] that with appropriately chosen parameters, this two component model

accounts successfully for the baryon-to-meson enhancement observed in a large class of RHIC data
on Au+Au collisions at intermediatepT . In particular, recombination models can reproduce the pro-
ton to pion and kaon to pion ratio at intermediate transversemomentum [132–134]. Recombination
dominates at RHIC up tophadron

T ≃ 4 − 6 GeV, and fragmentation takes over for higher transverse
momentum.

This model has been extrapolated to the LHC, where two lead nuclei will be collided at the center-
of-mass energy

√
s = 5.5 TeV [134,138]. The temperature of the quark phase was fixed at hadroniza-

tion at 175 MeV, similarly to the RHIC case the parametersυT andτAT have been rescaled such that
the results of fluid simulations [139] are reproduced:υT = 0.68 andτAT = 11.5 × 103 fm3 [134].
The quenching of high-pT partons is fixed by the choiceǫ0 = 2.5, which amounts to a factor≃ 10
suppression of the single inclusive hadron spectra atpT = 10 GeV. The single inclusive hadron spectra
calculated for LHC are dominated by recombination up to a scale which lies≃ 2 GeV higher than the
corresponding scale at RHIC [134,138].

7.6 Hadronic composition of jets produced in heavy ion collision at LHC

The change of jet hadrochemistry resulting from the modification of the fragmentation pattern via en-
hancing the splitting rate according to Eqs. (7.6)–(7.9) can be studied directly using the formula (7.5).
In what follows we adopt the choicefmed = 1 for this only parameter characterizing the medium. This
value clearly lies in the right order of magnitude given the fact that the choicefmed = 0.6 − 0.8 was
compatible withRAA measured at RHIC [121]. This choice should be also regarded as an estimate for
the LHC that, in the absence of other constraints, is fair enough for our illustrative purposes.

The effect of the medium modification of the partonic cascadefor the case of identified hadron
spectra is seen in Fig. 7.5. The modified spectra are softenedand the hierarchy of the intra-jet distribu-
tions is preserved,i.e. the peak position moves towards smaller values ofξ (larger values of momenta)
with increasing the hadron mass.

Let us now investigate how the change observed in Fig. 7.5 influences the ratios of identified hadron
yields. For that purpose, we translate theξ-dependence at fixedEjet into a transverse momentum
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Figure 7.5: The modification of the pion, kaon and proton spectra in the jet of energyEjet =
14.5 GeV and opening angleθc = π/2 expected in our approach withfmed = 1.

dependence. For a single jet of energyEjet, thepT -spectrum of identified hadron of typeh, collected
within the opening angleθc, takes the form

[

dNh(θc)

dpT

]

jet

= KLPHD γhK0(Mh)
pT

p2
T +M2

h

Dlim
(

ζ̄(pT ,Mh, Ejet), Ejet, θc,Λ
)

. (7.15)

We chooseγh = 1 for pions and protons, andγK = 0.73 for kaons [106], which are the same choices
as those made in Section 7.3. The limiting spectrum was calculated withΛ ≈Mπ = 155 MeV. For the
local parton-hadron duality parameter, we tookKLPHD = 0.5. This factor must be slightly lower than
the one used in Fig. 7.2, since it determines the normalization of the identified hadron spectra, while
Fig. 7.2 shows the spectrum of all charged particles. The prefactorK0(Mh) itself depends onfmed

according to Eq. (7.2). We have checked, however, that it changes only mildly for protons (∼ 5%) and
for kaons (∼ 12%). By definitionK0 does not change for the case of pions, which in our approach
are described by the limitting spectrum. In the following, we shall focus on results for the opening
angleθc = 0.28 rad although, in principle, the calculations can be carriedout for any value ofθc, as
discussed in Section 7.2. We have tested that the dependenceon the opening angleΘc is, in fact, very
weak .

One of the main results of our study is shown in Fig. 7.6. We observe that in our model the
hadrochemical composition of jet fragments changes significantly in the presence of parton energy
loss (i.e. for finite fmed). Heavier hadrons become more abundant. For instance, for the case of jets
with Ejet = 50 GeV, the kaon to pion ratio increases by∼ 50%, the proton to pion ratio by∼ 100%.
These medium-induced changes persist over the entire transverse momentum range. They decrease
slightly with the increase of jet energy but remain clearly visible even for theEjet = 200 GeV jets.

Let us stress once more that the significant medium modification of jet hadrochemistry manifested
in Fig. 7.6 comes solely form the modification of the probability of parton splitting. In our approach,
we have not changed the process of hadronization. Besides, other effects that could be present at the
partonic level were not included in our analysis like for instance the transfer of quantum numbers.
Therefore, since the enhanced parton splitting alone is capable of changing the jet hadronic composi-
tion one expects that measuring the identified hadron jet spectra provides an additional and important
handle to study the phenomenon of jet quenching.
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Figure 7.6: Results of our calculations forK±/π± andp(p̄)/π± ratios in the vacuum and medium
modified jets with energiesEjet = 50, 100 and 200 GeV and opening angleθc = 0.28.

We have also investigated whether medium effects generallyenhance the yield of heavier hadrons,
as seen in Fig. 7.6, or whether the opposite may be possible. It is difficult to answer this question
strictly and in general. Let us notice, however, by looking at Fig. 7.5, that there is always such region of
ξ in which the medium modified spectrum of the heavier hadron isenhanced with respect to the vacuum
case whereas the medium modified spectrum of the lighter hadron is depleted. Specifically, in the
range1.5 < ξ < 2.5 the pion yield decreases with increasingfmed for ξ < 2.5, while the proton yield
increases forξ > 1.5. This oppositefmed-dependence at intermediateξ excludes the possibility that
the ratiosK±/π± andp(p̄)/π± decrease over the entire transverse momentum range with increasing
medium-effects. This gives support to the idea that the enhancement of heavier hadrons, observed in
Fig. 7.6, is rather generic for jet quenching models.
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Figure 7.7: Identified transverse momentum spectra within acone of opening angleθc = 0.28 for
pions, kaons and protons.

7.7 Hadronic composition of jets within high multiplicity b ackground

In the realistic event of the heavy ions collision the highlyenergetic jet will sit on the top of the
background. In order to see to what extent this background may obscure the effects discussed in the
previous section we must determine its yield within the coneof opening angleθc. Using the result
for the double differential spectrum for mesons and baryonsdNM,B/d

2pT dy|y=0 from Section 7.5 we
integrate it over one unit in rapidity and the full azimuthalphase space. In the∆y × ∆φ-space, this
is an area of2π. We subsequently have multiplied our result by the fractionπθ2

c/2π, which a cone of
opening angleθc occupies in this plane. Since the spectrum is flat around mid-rapidity, the phase-space
integral is trivial and we obtain

[

dNh(θc)

dpT

]

background

≃ θ2
c π pT

dNh

d2pT dy

∣
∣
∣
∣
∣
y=0

. (7.16)

In Fig. 7.7, we compare the above background yield in the coneof opening angleθc = 0.28 rad
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Figure 7.8: The particle ratiosK±/π± andp(p̄)/π± obtained from the spectra shown in Fig. 7.7.
These ratios are measured in a cone of opening angleθc = 0.28 in the∆y×∆φ-plane, which contains
both soft background and a jet of energyEjet.

with the spectrum of hadrons from the vacuum jet given in Eq. (7.15). We observe that this two spectra
differ significantly and the harder distribution of jet fragments dominates rapidly over the distribution
of the background particles at transverse momenta larger than5−7 GeV. Consequently, if one adds the
two contributions one obtains the total yield of particles entering the cone with the opening angleθc.
As we see in Fig. 7.7, in the high-pT region, the slope of this combined transverse momentum spectrum
is entirely dominated by jet fragments. This slope steepensin the presence of medium-induced parton
energy loss. Hence, if the energy of a jet can be measured reliably in heavy ion collisions, then such
transverse momentum spectra provide direct experimental access to the longitudinal jet fragmentation
function without the necessity to subtract the background.

In Fig. 7.8, we have plotted the identified particle ratiosK±/π± andp(p̄)/π±, in the cone of
opening angleθc = 0.28 rad. The measurement of such ratios should be much easier andmore
direct than the measurement of the ratios in pure jets discussed in the previous section and depicted in
Fig. 7.6. This is because here it suffices to count all particles within the cone with the opening angleθc
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Figure 7.9: The jet modification factorJAA, defined in (7.17) within the cone of opening angleθc =
0.28 as a function of transverse momentum for different jet energies and different hadron species.

as a function ofpT without separating those hadrons which come from the jet andthose that belong
to the background. Let us also notice that the determinationof Ejet does not need to be particularly
good, since the hadronic ratios shown in Fig. 7.8 depend weakly onEjet. Since abovepT > 5−7 GeV
the spectra within the cone are essentially background free, also the particle ratios above this values of
transverse momenta match those shown in Fig. 7.6. which werecalculated for pure jets.

It is worth noticing that in this high-pT range, medium-effects enhance the particle ratios, which
for the case of the protons means that they become even more distinct than those of the background.
As depicted in Fig. 7.8, at lower transverse momentum, the background yield dominates the hadronic
abundances and particle ratios.

The complementary way of presenting information about the hadrochemical composition of jets
and their change in a medium is by forming another type of ratio

JAA ≡
dNh

dpT

∣
∣
∣
med

dNh

dpT

∣
∣
∣
vac

, (7.17)
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which we will call the jet modification factor, in analogy with the nuclear modification factor. Here, we
have the same hadron species in the numerator and in the denominator. In both cases they are calculated
as a sum of the jet (7.15) an the background (7.16) particles entering the coneθc. The numerator
corresponds, however, to the quenched jet (fmed = 1) whereas the denominator to the vacuum jet
(fmed = 0). As we have seen several times already, and in particular inFig. 7.5, jet quenching amounts
to the reshuffling of hadronic yield from high to low transverse momentum. This is reflected also in
the behavior of the jet modification factor depicted in Fig. 7.9. Above a certain value of the transverse
momentumpcrit

T , at whichJAA(pcrit
T ) = 1, the yield of particles in the medium modified jet is depleted

with respect to the vacuum case. At the same time the subleading fragments, additionally produced due
to the medium, populate the region belowpcrit

T and therefore enhanceJAA. As manifested in Fig. 7.9,
the value ofpcrit

T varies significantly both with the jet energy and with hadronspecies. In particular,
since the total amount of additional multiplicity, produced due to parton energy loss, increases with
the jet energy alsoJAA increases withEjet. Similarly, the order of the particle species dependence of
JAA, seen in the left column of Fig. 7.9, is a direct consequence of the medium-induced enhancement
of the ratiosK±/π± andp (p̄)/π± from Figs. 7.6 and 7.8. Namely, if for instance at fixed transverse
momentum,〈K±〉med/〈π±〉med > 〈K±〉vac/〈π±〉vac, then 〈K±〉med/〈K±〉vac > 〈π±〉med/〈π±〉vac,
and this order is reflected in Fig. 7.9.

7.8 Concluding remarks

We have analyzed the phenomenon of jet quenching in heavy ioncollisions at the LHC. Specifically,
we studied change of the hadronic composition of jets due to interactions with the QCD medium. In
order to describe the development of the partonic cascade, we used the framework of MLLA. Together
with this formalism the hypothesis of LPHD was employed as a simple hadronization model. The
interaction of the jet with the medium was assumed in the formof radiative energy loss. It was im-
plemented, following the model proposed in [121], by enhancing the singular parts of the splitting
functions.

We observe that the modification of the partonic cascade alone, without changing the process
of hadronization, is capable to significantly affect the hadrochemical composition of jets. Our main
prediction for the LHC concerns the rationsK±/π± andp(p̄)/π±, which, according to our analysis,
increase if the jet is modified by the medium. We give arguments why this is likely to be a generic
feature for a wide class of jet quenching models.

We have also checked whether this effect persists when the jet is not separated from the abundant
underlying event particles. Using the prediction of the LHCbackground from [132,133] we calculated
the background yield inside the jet cone and added it to the MLLA+LPHD jets spectra. We observe
that above the transverse momentumpT = 5 − 7 GeV the slope of such combined distributions is
entirely dominated by the slope of the jet spectrum. Moreover, this slope steepens in the presence of
a medium. Finally, we have shown that the increase ofK±/π± andp(p̄)/π± ratios due to the medium
modification, found for the case of pure jets, is not obscuredin the presence of the background. This
results from the characteristically different hadrochemistry of the jet and the underlying event. For
the case ofp(p̄)/π± ratios the medium modification leads to further increase of the difference in
hadrochemistry between the jet and the background. On the other hand, any jet quenching mechanism
which kicks components of the background into the jet cone may be expected to have the opposite
effect. Therefore, the results of our study can also be viewed as a baseline, on top of which effects
indicative of specific microscopic mechanisms of parton energy loss may be established.

The identified hadron spectra inside the jets created in heavy ion collisions as well as their ratios
predicted from our study differ significantly from those observed in the vacuum case. This conclusion
remains valid also if the jets are not separated from the background. The ALICE collaboration has
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an extensive program devoted to the measurement of the intra-jet distributions of identified hadrons.
Therefore, we expect that, in the near future, the set of predictions concerning the medium-modified
jets, which we have presented in this chapter, will be able tobe tested against the experimental data
from the LHC.



Chapter 8

Summary

In this Thesis we have presented theoretical study of two important processes, which are experimen-
tally investigated in the collisions of particles at high center-of-mass energy. The first process, dis-
cussed in Chapters 1–5, was deep inelastic electron-protonscattering, for which a large abundance of
data from the experiments at HERA is available. We focused, in particular, on the phenomenological
and theoretical study of the phenomenon of saturation. The second process, examined in Chapter 6
and 7, was the production of jets and their modification in theheavy ion collisions at the LHC.

The phenomenological analysis of saturation, documented in Chapter 3, was performed in the
framework of the model of Bartels, Golec-Biernat and Kowalski [49]. This is an extension of the
Golec-Biernat and Wüsthoff model [47], which was improvedby including the proper DGLAP evo-
lution of the gluon density at large virtuality scales. Suchimprovement modifies slightly the behavior
of the dipole cross section at small values of dipole size andallows for better description of the proton
structure functionF2(x,Q

2) at large photon virtualityQ2. We studied the production of the charm
and beauty flavors within the BGK model [49]. The five model parameters were set by the fit to the
recent data for the proton structureF2(x,Q

2) at low x. We assumed the light quarks to be massless.
We found the values ofχ2/ndf = 1.06 − 1.16, which is close to unity and enables us to conclude that
the quality of the fit is good. Consequently, the model fitted with heavy quarks correctly describes
the inclusive proton structure function. We observe that the parameters of the model differ signifi-
cantly from those obtained in [49], in the fit without heavy quarks. Also, the the dipole cross section
is changed. Adding the heavy quarks cures its pathological behavior found in [49] for the case of fit
with massless light quarks. Comparing our result for the dipole cross section with the result from [49],
obtained in the fit with the massive light quarks, we see that the fit with heavy quarks leads to the
shift of the dipole cross section towards smaller values of the dipole size. This has a consequence
on the position of the critical line which moves in the direction of smaller values ofQ2 making the
saturation more difficult to observe in the future experiments. This last finding agrees with the result
obtained in a different saturation model [56] by Soyez [69].In addition, we were able to predict the
charm and beauty contributions to the proton structure function. We found very good agreement of
our results forF cc̄

2 andF bb̄
2 with the data from H1 and ZEUS collaborations. Although thiswas not

discussed extensively in the Thesis, let us mention that also the predictions for the diffractive structure
function agree well with the data. Finally, the longitudinal structure functionFL has been predicted
and compared with the H1 estimations. The large experimental errors, however, disable from making
a firm conclusion. Fortunately, the direct measurement ofFL, should be available in the near future.

The theoretical study of the saturation effects was presented in Chapter 5. For that purpose, the
BK equation with running coupling and the improved NLL BFKL kernel was used. As a method of
solving the equation for asymptotic energies, we adopted the traveling waves approach. This approach,
known since long ago in statistical physics, allows to obtain the solutions of a certain class of nonlinear
equations by analyzing solely their linear part. The existence of the traveling wave solution, in terms
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of QCD, is equivalent to the property of geometric scaling. We found that the parts of the equation that
are generated by the NLL corrections to the BFKL kernel do notcontribute to the first two universal
terms in the asymptotic result for the saturation scale. In other words, the functional form of this
solutions is the same as in the case of the LL BK equation with running coupling studied in [76]. The
NLL result depends, however, parametrically on the resummation scheme used for the BFKL kernel.
We studied our results with the kernels resummed in three three specific schemes S3, S4 and CCS.
The first two depend explicitly on̄αs and the value of the coupling influences the critical parameters
which enter the expressions for the amplitude and the saturation scale. In contrast, the third scheme
is independent of̄αs and therefore the results obtained within this scheme are identical with those
found at the leading order [76]. Finally, we found that although our results are, strictly speaking,
valid for asymptotic values ofY , we are able to mimic the non-asymptotic behavior for the saturation
scale from [90]. This can be achieved by choosing an appropriate value ofY0, which is an arbitrary
parameter in our approach. The non-zero value ofY0 generates and parametrizes the higher order, non-
universal corrections, which are relevant at phenomenological rapidities. This is true, in particular, for
the energy of the HERA collider.

In Chapter 7 we turned to the study of jets. We analyzed the case in which they develop in the
dense QCD medium. Such jets are modified with respect to thosecreated in the vacuum, which can be
used to study medium properties. A number of signatures thatmay be left on jets created in the heavy
ion collisions have been explored so far. In Chapter 7 we investigate a new possibility to study jet
modification, namely by looking at the change of its hadroniccontent. We analyzed the single particle
spectra of identified hadrons. To obtain these quantities, we used the perturbative framework of MLLA
supplemented by the hypothesis of LPHD. This formalism is known to successfully describe jets in
e+e−, pp/pp̄ andep collisions. Moreover, it was particularly convenient since the available analytic
results allow for easy implementation of the medium inducedenergy loss. More specifically, this
interaction of the jet with the medium was introduced, following the model proposed in [121], by
enhancing the singular parts of the splitting functions. Asshown in [121], this is sufficient to account
for the suppression of the high-momentum particles at RHIC.We predict for the LHC that the rations
K±/π± andp(p̄)/π±, significantly increase if the jet is modified by the medium. We argue that this
feature should be more general and remain valid for a large class of the radiative energy loss models.
The significant change of hadrochemistry that we observe wasobtained only by the modification of the
partonic cascade, without changing the process of hadronization. Therefore, we view the study of jet
hadrochemistry as a source of valuable information concerning the microscopic mechanism underlying
jet quenching. We checked that due to the characteristically different hadrochemistry of the jet and the
underlying event the effects predicted for pure jets persist even if the jets are not separated from the
high-multiplicity environment of the heavy ion collision.To estimate the underlying event at LHC we
used the result form [132, 133] and calculated the background yield inside the jet cone. The ALICE
experiment, which will soon start operating, has an extensive program of measuring the identified
particle distribution. Therefore one, will be able to confront our predictions with data in the near
future.
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Appendix A

Mellin transform and its properties

The Mellin transform and its inverse are defined as follows

f̃(ω) =

∫ ∞

0
dt tω−1f(t), (A.1)

f(t) =

∫ c+i∞

c−i∞

dω

2πi
t−ωf̃(ω), (A.2)

wherea < c < b. The limitsa andb are specified by the so calledfundamental stripthat is the area in
the plane of complexω in which the Mellin transform exists. In other words,f̃(ω) has no singularities
if a < Re{ω} < c. The Mellin transform (A.1) of the functionf(t) is equivalent to the two-sided
Laplace transform off(e−t).

In this Thesis we exploit in several places the transform of the Heaviside step functionΘ(a− t)

∫ ∞

0
dt tω−1Θ(a− t) =

aω

ω
. (A.3)

The above integral converges forω ∈ (0,∞). In fact, very often in practical applications, the funda-
mental strip stretches fromω0 to +∞, whereω0 is the rightmost singularity of̃f(ω). In that case, the
condition forc is c > ω0.

Interestingly enough, the functions of the Bjorken variable x vanish, by definition, forx > 1. In
such case, the Mellin transform boils down to

f̃(ω) =

∫ 1

0
dt xω−1f(x), (A.4)

with the fundamental strip(ω0,∞). It is straightforward to check that this is equivalent to the one-
sided Laplace transform off(e−x).

An important property of the Mellin transform is the algebraization of the following convolution

∫ 1

0
dxxω−1

[∫ 1

x

dz

z
A
(x

z

)

B(z)

]

=

∫ 1

0
dxxω−1

[∫ 1

x

dz

z
A(z)B

(x

z

)]

= Ã(ω)B̃(ω), (A.5)

where we assume that the functionsA(x) andB(x) vanish forx > 1. This relation is used for instance
in Section 1.5.2 to find the solution of the DGLAP equation in the limit of smallx as well as in Section
3.5 to obtain the gluon density in the DGLAP improved saturation model.
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Appendix B

“NLL” part of the BK equation with the
NLL BFKL kernel

After substituting the Ansatz (4.16), withu≡N , into Eq. (5.24), settingk = 1
3 , α = 1

3 and keeping

only the termsO(t−
1

3 ), which are leading in the limit of larget, one arrives at the following equation

G(z)γcυg(z − 4β)t−
1

3 =
1

b
χ′′G ′′(z)t−

1

3 +
2

b
eγc z t1/3 · Υ(G(z), G(z)′, G(z)′′, z, t), (B.1)

where byΥ(G(z), G(z)′ , G(z)′′, z, t) we denoted terms of the orderO(t−
1

3 ) from the “NLL” part of
Eq. (5.24)

“NLL” =
{ 1

2t
χ̇(γc) ∂t −

1

2t
χ̇′(γc) ∂L∂t −

1

2t
χ̇′(γc) γc∂t +

1

8t2
χ̈(γc) (∂2

t −
1

t
∂t)
}

N (L, t). (B.2)

The derivatives which appear in the above expression can be easily calculated and are given by

∂t N = e−γc z t1/3

{

G(z)

[
1

3
t−

2

3 + υgγct
1

3 − βγct
− 1

3

]

+G′(z)

[

− 1

3
zt−

2

3 − υg + βt−
2

3

]}

,

∂2
t N = e−γc z t1/3

{

G(z)

[

− 2

9
t−

5

3 +
2

3
υgγct

− 2

3 − 2

3
βγct

− 4

3 + υ2
gγ

2
c t

1

3 −

2υgβγ
2
c t

− 1

3 + β2γ2
c t

−1 +
2

3
βγct

− 4

3

]

+

G ′(z)

[
2

9
zt−

5

3 − 2

3
zυgγct

− 2

3 +
2

3
zβγct

− 4

3 − 2υ2
gγc +

4υgβγct
− 2

3 − 2β2γct
− 4

3 − 2

3
βt−

5

3

]

+

G ′′(z)

[
1

9
z2t−

5

3 − 2

3
zβt−

5

3 +
2

3
zυgt

−1 + β2t−
5

3 − 2βυgt
−1 + υ2

gt
− 1

3

]}

,

∂L ∂t N = e−γc z t1/3

{

G(z)

[

− 1

3
γct

− 2

3 − υgγ
2
c t

1

3 + βγ2
c t

− 1

3

]

+

G ′(z)

[
1

3
zγct

− 2

3 + 2υgγc − 2γcβt
− 2

3

]

+

G ′′(z)

[

− 1

3
zt−1 − υgt

− 1

3 + βt−1

]}

. (B.3)
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Extracting the terms which dominate for larget gives

∂t N = e−γc z t1/3

G(z)υgγct
1

3 + O(t−
1

3 ),

∂2
t N = e−γc z t1/3

G(z)υ2
gγ

2
c t

1

3 + O(t−
1

3 ),

∂L ∂t N = −e−γc z t1/3

G(z)υgγ
2
c t

1

3 + O(t−
1

3 ). (B.4)

We see that the leading terms of of the derivatives are of the orderO(t
1

3 ). However, each derivative
in (B.2) is suppressed either byt−1 or t−2 . Therefore, the “NLL” term contributes only at the order
O(t−

2

3 ) and this is why the solutions of the BK equation with the LL andNLL kernel have the same
functional form.



Appendix C

Particle identified hadron spectra in
MLLA

In the case of ultra high energiesζ defined in Eq. (6.58) can be interpreted as the normalized rapidity.
However, for the presently available energies the normalized rapidity should be defined rather as

ζ̄ =
y

ymax
, y = ln

Eh + ph

Mh
, ymax = ln

Ejet + pmax

Mh
, (C.1)

whereEh is the hadron energy andph its momentum. The variableξ, which appears in the result (6.57),
is defined asξ = ln(Ejet/Eh). It is straightforward to show using the definition (C.1) that

Eh = Mh cosh y, (C.2)

Ejet = Mh cosh ymax. (C.3)

Hence, we have

ξ = ln
Ejet

E
= ln

cosh ymax

cosh y
= ln

cosh ymax

cosh
(
ζ̄ymax

) , (C.4)

and substituting the above into the definition ofξ from Eq. (6.58) gives the relation between the two
normalized rapidities

ζ = 1 − ξ

Y (θc)

= 1 − ξ

Y (θc)
ln

cosh ymax

cosh
(
ζ̄ ymax

) . (C.5)

This is the result given in Eq. (7.4) which we exploit in Chapter 7.
The rapidityy and its maximal valueymax can be expressed explicitly for a given hadronh in terms

of the variablexp = ph/Ejet

y = ln
E + ph

Mh
= ln

ph +
√

p2
h +M2

h

Mh
= ln






xp +

√

x2
p +

(
Mh

Ejet

)2





+ ln

Ejet

Mh
, (C.6)

ymax = ln
Ejet +

√

E2
jet −M2

h

Mh
= ln







Ejet

Mh
+

√
(
Ejet

Mh

)2

− 1






. (C.7)

102



Appendix C. Particle identified hadron spectra in MLLA 103

The relation (C.5) substituted to the limiting spectrum is taken withylim
max ≡ ymax(Mh = Mπ = Λ).

This, together with the hypothesis of the local parton-hadron duality, leads to

x
dNh

dx
(ζ̄) = KLPHDK0(Mh) γhD

lim
G

(

ζ = 1 − 1

Y (θc)
ln

cosh ylim
max

cosh
(
ζ̄ ylim

max

)

)

, (C.8)

and after accounting for the difference betweenx = Eh/Ejet andxp = ph/Ejet we arrive at

xp
dNh

dxp
(ζ̄) = KLPHDK0(Mh) γh

x2
p

x2
p +

(
Mh
Ejet

)2 D
lim
G

(

ζ = 1 − 1

Y (θc)
ln

cosh ylim
max

cosh
(
ζ̄ ylim

max

)

)

, (C.9)

where the Jacobianx2
p/(x

2
p + (Mh/Ejet))

2 comes from changing variables fromx = Eh/Ejet to
xp = ph/Ejet. The redefined normalized rapidity,̄ζ, depends on the hadron momentum fractionxp,
hadron massMh and the jet energyEjet

ζ̄(xp,Mh, Ejet) =

ln

{

xp +

√

x2
p +

(
Mh
Ejet

)2
}

+ ln
Ejet

Mh

ln

{

Ejet

Mh
+

√
(

Ejet

Mh

)2
− 1

} . (C.10)

Hence, we obtained Eq. (7.5), which is the basic formula for the study presented in Chapter 7.
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