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Preface

Quantum Chromodynamics (QCD) is the most successful furd&ahtheory of strong interactions.
Since the time of its beginnings, over three decades agasibken extensively developed and tested
in numerous experiments. Nevertheless, at the preseptdftdlhe art, the theory is far from being
completely solved or even fully explored. On the contrangré are many effects predicted by QCD
which still lack firm experimental evidence. Similarly, namus experimental facts, sometimes very
basic, wait for comprehensive theoretical description.

The deep inelastic electron—proton scattering (DIS) isafrtee most important QCD processes.
The standard theoretical approach to DIS is based on theeamllfactorization between the long and
short distance parts of the theory. The latter can be destrithin perturbative approach since the
hard scale is provided by the high virtuality of the photgrand, as a result, the strong couplingis
small. Howeverp, is always accompanied by the large logarithm of virtualiytisata, In Q% ~ 1.
Therefore, the key element of the proper description of DIis approach is the necessity to resum
an infinite class of terms of the tyge, In Q?)".

In the high energy limit, in which the center-of-mass enenfjyhe v*p systemi’? > 2, the
above description of DIS becomes questionable. This lioritasponds to small values of the Bjorken
variablez ~ Q?/W? and now the large logarithmia(1/z) should be taken into account leading to
the infinite resummation of termgy, In(1/2))™. This is referred to as the, factorization or the
high energy factorization approach. In the limit of smallthe proton appears as a dense system of
soft gluons. The strong rise of the gluon number with dedngas was one of the most important
findings of HERA experiments. In contrast to the regime of BiSvhich Q? is the only large scale,
here, the interactions between gluons can give sizableteffeparticular, the growth of gluon density
is expected to slow down due to the recombination procesgaish are non-negligible in a dense
system. This goes under the name of gluon saturation anctéssary to ensure unitarity of thép
cross section. The first part of this Thesis is devoted todked of proton structure in the transition
region between the “dilute” and “saturated” regime.

The state of the saturated QCD matter is described by thddine @olor glass condensate (CGC).
This state can be created in DIS at laver in the high energy collisions of heavy nuclei. In the Iatte
case, the CGC phase turns after the collision into the naw stanatter called the quark gluon plasma
(QGP). The experimental data from the gold—gold collisisnggests that the latter state has been
attained at RHIC. The evidence is provided. by the observed suppression of leading particles.

The properties of QGP can be studied by analyzing modificatad jets created in the collisions
of heavy ions. The attenuation of yields of high momentaigdag measured at RHIC supports this
idea. The theoretical framework used to describe jets idagito that developed for the case of DIS. In
particular, one also performs the infinite resummation ohtecontaining large logarithms generated
by soft and collinear gluons. However, the satisfactorptiical description of the interactions of jets
with the dense QCD matter is still not available. Instead ases realistic models of jet modifications.
This allows to study the properties of QGP and on the othed haonfronted with the data, may guide
the theoretical investigations. The study of jets modifigdhe dense medium is the subject of the
second part of this Thesis.



The outline of the dissertation is the following.

Chapter 1 serves as an introduction in which we review basits fconcerning QCD and establish
notation. There, we present the standard approach to DIeiframework of the collinear factor-
ization and introduce the concept of parton distributionction. We also discuss the linear evolution
equation, called DGLAP equation.

In Chapter 2, we focus on the DIS in the limit of law(or equivalently high energy of the*p
collision). We discuss the framework &f; factorization and the BFKL evolution equation, which
allows to calculate the unintegrated gluon distributiamghie regime of dilute system. There, we also
establish the relation between the collinear Andactorization. Finally, in Chapter 2, we point out the
deficiencies of the BFKL equation in the regime of dense glusystems and the necessity to account
for the saturation effects in this limit.

In Chapter 3, we present the study of the heavy flavor proolucti deep inelastic scattering in
the framework of a saturation model based on QCD. The modelpr@posed by Golec-Biernat and
Wisthoff and further improved by Bartels, Golec-Biernatl&owalski. We demonstrate that this
model is not only able to precisely fit the HERA data but alsa@aorectly predict the charm and
beauty quark contributions to the proton structure fumctie well as some other quantities.

In Chapter 4, we introduce the basic QCD equation, whichuraptthe essential features of satu-
ration, namely the BK equation. We show that solutions of #tjuation are in qualitative agreement
with the assumptions of the saturation model from Chaptai8.also describe a specific method of
analyzing the BK equation proposed by Munier and Peschacakéd the traveling waves approach.
This method allows to obtain solutions of the BK equatiorhia limit of asymptotically smalt.

In Chapter 5, we study, in the framework of the traveling veaapproach, the asymptotic solutions
of the most developed form of the BK equation, namely withrthing coupling and the NLL BFKL
kernel. We obtain solutions for the scattering amplitudeval the saturation scale. We also explore
the possibility of adopting our asymptotic result to themimaenological energies.

In Chapter 6, we discuss the essential facts concerningijetsheir characteristics. We introduce
the notion of the fragmentation function, which is an objestmplementary to the parton distribu-
tion function used in the description of DIS. There, we alszuks the the perturbative equation for
fragmentation functions called MLLA as well as its soluton

In Chapter 7, a new approach to access the properties of mexigated in heavy ion collisions at
the LHC is proposed, namely by studying change of the hadminposition of jets. As a theoretical
framework, we use the formalism from Chapter 6 supplemehtethe radiative energy loss model
of Borghini and Wiedemann. We analyze the impact of the meatifin of parton shower caused by
the medium on the abundances of pions, kaons and protonsroiel predictions for the hadronic
spectra and ratios which can be tested as soon as the datéh#dkhICE experiment is available.

The summary of the Thesis is given in Chapter 8, which is ¥adid by three appendices.

The original work, presented in this Thesis, is based ondheWing publications

¢ “Heavy flavour production in DGLAP improved saturation mode”
K. J. Golec-Biernat and S. Sapeta, Phys. Re¥4D054032 (2006)

e “QCD traveling waves beyond leading logarithms”
R. B. Peschanski and S. Sapeta, Phys. Re4,[114021 (2006)

¢ “Jet hadrochemistry as a characteristic of jet quenching”
S. Sapeta and U. A. Wiedemann, arXiv:0707.3494 [hep-phRE#PH-TH-2007-111 (2007)
to be published in Eur. Phys. J. C



Chapter 1

Introduction

1.1 QCD essentials

Quantum Chromodynamics (QCD) [1-4] is a non-Abelian localge theory describing the strong
interactions of quarks and gluons. The Lagrangian of QCREdslired to be invariant under the trans-
formations from the SU(3) group. The postulate of the SU@prcsymmetry stems from the fact
that only color singlet states are observed in experimamtedd in nature we have mesopg)(and
baryons §qq) rather than free quarks. Consequently, all the propeofiise particles that we measure
in experiment are color-independent.

The SU(3) group is a Lie group specified by eight generaidravhich form the Lie algebra [1]

[Ta’ Tb] — Z‘fabcTc’ (11)

where f%¢ are called the structure constants of the group @ride = 1,...,8. Two representa-
tions (R) of the SU(3) group are of particular importance. The firdhssfundamental representation
(R = F). The generators in this representations are th8 Batrices7?, (F) = %)\‘;,m, where
m,n = 1,2,3 and \* are the Gell-Mann matrices. The quark is a three-dimenkioeor in the
color space, with colors being red, green, blue. The elesneinthe SU(3) group in the fundamen-
tal representation act on a quark state and change its cbh@.second important representation is
theadjoint representatiorfR = A). Here, the generators have the form of theB8nmatrices given by
TE(A) = —ifec. This matrices act in the eight-dimensional space of gltaies. For any representa-
tion R one can construct an objext, T (R)Ty;(R) = Crd;; called the quadratic Casimir invariant.
The value of the constardty in the fundamental representation is given®y = (N2 — 1)/(2N,)
whereas in the adjoint representation®@y = N., where N, is the number of colors. Therefore, for
the case of SU(3) we havgr = 5 andC 4 = 3.

The QCD Lagrangian density reads [1]

1 )
L= _ZTI" [F;w FM) + E (ﬁcn (ip— mf)mn Q£ + Lgauge-fixing+ Lghost (1.2)
f

with F,, = Fy, T where
F, = [auAg — 0,A% — g feeab A (1.3)

The quark field with flavorf and massn is denoted by;/ whereas the gluons fields by, where
i, v are the Lorentz indices. The sum in Eq. (1.2) runs over thebaurof active flavors: ;. We have
also introduced the notatioft = +* D,,, wherey* are the Dirac matrices satisfyifg*,~"} = 2¢g",

7



8 1.1. QCD essentials

a,u b,v m, 1 n,v
0000000000000
a,p au a,H d,o
g2
g g
b,v c.p m, v np b,wv c,p

Figure 1.1: Feynman graphs for QCD in the ghost-less gauge sdlid lines represent quarks whereas
the curly lines correspond to gluons.

with the metricg”” = diag(1, —1, —1, —1). By D, we denote the covariant derivative, which depends
on the fieldsAj; and is defined as

Dy[A] =8, +ig AL T (1.4)

The strength of the interaction is specified gywhich is called theeoupling constantHereafter, we

will use also the quantities
g N,
gy = —— Of Q4= —0Q. (1.5)
4 T
The first two terms in the Lagrangian (1.2) describe the qtiatéls q£, the gluon fields4}, and
their interactions. This part of the Lagrangian is by camston invariant with respect to the SU(3)

group transformation [3]
¢ (x) =U(x)q(x), F,(x)=U@)F.(x) U (2), (1.6)

[Du[A]a(2))" = Du[A] ¢ (z) = U(z) Dy[A] g(), (1.7

whereU (z) = exp (6*(x) T*) is in the fundamental representation. The invariance oL #Hgrangian
density (1.2) with respect to the gauge transformations) @nd (1.7) means that there is an infinite
number of configurations of field$, («) which are physically equivalent. These equivalent fields ar
related to each other by the gauge transformation.

The quantization of the gauge fields is possible only if sopexiic gauge is chosen and fixed.
This is necessary to avoid double counting, considering the physically indistinguishable configura-
tions. Such a quantization with constraint, by the methddagfrange multipliers, gives rise to the third
term in Eq. (1.2). In addition, in the case of the non-Abelilagory such as QCD, for some gauges,
one is forced to introduce extra fields into the formalisne, $b calledghosts which are described by
the last term in Eqg. (1.2).

In particle physics we are interested in calculating qtigstsuch as decay widths or cross sections
for scatterings. They all depend on the squared amplituglethé transition between some incoming
and outgoing states. In the region of small coupling one cgard the amplitude in powers gfand
calculate terms order by order. This theoretical framewsalledperturbative QCD(pQCD). The
natural language of the perturbative theory are Feynmarhgneepresenting propagation of quarks and
gluons as well as their interactions. For the sake of exam@ealepict in Fig. 1.1 the propagators of the
gluon and the quark as well as the quark-gluon, three-glmohf@ur-gluon vertices. The appearance
of the three-gluon vertex is a nontrivial property of QCDcgnt means that the self-gluon interaction
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is present already at the lowest ord@fg). The three-gluon vertex arises from the third, non-Abelian
term in the field strength tensor (1.3). The Feynman grapdether with additional set of rules allow
to write the expression for amplitude in an efficient an usigquay. One should, however, keep in mind
that the Feynman rules may differ significantly in differgatges. This proves to be very useful since
it allows to choose the most suitable gauge for each problem.

In the regime of large coupling other techniques must be ssetl as.g. lattice QCD. In this
approach the theory is formulated in the Euclidean spac&haf in turn discretized into the four-
dimensional lattice with spacing Local gauge invariance is preserved. The action obtaipatib
procedure is used to calculate the expectation values wusoperator associated, for instance, with
hadronic masses @ potential. The lattice spacing must be much smaller than the size of the
studied objecte.g.the hadron radius. In the following, we will refer to all thifeets which cannot be
studied in the perturbative theory as tien-perturbative effects

We see that the value of the coupling is of crucial importafnoen the point of view of applicabil-
ity of the perturbative QCD techniques. But so §as a constant so how one can speak about various
limits of QCD? It turns out that when one tries to calculatglimdes at higher orders one encounters
the expressions containing momentum integrals which arergient as momentum goes to infinity
(UV divergences). The integrals can be formally calculatd. by introducing a cut-off parame-
ter u. Such procedure is calleggularizationand exists in many various versions. The expressions
which are obtained have the terms which are finite and thesterich are infinite after removing the
cut-off. The reason why the divergent terms appear is tleattiuplingg from the Lagrangian (1.2),
which we call “bare” coupling, is not a correct expansiongoaeter and has to be redefined. The
bare coupling absorbs the divergent terms and gives finifgeramentally measured quantity which
we call “physical coupling”. This procedure is calleehormalization Similar procedure has to be
also applied to the bare mass an the bare fields from (1.25eSulently, the Lagrangian density (1.2)
can be rewritten in terms of physicald, renormalized) quantitie®en(zt), myren(rt) @andgren(it). This
new Lagrangian naturally splits into two parts. The firstt s the form which is identical to (1.2)
but with the physical quantities instead of bare. The se@amticonsists of the so called counterterms
which are formally divergent. These divergences cancedvewthe divergences from the “bare-like”
part so the perturbation theory based on the renormalizgdahgian gives finite results. The problem
is, however, not fully solved since we have an arbitrary pestery in the Lagrangian. Moreover, the
Lagrangian depends on the details of the regularizationgghare. Such a situation is in principle al-
lowed provided that we require that all observables arepgaddent of the choicg. This requirements
leads to theenormalization group equation®©ne of them determines the evolution of the coupling

Oag
Wi = Bla) (1.8)
The functiong(a;) introduced above has a perturbative expansion. For theofgmaturbative QCD
(s < 1) this function is negativef(«s) < 0, which means that the coupling decreases with in-
creasingu?. This is a fundamental property of the theory, callesymptotic freedogprsince due to the
smallness of the coupling at high energies quarks behagetwtly as free particles. In contrast, in
Quantum Electrodynamics (QED) aem) > 0 and the coupling grows with the scale. At the lowest

order 3(as) = —ba? whereb = (11C4 — 2ns)/(127) and the Eq. (1.8) can be solved analytically
giving

!
o (%)

The constantA is a fundamental parameter of QCD. This is, by definition, ¢hale at which the
coupling calculated perturbatively divergescan be determined from experiment. Its value depends,
however, on the precise definition (which involveg. the number of flavors and renormalization
scheme) and varies between 100 MeV and 300 MeV.

as (1) (1.9)
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Besides the asymptotic freedom, the second importantrieafuQCD isconfinement This is a
non-perturbative phenomenon and has to do with the factridatquarks or gluons are not observed
in experiment. Instead, only the color singlet states of3b3) group are registered. Indeed, lattice
studies show that the potential between the pair of quarksdar in energy. Thus, it would require
infinite amount of energy to separate the two color charges.

1.2 Space-like branching and deep inelastic scattering ([3))

We begin our discussion of the high energy limit of QCD froneaf the most important processes
which has served as a testing ground for the theory right ftemrigin. Let us consider the scattering
of a charged lepton with four-momentuinoff a hadron with four-momentum with the outgoing
particles being the electron with momentuthand anything else. Such a process is callegp
inelastic scatteringDIS). The lepton and the hadron interact via exchange oftaaliphoton® like
depicted in Fig. 1.2. The emitted photon carries four-maumary equal to the change of the electron

Figure 1.2: Kinematics of deep inelastic lepton-hadroritedag.

momentumy = k' — k. One usually defines in this context the following set of iwats [3]

Q* = ¢
2
r = @ ,
2p-q
v = p-gq,
1%
y = k‘—'p7 (1.10)

where—@Q? is the virtuality of the exchanged photon whereagnown as the Bjorken variable, mea-
sures the inelasticity of the process, with= 1 corresponding to the elastic scattering. Finajlys
interpreted in the hadron rest frame as the electron eneaggferred to the hadron normalized to the
energy of the incoming electron. It is useful to introduce tiotation for the center-of-mass energy in
the v*p system, which can be expressed®¥andz

W2=(p+q)Q?=0Q? (% — 1> . (1.11)

Istrictly speaking, also th&° boson exchange can take place. Here we restrict ourselvi tsituations with the
interaction via virtual photon.
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The cross for the DIS process can be factored into a leptord@aadronic piece [3, 5]

do 27Taem Ty

dzdQ?  2252Q)2 e (1.12)

where aem IS the electromagnetic coupling. The leptonic part can baptetely determined from
QED, and assuming that only photon is exchanged, we obtain

L =2 (KK + KK — g™ k- k) . (1.13)

The hadronic tensor describes the interaction of the Vigpphaton with a complex target and only
general expression fd#,,, can be written [3]

uu=4 Zpu )|n)(n]J,(0)|p) (27)*6% (g + p — pn), (1.14)

whereJ,, is the electromagnetic current and the sum runs over the leverget of final states. Using the
conservation of/,, and the parity conservation one may derive the most genamal 6f the hadronic
tensor

WH = (g“” - qqq > Fi(z, Q%) + <p“ - %W) <p” - %q”> %F2(33,Q2), (1.15)

which leads to the following expression for the DIS crosgieac

{1+ 0= R+ 2L R 0) - 2R | Qe

d*o B 4o
dzdQ Q4

In the above, we have introduced twtiucture functionsF; and Fs;, which contain the information
about the hadron probed by the virtual photon. This funeticannot be calculated within pQCD for
the case of the proton which, due to its small mass, is a nanspative object.

Alternatively, one can introduce the functiof’s and £, which are related to the*p cross section
with the transversely and longitudinally polarized photaspectively

Q2

FT = —F——07 = 21‘F1, (117)
Am2aem
2

FL_ O'L—FQ—2(L'F1, (118)

Am2oem

and we also have

Fy = Fpr + Fp,. (1.19)

The expansion (1.16) is general and can be used with any noddkee hadron structure. For
instance, one may assume that the hadron consists of ekyehjects with spir%, calledpartons
and that the virtual photon interacts with the hadron byradgng electromagnetically with individual
partons. Thisaive parton modelvas proposed before the advent of QCD. Its main predictiosn wa
the so calledBjorken scaling observed at that time in the DIS data from SLAC, which meaasin
the limit Q2 — oo and fixedz the structure functiod, (Q?, z) — F»(z). Moreover, the longitudinal
structure function vanishes and we obtain the Callan-Geldation F» (x) = 22 F; (x), or equivalently
Fr(z) = 0. Thez-Bjorken in the naive parton model is equal to the fractiotthef proton momentum
carried by the struck parton.

From the QCD viewpoint, the partons introduced in the aboweelehshould be identified with
quarks. However, Quantum Chromodynamics supplementshitvegicture by introducing gluons.
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This leads to the logarithmic violation of the Bjorken sogli as well as to the nonzero value of
Fy. We see already at this stage that the longitudinal stredwmction probes directly the gluonic
content of a hadron. As mentioned above, the structure ibmgtof proton cannot be calculated
within the perturbation theory. Nevertheless, what candterdhined is how these functions change
with Q2. Before we derive the evolution equations fBs let us try to identify which classes of
Feynman diagrams give the leading contributions.

1.3 Leading logarithmic approximation (LLA)

Let us consider the situation in which instead of a hadron sela massless quark as the target. In
this case the tensdi/,, may be calculated perturbatively. It is related to the imagy part of the
forward elastic scattering amplitudg,, by the optical theorem

1

W, =—
= on

ImT,,. (1.20)

Thus, instead of summing over all possible final states ficad to consider the elastic*—parton
scattering. Then, thparton structure functions, which we denote Bs can be extracted frori¥/,,
using Eq. (1.15).

Sudakov variables

It proves to be useful to represent all parton four-momenta the following form, known as the
Sudakov decomposition
k, = aq/'i—kﬁpil—kkj_m (1.22)

K =afs -k, (1.22)
wheres = 2p’ - ¢’ and the vectorg’ andp’ lie on the light cone whereds, is perpendicular to both
of them

@ = p?=0, (1.23)

"k, = p*ki, =0. (1.24)
For the case of*p (y*-parton) scattering we obtain (keeping the notation froendrevious section)

2
m
Gy = q,, — TP, Pp =Pt =0, X P (1.25)

where typically the target mass? < Q* ands ~ 2p - .

1.3.1 Bornlevel

The lowest order (Born level) diagram is shown in Fig. 1.3ath\alid of Eq. (1.20) we obtaiil/,,,, ~
egd((p + ¢)?), with e, denoting the quark electric charge. This, in turn, leads to

Fy(z) = 62(5(1 —x). (1.26)

Hence, in this casé, depends only om, so we obtain the result compatible with the Bjorken scaling
(this time for quark). The delta function means that at thveelst order only the elastic photon-quark
collision can occur. This way we have rediscovered the npargcon model for the case of theq
scattering.
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@ (b) (©

Figure 1.3: Deep inelastic scattering off quark: (a) lowaster (Born level), (b) one gluon emission -
ladder diagram (c) one gluon emission - interference diagra

1.3.2 One and multi-gluon emission

Let us now allow for one gluon being emitted from the quarlelimn such a case we encounter two
classes of diagrams: the ladder diagram of Fig. 1.3b andhitedérence diagrams like the one depicted
in Fig. 1.3c.

Since this time we work in the framework of QCD, the choice adige for the gluon field becomes
an issue. It turns out that the most physically transparenting appears when one adopts ligét-
cone gaugelefined as [6]

AZq’“ =0, (2.27)
with ¢’ being the light-like vector defined in Eqgs. (1.21), (1.23)df.24). This choice of gauge
ensures that gluons have only two physidad.(transverse) polarizations. More importantly, in the

light-cone gauge (1.27) the contribution of the ladder diagof Fig. 1.3b to the hadronic tensor can
be schematically written as

@ d|k?
o 11
L~ SR 1.28
whereas the interference diagram depicted in Fig. 1.3sgive
@ g|k>
Qs i
L~ — kol 1.29

Hence, due to the logarithmic divergence in transverse mame (or virtuality) the ladder diagram
gives the dominant contribution to the tensdy,, in the case ofy*—quark scattering. This is known
as thecollinear enhancementThe suppression of the interference diagram with resjpeittet ladder
diagram results from the absence of the second gluon prtpaga

The above result can be generalized to the casemaimitted gluons. The dominant contribution
comes from the diagram shown in Fig. 1.4a in which each gluissgon provides a singular integral.
The corresponding contribution i, reads

n (@ qk2 K2 | d| k2 k3 ol |52 1 2\ "
WHV'\‘ (OZS> / ’ J_n‘/ + | J_n—1| / L2 ’ J_l‘ _ <%1H%> , (130)

27 m2 |k’in| m2 |k‘in_1| m2 |k’il| ol \ 27

where we have introduced an arbitrary small cutseff on the transverse momentum to regularize
the logarithmic divergence. This divergence appears sireceonsider here the theory with massless
quarks.
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Figure 1.4: Multi-cell ladder diagrams fer—quark deep inelastic scattering.

Formula (1.30) reveals the fundamental idea behind the Ly#@ach. For the processes in which
the hard scal€)? > m? is involved, despite the smallness of the coupling, we have Q2 /m? ~ 1
due to the large collinear logarithms. This, in turn, imglteat in order to obtain the full LLA result
one has to sum an infinite number of the ladder diagrams. Merethe collinear divergent integrals
are accompanied by the infrared divergent integrals suaifdin the diagram of Fig. 1.4a we have [4]

W ~ — <%1n Q2>n (1.31)

E 2 W
(1 n) [ [ (g () g ()
X/o ﬁn5<1 ﬁn>/ﬁn B /g 5t \ ) P\, ) P (T )

whereg,, is the Sudakov variable (for quark) defined in Eq (1.21) and

1+ 22

qu(z):CF 11—~

(1.32)

is theunregularized splitting functionf?qq(z) corresponds to the process in which the quark changes
its momentum fronk to zk via gluon emission. Hence, we see that the dominant cotitiibto the
hadronic tensor comes from the ladder diagrams with styomglered transverse momenta

m? < k2| < K2 o] < K2, < Q2. (1.33)

The longitudinal momentum fractions decrease when one snalang the ladder from the quark to
the photon

1>81 2022 fp > 2. (1.34)

The energy divergence which appears in Eq (1.32) vanistoeeifidds the contributions coming from
self-energy (virtual) corrections to the ladder diagramsvall as the corrections to the photon vertex.
This leads to theegularized splitting functiondn general, they have a perturbative expansion

Qs
Py(z,a5) = PO (2) + o PI(z)+.... (1.35)
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To obtain the complete picture of the deep inelagtiequark scattering at the leading order, one should
also include other types of ladder diagrams like those shoviAigs. 1.4b and 1.4c. They contain the
remaining possible emissions with respecj te> ¢g described by’,,(z). These arey — gq with the
corresponding splitting function denoted8g(z), g — gq with P,4(z) and finallyg — gg associated
with P,,(z). The full set of the regularized, leading order (LO) spiittifunctions reads [7]

PO@) = Cp [(11_% ga( _ ac)] , (1.36)
P(x) = Tr[2®+(1 -2, Tr= % (1.37)
PO) = Cr [1 -z 2} (1.38)
PO®@) = 204 [(1 _x$)+ .- — (1 - ac)] +8(1 - @M, (1.39)

where we have introduced tiptus distributiondefined by the integral with a smooth functigfx) as

Lod@) [t f@) = 1)
/de( )+_/O d : (1.40)

1—=x 1—=z

The DIS splitting functions have been so far calculated atsbe next-to-leading (NLO) [8,9] and the
next-to-next-to leading order (NNLO) [10, 11].

The leading ordeunregularizedsplitting functionsﬁi(,?) (z) (i.e. the functions from Egs. (1.36)-
(1.39) without the plus prescription and the terms propagl tod(1 — z)) have the interpretation of
the probabilities of splitting of the partalinto the parton with the momentum fractiom and the
parton; with momentum fractiorl — x. Therefore, these functions are positive definitedfer = < 1.

Finally, we can write the expression for the quark structuretion at LLA

2 n
Fg(‘p@?’m)—e x[ (1—-=x) +Zn' <27r m2> Pr(z)

where byP, () we denoted the multiple integral like the one from the sedorelof Eq. (1.31) but
summed over all possible combinations of the regularizdittisg functions.

, (1.41)

1.4 Collinear factorization

The quark structure functiof, calculated within LLA exhibits collinear (or mass) divenges which
have been temporarily regularized in Eq. (1.41) by intranigiche cut-offm?. The appearance of
the collinear divergences can be understood by noticingtti®alimit k&, — 0 corresponds to the
soft part of the strong interaction for which the perturbattheory approach breaks down. Below
certain momentum scale one cannot speak about quarks amasghmy longer. Quarks and gluons
are not, however, directly observed in experiment. Instda) constitute hadrons. The distributions
of partons inside hadrons (hereaffarton distribution function®r pdfs), denoted by;(x, Q?) and
g(z,Q?) for quark and gluons respectively, are not calculable in pG@ice they contain input from
non-perturbative regime of the theory. Nevertheless, #urdn structure function can be written as
the convolution of the quark and the gluon structure fumstjdy and F¥, at some scal@? > A2
with ¢(z, u2.) andg(z, u2.) distributions which absorb the collinear divergences

1 d N
F;admftx,cf):x/ f{Zq(z,u%) (S Q) + 9(z 7) 5(5@2,/@)}, (1.42)

q)q
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where the sum runs over all flavors of quarks and anti-quailkee above formula is a non-trivial
property of QCD which comes under the name of tlflinear factorization theorem It has been
proved to all orders i, [12].

Collinear factorization deals with the logarithmic singriies. There are, however, also regular
terms inF'? and 'Y which are to a certain degree arbitrary. For instance, sdithem may be absorbed
into the quark or gluon distribution, which alone are noteslsables. This defines ttactorization
schemeln particular, in theDIS factorization schemal gluon contribution is absorbed into the quark
distribution and the structure function acquires espic#inple form

FyRoYz, Q%) =2 e2q(x, Q). (1.43)

q7q_

What makes the concept of parton distribution functionsrttost attractive is the fact that once
they are determined for a given hadron from one process,d&eye used in any other process. This
means that parton distribution functions have the propefrheing universal.

1.5 DGLAP evolution equation

The result (1.42) has to be independent of the va.@lesince the factorization scale can be chosen
arbitrary provided that it stays in the perturbative regiffikis leads to the condition that the derivative

of the right hand side of Eq. (1.42) with respectyt%; must be identically zero. Hence, we obtain the
evolution equations for the quark and the gluon density3#1b]

2 0 [ alwp®) \ _as(?) [Mdz [ Pyg(%,a5(p®) 205 Ph(%, as(p?)) q(z, p?)
a ou? ( g(mvﬂz) > 27 /m z < qu(§>a8(ﬂz)) ng(%>a8(l‘2)) > < 9(2711221)474)

where byq(x, 4?) we mean the sum of quarks and anti-quarks of all flavioes,the so calledsin-
glet distribution The above equation is known as the Dokshitzer-Griboviop&ltarelli-Parisi
(DGLAP) equation [7,13-15] and is an analogue of the renbrat#on group equation for evolution
of the running couplingy,(x%). Similarly to the renormalization group equation it allotescalculate
the change of the function with scale but the absolute value given scale cannot be determined
without specifying an initial condition which is not prowd by the theory itself.

1.5.1 Determination of parton distribution functions from DIS data

As pointed out at the end of Section 1.4, determination o$ p&lbf great practical relevance. There-
fore, huge effort is being constantly made by many groups;hvbrovide various sets of pdfs, to refine
their results. Among the recent ones, MRST2006 [16] and CA.E(17] sets of pdfs are the most com-
mon. The strategy usually adopted is the following. Onepatezes the quark and gluon distribution
functions at some reference scg)g in a rather general form, for instande; A;2% 3", By,(1 — z)P

in the case of MRST. The parameters are determined from tiealfit to the experimental data,
with the DIS data being the most important input. The valuesdés at scales different tha@? are
calculated by solving numerically the DGLAP equations 4).4 his is done currently up to the next-
to-next-to leading order. TypicallW is left as a free parameter so this is also a method to pin down
the value of this fundamental parameter of QCD.

1.5.2 Solution for gluon density at lowz

The leading order DGLAP equation can be solved analyticaith help of the Mellin transform. In
this Thesis we are interested in the high energy limit of Q@bich for the case of DIS means that
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W2 is large. This, in turn, via the relation (1.11), correspomal low values ofc. It turns out that
for such a case quarks may be neglected in the first apprdrimand we obtain from Eq. (1.44) the
diagonal equation for the gluon density

dg(x,1?)  as(p?) [tdz x
2 _ (0) 22
H o2 o /x P (z)g(z,,u > (1.45)

This equation can be written in a more compact form aftepthicing the variable, which absorbs
the one-loop running coupling (1.9)
1 In(u?/A%)

=53 In 7111(@(2)//\2), (1.46)

where3 is the starting scale of the evolution at which the initiahdition must be specified. The
DGLAP equation becomes

dxg(z,t)  [* (% (T

Taking the Mellin transform, defined and discussed in AppeAdleads to

Ogn(t)  _(0) ~
gat( ) =30 5., (1.48)

where the quantity?ﬁlo), defined as the logarithmic derivative of the Mellin momehtte gluon
distribution g, (¢), is called theanomalous dimensioand for the case of Eq. (1.47) it coincides with
the Mellin transform of the splitting function

1
70 = /0 dz ng((g))(z)z"_l. (1.49)
Due to properties of the Mellin transform (see Appendix A9 IWGLAP equation (1.47) becomes an
algebraic equation (1.48), which can be instantly solvefterfapplying the inverse Mellin transform
we arrive at

2g(2,1) = /c O 5a(0) exp (nin1/2) +501), (1.50)

whereg, (0) is the Mellin moment of the initial condition and the integoa contour,C, runs parallel
to the imaginary axis to the right of all singularities of tiegrand. In the double logarithmic limit
(DLLA), Q? — oo andz — 0, the above integral can be calculated by the saddle poirftodesnd
we obtain [18]

1 \/4NC InQ?/A% 1 (L5)

2 j— S — j—
9, Q%) = P\ T In Q3/A2 b

Hence, indeed we see that the gluon density is enhanced medimn of smallz growing faster than
any power ofin(1/x).



Chapter 2

Deep inelastic scattering at lowre

The LLA description of the DIS processes is supposed to bid vaien the photon virtuality)? is
much grater than any other scale. In such case terms of tieeotyln Q> ~ 1 give the dominant
contribution to the cross section. However, in the regioaméllxz, which in the case of DIS, through
the relation (1.11) is equivalent to the limit of lar§g? ~ @Q?/z, the energy logarithms start to be
important. The LLA formalism contains only those energydnthms which are accompanied by the
collinear logs. Hence, for the case of smalt DIS should, in principle, work correctly in the double
logarithmic limit. As we see in Fig. 2.1, the kinematic regiof HERA is not of DLLA type since when
we decrease we reduce at the same ting#? instead of increasing it. In this case the single energy
logarithms should give the most important contributionn§eguently, one would expect that in order
to properly describe DIS at low a scheme in which the single logarithmic terms of the typén 172
are resummed should be designed. Such a resummation, whadidition keeps exact transverse
momentum dependence, has been accomplished by Balitstty), FKauraev and Lipatov [19-22]. It
results in the evolution equation in energy. At the leadirdeq the resummed terms are of the type

w2\"
<5[s In W) 5 (21)
0

with a; defined in Eq. (1.5), andiV$ being a constant introduced for dimensional reasons. At the
next-to-leading order, corrections suppressed by one pofithe coupling are added

W2\"
Qg (Oés In Wg) . (22)

In Section 2.1 we discuss various facts concerning the BFilagon at the leading and higher
orders. We introduce the framework of the factorization in which the BFKL description of the high
energy collision is formed. The relation between thefactorization and the collinear factorization
is established in Section 2.2. The BFKL equation is suppasdak valid only in the limit of the
dilute system of gluons. The possible approaches to hahdlddénse gluonic system are discussed in
Section 2.3.

2.1 Kk, factorization and BFKL evolution equation
The amplitude for elastie*p scattering in the limit of larggy? (or equivalently smalk) can be

represented diagrammatically as in Fig. 2.2a, where —q? is the square of the total momentum
transfer which is, in turn, dominated by its transverse conemtq. The inclusive DIS cross section is

18
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Figure 2.1: HERA kinematic plane.

obtained via the optical theorem as a cut of this diagram [23]

UT,L(WZ) = (I)T,L(kb q)q)p(k27 q)j:(W27 k1> k27 q) ) (23)

q=0

g /d2k1 d?ko
oA

wherek; andq are the transverse momenta angd;, (k;, q) and®, (ko, q) are the so called photon and
protonimpact factors The above equation is known as the factorization formula The constang
is a color factor which depends on the process.

The central blob in Fig. 2.2a corresponds to the funct®(iv2, ki, ks, q) and represents the
object exchanged betweeri and the proton, which is called theard Pomeron It is by definition
a color singlet state and, in the BFKL description of highrggeollisions, it has the form of a gluon
ladder as depicted in Fig. 2.2b for the forward cages 0. The BFKL equation is an equation for
F(W?2 k1,ko,q). At the leading order and in the forward case it has the forg [2

wF(w, ki, ko, 0) = 6%(k; — ko) + Ko ® F(w, ki, ko, 0), (2.4)
where the kerneXy is the integral operator defined as
— ki F(w, ki, ko, 0)
k/2 + (kl _ k/)2 b 17 27 )
. (2.5)
and.F(w, ki, ks, 0) is the Mellin transform ofF (W2, ki, ks, 0). The first term on the right hand side
of Eq. (2.5) corresponds to the emission of the real gluoh witnsverse momentuki whereas the

second describes the virtual contribution.
The leading order BFKL equation (2.4) was derived iningti-Regge kinematics

_ Qs d’K’
Ko ® Fw, ki,ko,0) = ?/W
L=

{f(w, k', ks,0)

;> oy, [1il = [ILiv1| ~ /50, (2.6)

where we exploited the Sudakov decomposition (1.21) fonmtbenenta of the horizontal gluons from
Fig. 2.2b,l; = a;p’ + Bi¢’ + 1, ;. The constant/s;, < W, which cannot be determined at the
leading order, is of the magnitude of a typical transversenerttum. It is not difficult to check, using
Egs. (1.21) and (1.22), that the strong orderingteads to oriented in the opposite direction ordering
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Pp

Figure 2.2: Deep inelastic scattering in the high energytliga) structure ofy*p amplitude (b) ex-
change of the BFKL Pomeron.

in ;. Finally, when the light-like vectorg’ andq’ are chosen to be parallel to theaxis in they*p
collinear frame, we obtaip; — y;+1 ~ In o; /a1, where

E;i+1.;

1
" E;—1.;

Yi = (2.7)

is the physical rapidity. Hence, the first condition from E216) is equivalent to the strong ordering in
rapidity
Yi 2> Yit+1- (2.8)

In contrast to the DGLAP equation, here the transverse mtara® not order. They are instead
integrated over the whole phase space. It is worth to menkiahthere is no collinear divergence
in the BFKL equation (2.4) since the expression in the sqbaaekets in Eq. (2.5) compensates the
logarithmic divergence of the integral R§— k;.

The vertical gluons areeggeized This means that the standard gluon propagator (in the Fagynm
gauge)D,,, (k?) = —ig,, /k? is replaced by

2 . Guv [ Sij wik)
DHV(ki) = —1 ? <3_0> 5 (29)

wheres;; = (I;+1;4+1)? andag (k?) = 1+w(k?) is the Regge trajectory of the gluon. Gluon reggeiza-
tion arises as a property of the color octet exchange charndtigs. 2.2a and 2.2b reggeization is
represented by the dashes on gluon lines.

Another important element introduced in the BFKL equatisrthe effective vertexdenoted as
FZZWH(/“Z" ki+1) and indicated in Fig. 2.2b by the dark blobs. It is obtainedaliging a horizontal
gluon with momentuntk; — k; 1) to all gluon lines.

The photon impact factor, which appears in the formula (&) be calculated perturbatively. The

two graphs which contribute at the leading order are showign2.3. The corresponding expressions
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Figure 2.3: The photon impact factors at leading order.

for the transversely and longitudinally polarized photanthe forward case are [5, 23]

1
= daems €2 Z 2 .
dr(k,0) = 4 Zf: f/o d /dl (2.10)
1 1+k ? 1 1 2
X{[Z2+<1‘Z)2]{D<l>‘D<1+k>} 7 b~ pER) }
= Qem™ 2 62 1 z 2 22 —22 ! — 1 i
D (k,0) = 160emesQ Zf: f/o d /dl (1-2) {D(l) D(1+k)} : (2.11)

where=+1 are the two-dimensional transverse momentum vectors afitheks in the dipole as depicted
in Fig. 2.3 and we also introduced the following notation

D(l) =1+ @Q?, (2.12)
Q% = 2(1-2)Q* + m}F. (2.13)
The sum in Egs. (2.10) and (2.11) runs over the flavgrof the ¢g pair with m ¢ being the quark
(anti-quark) mass.

The proton impact factor has the non-perturbative nataiqgrolves to be convenient to combine it
with the functionF (z, kq, ko, 0) into one object called thenintegrated gluon distribution

f@1) = s | dlf; (s, O)K2F (2, K, Kz, 0), (2.14)
where, to simplify the notation, we did not write the exglidépendence on the momentum transfer
in f. In fact, for the purpose of the further discussion it is sugfit to restrict ourselves to the forward
case,q = 0. This is because in the remaining part of this chapter asageih Chapters 3-5 we are
interested in calculating fully inclusive quantities, whican be obtained from the forward scattering
amplitude via the optical theorem (1.20).

The BFKL equation for the Mellin moments of the unintegraggalon distribution, assuming the
spherical symmetry of (w, k) and denoting:? = k2, has the form

N 5 oo 2 3 2\ f 2 3 2
i) = P2+ auk? [~ 5 {f g ret) y L) 1:4} (2.15)

where the first term corresponds to the case in which only twong {.e. the ladder without rungs)
are exchanged. Thg_ factorization formula is now given by

2
or.r(z,Q%) = 9 /dk O 1 (Q% k) f (2, k?), (2.16)
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Figure 2.4: Lipatov kernel at leading order.

where the constant for the case of DIS we h@ve % Performing the Mellin transform with respect
to k2 leads to the following form of the BFKL equation

whw,7) = ') + ax () f(w,7), (2.17)
with () being the Lipatov kernel, shown in Fig. 2.4 and given by
X(v) =2¢0(1) = () = (1 —7), (2.18)
wherev is the digamma function (logarithmic derivative of thdunction)
vi) = L) v = 2.19)

andyg =~ 0.577 denotes the Euler constant. It is easy to check that apptiimverse double Mellin
transform to Eq. (2.17) results in yet another form of the BF€juation for the unintegrated gluon

distribution 5 5
————f(@, k) = as X | =5
FIn(iyzy @ k) =a X(aln(k2/k(2])

wherek? is an arbitrary constants which only adjust the dimensiohe @bove form of the BFKL
equation will turn out to be particularly suitable for ourther discussion.

) F(e ), (2.20)

2.1.1 Solution of the leading order BFKL equation in the forward case

The full solution of Eq. (2.4) is given by

5 00 00 k’% w ein(61—62) 1
F(w, ki, ko,0) = ,;)/_oo dv (1?5) R T ———— (2.21)

with the transverse vectors represented in the radial cwateb:k; = (k1, 6,) andky, = (k1,02). We
have introduced also the function

(V) = 20(1) — o ("; ! —I—z'u) — 3 (” ‘; L w) . 2.22)
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The leading behavior of the result (2.21) at lai§jé corresponds to the large real part in th@lane.
The functiony,, () decreases with increasimgso the leading contribution comes frogg(v). More-
over, xo(v) decreases with increasimgthus we can expand it and keep only the first two terms

xo(v) =4In2 — 14¢(3)v* + .. ., (2.23)

where( denotes the Riemann zeta function. Hence, the approxinsalation becomes

. 1 [ dv (k2\" 1
ki, k ~ () - 2.24
f(wv 1 270) 7Tk‘1k‘2/ It <k‘%> w_w0+a2y2’ ( )

where we have definedy = 4a,1n2 anda? = 14a,((3). The integrand in Eq. (2.24) has a cut from
—oo to wy. After performing the contour integration and applying theerse Mellin transform we
obtain

1 W2\“° 1 1 In?(k?/k3)
FW?2 ki, ko, 0) v —— | — — 1772 . (2.25
W5k ko 0) > s <W02> ﬂln(W2/W02)27Tanp< 4a21n(W2/W§)> (2:25)

The above result exhibits the Regge type of the energy depeerd namely, the leading behavior is
power-like (W?2)«o, Taking, for instance, the phenomenologically motivatetug of the coupling
a, = 0.2 results in

or. ~F ~ (W25 ~ 705, (2.26)

This corresponds to the intercepjr = 1 + wy greater than one and that is why the exchanged gluon
ladder is referred to as therd Pomeron

The leading order result (2.25) has a number of drawbackshwiake it rather academic. Apart
from the fixed couplingys and arbitrary parameté¥’; the valuew, ~ 0.5 is too large to correctly de-
scribe the lowr growth of the structure functioh, measured at HERA. Moreover, the function (2.25)
satisfies the diffusion equationg. with increasingl¥? the relevant range of transverse momenta
broadens as/In W?2. Thus, it may happen that it enters the non-perturbativieared domain. The
problem of diffusion is the more severe the larger the diffiee ink; between the colliding objects.
Hence, the collision of two highly virtual photons wif}¥ ~ Q3 is better suited for studying the BFKL
evolution than the DIS scattering where the virtual photod the proton have significantly different
virtualities. All this gives a strong motivation to go thesthext-to-leading order.

2.1.2 BFKL kernel at next-to-leading order

As mentioned at the beginning of this chapter, at the nektading order terms with large single
logarithms accompanied by en extra power of coupling are@ddrhis amounts to the following
change of the Mellin transform of the BFKL characteristiadtion

XNLL () = xo0(7) + asx1(v), (2.27)

wherey(v) is the leading order result (2.18) ard() the contribution coming from the summation
of subleading logarithms of the type (2.2). In principles geries (2.27) can be extended to any higher
order. In practice, however, already the calculation dfy) took almost a decade which gives an idea
about the complexity of the problem. Nevertheless, it tunaisthat the structure of the collinear and
anti-collinear limit of the kernel (corresponding4o— 0 and~y — 1, respectively) can be guessed by
imposing on the result the requirement of consistency viighrenormalization group.

In order to understand the structure of the higher orderections, let us consider scattering of
two objects with virtualities-k? and —k2, werek?, k3 > 0. The collinear limit corresponds to the
DIS process in which the absolute value of the photon vityuad much larger than that of the target,



24 2.1. k factorization and BFKL evolution equation

k? >> k3. The anti-collinear limit matches the symmetric situafibf > k?. Below, following [24],
we shall sketch the derivation of these termsygf~), which are relevant in the collinear and anti-
collinear limit.

First, we notice that using the property of the digamma fiongt)(v) = —1/v + (1 + ~), and
keeping inyo () only the terms important at the collinear and anti-collimi@ait gives

coll
= -4+ — 2.28
Xo (V) 5 + T—~ ( )

The corresponding result in the momentum space after nviltgpby &, has the form

O -k) ,  OB-k)

K(go'l(k%? k%) = Qs L2 Qg 12
1 2

(2.29)

The question we want to address in what follows is: which @aithl contributions to the terms
from Eqg. (2.28) or equivalently (2.29) can we expect at thet-te-leading order? It turns out that
they can come from three sources: the running of the couplimgnon-singular terms in the splitting
functions and the choice of the energy scale.

Running coupling effects

The coupling in QCD runs with the energy scale. From the DGle&Blution we known that the
highest scale is usually the proper argument of the coupli@nce, on the right hand side of Eq. (2.29)
the fixed coupling should be replaced by(k?) in the first term and by (k3) in the second term.
The relation between the two has the form

a,(k3) =

s (k1)
7 (2.30)

as (k3
and for largek? this can be approximated as(k3) ~ a,(k}) — ba2(k?)In (k3 /k3). After applying
the Mellin transform to Eq. (2.29) with running couplingse wbtain an extra term with respect to
Eq. (2.28) which is a next-to-leading order contribution

COll,as b
X (y) = - e (2.31)

Regular terms of splitting function

Taking into account the non-singular terms of the splitfingction physically means considering the
ladder in which one of the splittings does not satisfy strordgring in energy (rapidity), that is one
large energy logarithm is lost. In the collinear limit of thegh energy scattering this implies that
the DLLA terms(a, In k? In(1/x))" are replaced by, In k2 (&, In k% In(1/2))"~!. Resummation of
this class of terms will give the contribution suppressedibynd therefore belonging tg; (v). The
additional large collinear logarithm, not accompaniedtgylarge logarithm of energy, after the Mellin
transform will convert into thd /v term. Symmetric situation takes place in the anti-collin@ait
and altogether we obtain

coll, split Ay Ay
==+ ——0, 2.32
X1 (7) ,_Yg (1 B 7)2 ( )
whereA; = —11/12 is the leading (inv which is the Mellin conjugate of) term from the gluon

splitting function, P,. In the above, the number of quark flavorg, was set to zero for simplicity.
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Figure 2.5: Next-to-leading order correction to the BFKlcried

Energy scale choice

This source of the higher order corrections is more inteicdtet us recall that at the leading order
we resume terms of the tyde, In (W?2/W¢2))", whereW? is the center of mass energy. So far we
did not discuss the constaiit; simply because its choice does not affect the leading oegeiltr(the
corrections contribute to higher orders). However, sifge time we are interested in the next-to-
leading order contributions we have to address the isstigZofore carefully. In the symmetric case,
k? ~ k3, the choiceV? = ki k2 seems to be the most natural and, at the leading order, om@ess
the following terms

w2 o k2\"
AsIn —— In— ) . 2.33
<a 1f1k1k72 nk%> ( )

However, if we want to study the collinear (DIS) limif >> k2 we are rather interested in terms
(asIn(1/z) In(k3/k3))", with = = k?/W?2, thus the choicéV = k7 is preferred. If use the leading
order result resummed with the symmetric scale and sceetihin the collinear limit we discover that
some additional terms arise, namely

w2 R\ (1 k" 1 R\"T k2
<asln%lnk—%> :<aslnzlnk—%> +§<asln;lnk—%> (asln k:_%>+ (2.34)

The first piece is just the leading order contribution for #symmetric scale choice. However, the
second part, which is formally next-to-leading, containsadditionaldouble collinear logarithmac-
companied by single coupling. The renormalization grougsdaot allow for existence of such terms
so they must be canceled at the next-to-leading order. Tdrerave expect the following contribution
to x1(7)

1 1
coll scale(
! - 2-35
Xl 7) 273 2(1 7)3 ’ ( )

wherel/y3 results from the Mellin transform of the double collineagdmithm and the second term,
proportional tol /(1 — )3, arises from considering the anti-collinear limit.
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Full solution

The complete next-to-leading order correction to the BFI€knel in the Mellin space was calculated
by Fadin and Lipatov [25] and independently by Ciafaloni &anici [26]. It has the form

ue) = et (v g ey)
_g (GO —¢'() +¢' (1 =) + w”iv) N w”(14_ )
+ <% - 7;—;) xo(7) + 24(3) + ﬁ;m) —¢(7), (2.36)
where
i

n=0

The first line in (2.36) comes from the non-singular term af #plitting function. The first term
proportional tob in the second line is a contribution of the running couplimgl #he rest of this line
should be identified with the double collinear logarithrmeéenis of Eq. (2.35). The last line of (2.36)
does not have a clear interpretation and it is free of doubtame poles iny.

The full NLL contribution, x1 (), is shown in Fig. 2.5. The correction turns out to be huge and
produces numerous pathologies. In particular, the Pomatercept becomes negative very quickly.
For instance, taking,; = 0.2 we obtain at the LL saddle point= %

WNLL = @SXO(l/Q)(l - 6.46) ~ —(0.16, (238)

the value which has nothing to do with the energy growth see¢hd DIS ory*~* scattering data. In
addition, xnLL () has now two complex saddle points which replace the valudef() kernel,
that isy = % This has a dramatic effect on the cross section, which eegjoiscillatory behavior as
a function of the transverse momentum alreadyafpr~ 0.05.

2.1.3 Resummation of terms beyond next-to-leading order

Due to its serious pathologies, the next-to-leading ordeKiBkernel is of little practical use. The
large corrections brought by, (v) indicate rather bad convergence of the series. Hence, &noht
stable result one would probably need to include severdidnigrder terms of the expansion. The
corrections beyond NLL are, however, unknown and one shoatdexpect them to be calculated
soon. What can be done instead is to try to estimate the lgadintributions to each higher order
term, N'LL, and resume them.

One of the possible methods to guess these leading coitribus by studying the collinear limit
of the BFKL kernel [24, 27-29]. In fact, this approach protede very efficient, as we have seen
in the preceding section, where in order to guess the NLLections the method was applied to the
LL kernel. The double logarithmic term$/73, encountered in the NLL kernel written for the scale
W¢ = kiko, are necessary to cancel the corresponding terms prodyctie i L kernel when the
scale is changed 2 = k2. Such a change from the symmetric to the asymmetric scatpiigadent
to the shift of the argument of the kernel— v — w/2. The requirement of vanishing of the double
collinear logarithms in the DGLAP limitiZ = k%, follows from renormalization group and, since it
must be satisfied at all orders, one could use the method femtioh 2.1.2 to determine terms'AL
in the collinear limit for arbitraryn. However, it is essential to understand that the pathodogjimilar
to those found for the NLL kernel will persist even if we go teaay large but finite NLL order. This
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Figure 2.6: The exponentfrom the cross section parametrizatioh ? ~ z—*. The dashed curve (a)
corresponds to the LL result (2.26). The solid curve (b) ltesfiom using the improved LL BFKL
kernel (2.39) proposed in [30, 31]. The dotted curve (c) imivled if only the terms up to the order
O(ay) are kept in the kernel (2.39). The large and negative caéorexbbserved in this case correspond
to the pathologies of the NLL BFKL kernel (2.36). Figure fr¢8i].

is because every higher order contribution cancels thelddabarithms of the preceding order but
brings its own instead. Thus, it is necessary to performésammation for alh from 0 tocc.

Hence, our goal is to modify the BFKL kernel known exactly, thee scaléVZ = k; ko, at ordem
in such a way that it is free of double collinear logarithmeathanging the scale 1’3 = k; k- or,
equivalently, after applying the shift of — + + w /2. Moreover, the modified kernel truncated at the
orderaZ has to reproduce the exact'I\ result.

We start from the following modification of the asymmetriarkel, proposed in [30, 31]

Xo(v,w) =2¢(1) —¥(y) — (1 — v +w). (2.39)

In the collinear limit, this kernel behaves &gy, hence it is free of spurious double collinear loga-
rithms. Similarly in the anti-collinear limit. At the symrtree scale the above kernel takes the form
xow) =200~ (v+5) —v (1-7+3). (2.40)
This result expanded and truncatedagtcorrectly recovers the singular structure of the exact NLL
kernel taken in the collinear limit. In particular, the déeibogarithmic terml /3 with the right coef-
ficient ispredicted The physical motivation beyond the modification (2.39)léac and well-founded.
It follows form imposing on the leading order BFKL equati¢h1(5) the kinematic constraint on the
transverse momentum of the horizontal gluons from the ladfi€ig. 2.2b,i?| < (oi/air1)k?,, | .
The improvement obtained by exploiting this condition igytremarkable, as shown in Fig. 2.6. Yet,
we can still obtain a better result.

Suppose that we know the BFKL equation not only at the lealdiggrithmic accuracy but beyond,
up to the order RFLL. The construction of the proper symmetric kernel shouldcped as follows.
We start from the requirement that at the sdalg¢ = k? our kernel must be free of double logarithms
which means that it has to have the form

N n+1

XMy) = aldn,k Di(y), (2.41)

n=0 k=1
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where the functionsDy,(v) have only the divergence/~v*. If we known this kernel up to order
then by the shift we obtain the symmetric kernel. If we now ifyodur N™LL kernel in analogy
with Eq. (2.40) we will unambiguously reproduce all the deguermsO(a?) for n < m and the
double logarithmic term&(a?/+*) for 2n +1 —m < k < 2n + 1 andn > m. The subleading
double logarithmic terms and regular terms for> m will depend on the specific choice of the
function Dy (). This ambiguity is reflected in the existence of a number stimemation schemes.
The differences between results obtained from varioussebejuantifies the uncertainty of the regular
parts of Dy ().

In our study presented in Chapter 5 we will use the NLL BFKLias improved by the collinear
resummation. The discussion of three specific schemeseés givSection 5.1.

2.2 Relation between collinear andg; factorization

Thek factorization formula for the DIS cross section, given in Efj16), is valid at lowr and at any
perturbative value of)?. Therefore, in the limit)? — oo it should give the result compatible with the
DLLA limit of the cross section (or the structure functiotained in the framework of the collinear
factorization.

The photon impact factors given in Egs. (2.10) and (2.11)bmamtegrated overby introducing
the Feynman parameterto deal with the products in the denominators

1 ! 1
AB /0 B (2:42)
This leads to [23]
nf K2
Or(k) = dmaemas Z / dz/ dr- 2)Q2 + 7(1 — 7)k2
X [T2 (1=7)?][*+(1-2)?%, (243
nyg 1 1 k2
= TOemOs 2 T
¢rk) = 32maeme ;eq/o dz/o S G Yo e g 2
x[z(1—-2)7(1 —71)], (2.44)

where, as before;-Q? is the photon virtuality and the transverse momentum of the exchanged
gluon, as shown in Fig. 2.3. For simplicity, we assume thairkgiare massless. Let us substitute the
above expressions into the factorization formula (2.16) and differentiate with resp® In Q2. In

the double logarithmic limit, which corresponds@ — oo, the major part of the integration over
k% = |k|? comes from the regiok? < Q2. Hence, after performing the integral ovewe may neglect
terms suppressed by /Q?. It turns out that in this limit only the transverse photoositribute. We

obtain
OFy(z, Q?) A Q% k2
692%@63_22 2% / dT|: 72 4 ( ))}/ T @ ). (2.45)

The expression in the square brackets is just the splittingtion Pq(g) (1) defined in Eq. (1.37). The
integration overr is trivial and it results in the facto%. Hence, we can write

Oy (x,Q?%) &l Qs
321(11 QQ2 e / e ka2 (2.46)
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Similar logarithmic derivative of the structure functidfy can be obtained in the DLLA limit in the
framework of the collinear factorization. DifferentiagifEq. (1.43) and substitutingy /0 In Q? by the
corresponding DGLAP equation with neglected quarks onitte hand side gives

8F2(w,Q2)_nf o Ol 1 NS N
d1n Q? _;eqﬁc/x dZqu(Z);L(](;,Q)- (2.47)

Since at highQ? the functionZg(Z, @Q?) strongly decreases with the increasiighe largest contribu-
tion comes from the region ~ 1 and we are allowed to neglect th@ependence of the gluon density.
This gives the integral of,,(z) identical as in Eq. (2.45). Finally we obtain

OFy(2,Q%) _ Q~ 20 )
q=1
The comparison of Egs. (2.46) and (2.48) allows us to estalitie relation between the integrated and
the unintegrated gluon distributions valid in the DLLA lirnamely
) @ g2 )
vgle, Q) = [ G f ), (2.49)

The lower limit of integration ovek? in the above equation lies, in general, in the non-pertiwbat
domain. Therefore, in principle, one should also possessanimgful description of (=, k) in this
region in order to correctly use the relation (2.49).

2.3 Unitarity and saturation

In the preceding sections we have discussed two complemeaparoaches to the description of the
QCD dynamics. On one hand this is the DGLAP equation, whickeges the evolution of parton
densities with the hard transverse sa@fe In the DLLA limit, Q> — oo andz — 0, the integrated
gluon density resulting from this approach behaves as

zg(x, Q%) = exp {2\/ds In(Q?/Q%) ln(l/m)} ) (2.50)

On the other hand the solution of the lading order BFKL eaqumgjives the unintegrated gluon density
of the form (2 k2
_ In®(k*/k§)
k?) ~ ()27 —A—— O 2.51
Fla %) ~ () 2aexp { — A= 7R 1 (2.55)
where A is a positive constant. What the two above results have imeamis that the growth of the
gluon density with energy is never slowed down. This statémamains valid also at higher orders.
However, when the gluon density becomes very high one exphbet gluon merging processes to
become important. The untamed growth of parton density isaanted feature also because it leads
to the cross sections which, at large center-of-mass enehlghave likes*, and hence grow faster
than allowed by the Froissart-Martin bound [32, 33]

ott(s) < const: In?s, (2.52)

which means that unitarity is violated. An equation whicketinto accoungluon saturationat high
densities was first derived in the DLLA limit by Gribov, Levamd Ryskin (GLR equation) [34, 35]

O’xg(z, Q%)
dln(1/2)01In(Q?/A?)

402N, 1

3CprR2 @[W(“’ QM) (2.53)

= dsxg(wa Qz) -
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Figure 2.7: Multiple Pomeron exchange diagrams: (a) fagrdia (b) Pomeron loop diagram.

where R is the proton radius. The factor ahead the quadratic termoatsilated by Mueller and
Qiu [36]. The effect of slowing down the growth of the gluonndity, or equivalently unitarizing
the cross section is obtained by resummation of the diagweithsmultiple Pomeron exchanges. As
argued in [34, 35], for the case of DLLA it is sufficient to inde only a subclass of all graphs, the so
calledfan diagrams which are depicted in Fig. 2.7a whereas other types, incpdat diagrams with
Pomeron loops shown in Fig. 2.7b, may be neglected. The slygpe blobs in Fig. 2.7 denote the
triple Pomeron vertices.

The original idea of Gribov, Levin and Ryskin triggered amenous activity both on the theory
and phenomenology side. On one hand it resulted in a numlegjuattions which unitarize the BFKL
growth and incorporate parton saturation. In particulaijtBky obtained in [37] an infinite hierarchy
of coupled equations fat-point Wilson line operators, valid at low. An equation identical in the
large V.. limit to the first equation of the Balitsky hierarchy was ipdadently derived by Kovchegov
[38]. Thus, it is usually referred to as the Balitsky-Kovgbe (BK) equation. We will discuss its
properties in detail in the Chapter 4. The BK equation is anmfegld approximation of the QCD
evolution. In contrast, the Balitsky hierarchy describks® dluctuations of the color field. Later on,
the equation equivalent the Balitsky hierarchy, known asliiMWLK equation was derived [39-44].
It can be used to calculate the scattering amplitudes inrdradwork of the color glass condensate
[45, 46].

On the other hand various phenomenological models wereulated which managed to ac-
count for a wide range of the DIS data. Among them, the colpoldi model of Golec-Biernat and
Waisthoff (GBW) [47, 48] and its further improvement by Bast, Golec-Biernat and Kowalski (BGK
model) [49] turned out to be particularly successful. Thalgtperformed in the framework of these
two models is the subject of the next chapter.



Chapter 3

Heavy flavor production in DIS in the
saturation model

As shown in the original papers of Golec-Biernat and Wi${da@,48], the GBW saturation model [47]
was not only able to describe both the lowgtructure functiorf, and the diffractive structure function
FP measured at HERA, but also it incorporated all the esseat@hents of saturation in a rela-
tively simple way. With the advent of the more precise dataF&] this model needed, however,
an improvement in order to provide better descriptiontpfat large values of the photon virtuality
(Q? > 20 GeV?). This was attained by Bartels, Golec-Biernat and KowalBKsK model) [49] by
incorporating into the saturation model [47] a proper gldensity evolving according to the DGLAP
equation.

Since the time of the first successful attempt of Golec-Bieemd Wisthoff other descriptions of
DIS, based on the saturation physics, have appeared. Tiwdgde the Regge-like model of Forshaw
and Shaw [53-55] the model of lancu, Itakura and Munier [58]ch tries to reconcile the BFKL
description with the theory of the color glass condensateadisas the model of McDermott, Frankfurt,
Guzey and Strikman [57]. Also the BGK model extended by ipooating the impact parameter
dependence has been analyzed by Kowalski, Motyka and V@ttFor more details on these models
seee.g.the review given in [59].

Nevertheless, an important element was missing in the aesalyased on the BGK model as well as
most of other approaches (except [58]), namely, the heasykgrontribution to the structure function
F,. The recent data from HERA [60-62] shows that this contiilbutannot be neglected by any
means since it reaches up3a%.

The main goal of the study presented in this chapter is toitdakeaccount heavy quark production
in the DGLAP improved saturation model and confront it whie tecent data. This analysis does not
introduce new parameters to those already present. Ongmatheeters of the dipole cross section
are determined from a fit to the total structure functign they can be used tpredict the charm
and beauty contribution&s® and F2°. In addition, the longitudinal structure functidf, and the
diffractive structure functior’ can also be predicted.

We start from introducing the color dipole formalism in Sewct3.1. Subsequently, we explain
the main features and recall the known results concernm@®W and BGK models, respectively, in
Sections 3.2 and 3.3. In Sections 3.4 and 3.5 we describetshaf the GBW and BGK models with
heavy quarks. The issues of critical line and geometridrsgalre discussed in Section 3.6. Predictions
for the charm and beauty as well as the longitudinal strectunction are presented in Section 3.7.
Finally the conclusions are given in Section 3.8.

The results presented in Sections 3.4-3.7 are based onitfreabpublication [63].

31
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p \/

Figure 3.1: They*p interaction in the dipole formalism at smaill

3.1 Color dipole formalism

Thek, factorization formula (2.16) may be rewritten in variousysaThe form which is particularly
suitable for discussion of saturation phenomena is the lgadipole representatioi which they*p
cross section is given by

o7 (2. Q) = /dz/dzZ\w (1,2 Q) & (a,1), (3.1)

The above formula can be obtained directly from Eq. (2.1@) the impact factors (2.10) and (2.11)
after using the following relations

/dzl{Dl(l) — Dl(l—:—kk) }2 = QQ/derlz(Qr) (1 — e_ir'k> (1 — eir'k) ) (3.2)
/d21{D1(1) _ D(11+ D }2 _ /d%Kg(Qr) (1 _ e—“'k) (1 _ e“'k) , (3.3)

where the notational shorthands from Eqgs. (2.12) and (2v&83 used. The physical interpretation of
Eq. (3.1) is the most transparent in ghi@ton rest framewhere the process may be diagrammatically
represented as in Fig. 3.1. The quanmga’L, called thephoton wave functigrdescribes the splitting
of the photon with the virtuality-Q? into the color dipole that is agg pair separated by in the
transverse plane. Quark and anti-quark carry the fraction1 — z of the light cone momentum of
~*, respectively. For the case of the transversely and lodigi#lly polarized photom\I@’ LP takes the
form

97 (r,2, Q1) = 3207‘;%%{[22+<1—z>2]@2f<%<@r>+m§K§<@r>}, (3.4)
@) = e lagr -2 K@ ) (3.5)

where we denoted = |r|. Since the formation time of thgj pair is inversely proportional to in the
small z limit, it is much larger than the interaction time. Conseufye the values ot and z which
characterize the color dipole may be regarded as beingrfrdagng the interaction. Therefore, one
can view thevy*p interaction at smallk: as a two-stages process where after the splitting of virtual
photon the;g pair scatters on the proton with thigpole cross sectiof (z, r), which has the following
relation to the unintegrated gluon distribution

lar) = X / d;fasf(x ) (1- ) (1- ). (3.6)
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From Eq. (3.6) one sees that in the limit— 0 the dipole cross section vanishes. This feature, called
the color transparencyis in accord with our expectations that in perturbative Q@De to gauge
invariance, the interaction should die out as the objecbives colorless.

Itis clear from Eq. (3.6) that the dipole cross section cmstanformation about the gluonic content
of the proton. The dipole-proton interaction may involvagie ladder exchange and, in such case,
would correspond to the BFKL result for the unintegratedoglulistribution. However, since the
integration in (3.1) includes also large distaneeshe dipole cross section should be valid as well
in this, non-perturbative region. Therefore, some modelor the interactions of the large dipoles is
needed.

3.2 Golec-Biernat and Wisthoff saturation model

In the GBW model the dipole cross section is given by [47]

, r?
é(x,r) =09 {1 — exp <_W> } ) 3.7)
whereR(x), called thesaturation radiuswas proposed in the following form
1/ 2\ M2
Ro(x) = — | — . 3.8
(o) = o (£) 3.9
One defines also theaturation scaleas the inverse of the saturation radius
/2
1 T
s r=—-——= —_— . 39
%)= =@ () 39)

The above choice of the form éf(z, r) and Ry (x) was motivated by the following arguments

o for small values of- the dipole cross section behaves like~ 2, hence it admits the color
transparency in accordance with the perturbative QCD ptieds,

e for large values of the dipole cross section saturates reachip@nd that, in turn, results in
o7"'P ~ In(1/x) which is consistent with the Froissart-Martin unitarityunal (2.52),

o for large@? and smalk: the leading behavior of the proton structure functioftis~ >, with
A to be fitted, which on one hand agrees with what is observdaeiitS data and on the other
hand reproduces the BFKL result.

Hence, in the GBW model the BFKL-like one ladder exchangemidate for small dipoles,
r < Ry, whereas forr > R the multiple Pomeron interactions and non-perturbatifeces be-
come important. This is in qualitative agreement with theR3esult mentioned in Section 2.3 and
also, as we will seen in the next chapter, with the BK equation

In the original analysis [47] th€, parameter was taken & = 1 GeV. The remaining parameters,
09, A andzxg, were fitted to the low: DIS data from H1 and ZEUS collaborations. The values fronh [47
are given in the first row of Table 3.1. In this fit only thredligjuarks were considered with a common
massm, = 140 MeV, which was adopted in order to allow for the calculatidrih@ photoproduction
cross section in the limi®? — 0. By “ndf” we denote the number of experimental points usethé
fit. Also, the fit with the charm quarkn. = 1.5 MeV, was discussed in [47]. We guote the original
values of the parameters for this case in the second row ¢¢ Bab.

The dipole cross section from the light quark fit is shown ig.FE.2 as a function of the dipole
size for the values of changing from10~2 down to10-%. We see that there are two possibilities
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oo [mb] A X0 X2/ndf
light 23.03 0.288 3.040~* 1.18
light+c 29.12 0.277 0.410~* 1.50

Table 3.1: Parameters from the original fit of Golec-Bieruad Wsthoff [47].
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Figure 3.2: Dipole cross section in the GBW model with paramsefrom the first row of Table 3.1.

to saturate the cross section: either by increasing thdedgpe or by decreasing. By going with
x — 0 we increase the range of the dipole sizes for which the ganrbehavior is important in the
v*p cross section (3.1). The scaling property of the dipolessestion, with the variable?Q, (), is
also reflected in Fig.3.2.

3.2.1 Critical line

The saturation radiugy has an interpretation of the mean transverse distance éetpa@rtons in
the proton. On the other hand the photon with virtuali}y can only resolve those objects whose
transverse size is greater thai@, which is a typical dipole size. WheRy(x) > 1/Q proton
appears to the color dipole as a dilute system of partonsontrast if Ry(x) < 1/Q the proton seen
by the ¢qg pair becomes dense. The form of the dipole cross sectiol $8gbests the definition of
the critical line that separates these two regions of 1h€)¢) space. In the GBW model this line is
specified by the condition that the argument of the expone#t:, ) equals 1, where = 2/Q was
adopted as the magnitude of the characteristic dipole kiegace, we obtain

Q*R%(x) = 1. (3.10)

This definition is not unique but it gives a meaningful estienaf the transition zone and is useful to
make comparisons between various models.
(3.11)

3.2.2 Geometric scaling

In the GBW model the dipole cross section depends only onatie /Ry (z). If we neglect quark
masses and change the variable> ' = r/Ry(x) in Eq. (3.1), we notice that thg*p cross section
becomes a function of a single, dimensionless variableQ? R3(z)

o7 P(x, Q%) = o7 P(7). (3.12)
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This feature known as thgeometric scalings a very powerful prediction of the model since it suggests
existence of a fundamental, intrinsic scale related to thenpmenon of saturation. Stasto, Golec-
Biernat and Kwiecihski have shown in [64] that the lavDIS data supports the prediction (3.12) of
the GBW model. As we see in Fig. 3.3, this regularity holdsoat & for a wide range ofQ?. As

also reflected in Fig. 3.3, the geometric scaling is to sonten¢wiolated. One of the contributions

to the violation of scaling comes from finiteness of the quadsses. The original idea of [64] has
been recently checked against the neydata and extended to the diffractive processes where the
geometric scaling is also observed [65].
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Figure 3.3: Geometric scaling of lowDIS data as a function of = Q% R%(x) (reproduced from [64]).

3.2.3 Integrated gluon distribution

We conclude the discussion of the saturation model by ptiegsethe integrated gluon distribution.
One can show that taking the dipole cross section (3.7) aepike only the leading term iQ? gives

aFg(w,Qz)N 1 2 g0
oInQ? 43 Zf:ef R3(x) 3.13)

Comparing this result with Eq. (2.48) allows to determine gfuon distribution

3 o
2900 = e ) 334

which is valid in the DLLA limit. Although theQ? dependence appears in Eq. (3.14) through the
coupling constant it is rather far from the prediction of &LAP equation given in (1.51). This
element turns out to be important when one tries to fit the fintodne more recent data set than the
one used in the original Golec-Biernat and Wsthoff analjsr].
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3.3 DGLAP improved saturation model

To account for the proper behavior of the gluon density asatfon of @2, the refined dipole cross
section was proposed by Bartels, Golec-Biernat and Kowaisjd9] (BGK model or DGLAP im-
proved saturation model)

2.2

5(z,r) = og {1 — exp (—W " O‘S(“Z)xg(m’“z)” , (3.15)

300

wherezg(z, 12) is the integrated gluon density calculated at the scale

C
p? = S+ . (3.16)

It is evolved with the leading order DGLAP equation with rimmcoupling simplified by neglecting
quarks since the model is designed for the lovegion. The starting distribution &2 = 1 Ge\V? was
taken, similarly to the MRST analysis [66], in the form

zg(r,Q3) = Ayt (1 —x)>C. (3.17)
We observe that

e for small values of- the cross section reduces to

2
“ ™
O'(.Z',’I") = ?72 aS(MQ) acg(a:,,uz), (318)

which is the known perturbative QCD result [67] admitting ttolor transparency property,

e for large values of the gluon density and the coupling become frozen at the g¢atad the
dipole cross section saturatessgtrecovering the behavior of the GBW model.

On the whole, the BGK model has five parameters to be fitteddiftde cross section boundg, and
the four parameters of the gluon distributiof,, A\, C and .

Introducing the realistic gluon distribution in place ofi8) has a sizable effect dry, especially
in the region of large)?. This is because whe@? is large the typical dipole size 1/Q becomes
small and consequently the scaié ~ Q? is big hence the gluon density grows. In contrast, for low
Q? the large dipoles dominate and the scale of the gluon is ¢togg. In addition, since the gluon
density is nowr-dependent the power governing the lawise of the structure function becomes a
function of Q2 so that we havé?, ~ z~*Q%),

In the original paper [49] the two fits to the data H1 [50] andUJ&E[51, 52] data withe < 0.01
were performed. Both of them take into account only threletlggarks. We recall the results of [49]
in Table 3.2 below.

cofmb] A, A, C g */ndf
Fitl (m, = 140 MeV) 23.0 1.20 -0.28 0.26 0.52 1.17
Fit2 (m, =0MeV) 23.8 13.71 041 11.10 1.00 0.97

Table 3.2: Parameters from the light quark fits of the BGK nholetice the different sign convention
of A\, used in Eq. (3.17) and the original analysis [49].

In the first fit (Fit 1) the light quark mass was taken at the @dtnown from the GBW model,
mq = 140 MeV, while in the second (Fit 2):, was set to zero. In addition, the parametgwas not
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fitted in the first case but fixed at the val2&0 mb. In the second case so was done wighwhich
was set tal .0.

As we see from the values qf /ndf given in the last column of Table 3.2, the DGLAP improved
saturation model (BGK model) successfully describes the déhere is, however, one element missing
in the analysis [49], namely the heavy quarks: charm andtpedine study which we are going to
described in the remaining part of this chapter was meanil tgfthis deficiency.

3.4 GBW model fitted to the new HERA data

Before studying the improved version of the saturation m@&K model) it is interesting to check
how the original model of Golec-Biernat and Wusthoff fite tiew data from HERA [50-52]. We start
from considering the data points with< 0.01 and@? > 0.04 GeV2. The number of experimental
points in such a case equals 288. We added in quadraturedtfisticil and systematic errors in
calculating x2. Moreover, the H1 data were multiplied by the factod5 to account for slightly

different normalization of the H1 and ZEUS data sets. Thalte®f the fits with and without heavy
quarks are presented in Table 3.3. The obtained valugs/nflf indicate that description of the new

oo [mb] A xo X2/ndf
light 16.82 0.315 1.27073%  1.96
light+c+b 18.81 0.320 2.910~% 2.24

Table 3.3: The parameters of the GBW model fitted to the new skttfrom HERA for all)?.

HERA data by the GBW model is rather poor. This has already Ipeénted out in [49] and should
be attributed to the lack of the proper DGLAP evolution of ¢igon distribution in the GBW model,
cf. Eq. (3.14). Since the DGLAP evolution is important mostly fidigh photon virtualities?, one
would expect that restricting th@? range of the fitted data from above should imprgveln Table 3.4
we show the results of such fits. As we see, indeed, the GBW Indlederibes fairly well the, data
with @2 < 20 — 30 Ge\~.

oo [mb] A X0 Xz/ndf
light+c+b Q% <50 GeV?) 19.26  0.301 2.500-%  1.27
light+c+b Q2 <30GeV?) 1952 0290 2.290~% 1.04
light+c+b @Q*<20GeV?) 19.73 0.284 2.120°* 0.94

Table 3.4: The parameters of the GBW model fitted to the new skttfrom HERA for three different
upper limits onQ?.

3.5 DGLAP improved saturation model with heavy quarks

Let us now turn to the BGK model. Similarly to the GBW case diésdl in the previous section, we
performed fits with the charm and beauty contributions insiva in Eqg. (3.1) using the recent data
on the proton structure functiof, from H1 [50] and ZEUS [51,52]. We considered range 0.01
and@? > 0.04 GeV?, which gave 288 data points used in the fit. The statisticdlsystematic errors
were added in quadrature and the H1 data were multipliedéyaittor1.05.
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oolmb] A4, Ay C 2 \Z/ndf
ight+c+b 22,7 1.23 -0.080 0.35 1.60 1.16
light + ¢ 224 135 -0079 038 173 1.06

Table 3.5: The parameters from the fit of the BGK model withvigeguarks.

25

this analysis (BGK light + heavy)
- BGK light

20 |

[
o
T

[N
o
T

Gdlp0|84pl'010n [mb]

r [GeV'I]

Figure 3.4: The dipole cross section in the BGK model with anithout heavy quarks (solid and
dashed lines, respectively) for= 10=2...1076.

To calculate gluon densities at the scales alipyeve used the leading order result (1.50) derived
in Section 1.5.2 with the running coupling and the full gpiy function {.e. containing both regular
and singular terms). After transforming the initial comafit (3.17) into the Mellin space we obtain the
explicitly real formula for the gluon density

A no In(1/z o0 (A —|—7”Lo—|—’i I'(4.6 . (0
xg(z,t) = 7“] enotn(l/ )F(4-6)/0 dy Re{ P(()\gg 46 +z3)£zy)) exp (Zy ln(1/$)+%(m)+z‘y t) ;
(3.19)
wheret was specified in Eq. (1.46). The parametdgsand )\, as well as the constadt6 = 5.6 — 1
come from the definition of the initial condition (3.17). Thwerse Mellin transform introduces, in
tun, the real numbet, that lies to the right of all singularities of the integramddq. (3.19).
Similarly to the analysis [47,49], we also modified the arguirin the dipole cross sectiarz, r)

in the heavy flavor contributions,

4m? Q? + 4m?
A f
r — X <1 + ?> = W, (320)

wherelV is the energy in the center of mass systemy'gf. This is because fap? < mib it is more
appropriate to use the heavy quark mass as a hard scale.

In our fit, we set the light quark mass to zero and took typiedli®s of the heavy quark masses,
me = 1.3 GeV andmy, = 5.0 GeV. By taking light quarks to be massless we excluded the photop
duction pointQ? = 0 from our considerations since in the dipole model8 depends logarithmically
on the quark mass in the limi@> — 0. However, for the case of the heavy quarks, when the quark
mass provides the hard scale, the predictiong)or= 0 can be made.

We performed two fits with the dipole cross section (3.15)jn@ into account the charm and
beauty contribution in addition to the three light quarka.the first fit only charm was considered
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while in the second one both heavy flavors were present. Wheseumber of active flavors i, to 4
and5, respectively and the value af = 300 MeV in both cases. The fit results for the five parameters
of the modelgg, 4, \,, C andp3, are presented in Table 3.5. As we see, the valug?giidf is still
good for the fits with heavy flavors. Comparing to the resufib® from Table 3.2, we notice that the
gluon parameters differ significantly from the light quark fin particular, the powed, is negative
which means that the initial gluon distribution (3.17) geowith decreasing:, in contrast to the fit
with light quarks only when the gluon distribution is valeatike (\, is positive). We have checked
that with the found gluon density, the total proton momenframtion carried by gluons is arour2d%

at the inital scal&)? = 1 GeV2,

In Fig. 3.4 we show the comparison of the dipole cross sestfoom the present analysis with
heavy quarks (solid lines) and the BGK analysis [49] (Fit ithdight quarks only (dashed lines). The
effect of heavy quarks is seen in the shift of the dipole ceesgtion towards larger values gfwhich
means that for a given dipole size saturation occurs at law@righer energy). Similar effect was
observed also in the GBW analysis [47].

Alternatively, when one compares our result with the cresgign obtained from the massless
Fit 2 from Table 3.2 one observes that the presence of heaanks|in the DGLAP improved model
cures the pathological behavior of the dipole cross sedtiond in [49] for the case of massless fit.

3.6 Ciritical line and saturation scale

The shift of the dipole cross section towards larger valdestas direct impact on the position of the
critical line which in the case of the BGK model, in analogyhe GBW definition form Section 3.2.1,
is given by the following implicit relation betweenandQ?

472 9 9
Was(ﬂ Jzg(z,p”) =1, (3.21)

with the scaleu? = CQ?/4 + u2. This equation can be solved numerically to obtain theazitine
shown in Fig. 3.5 as the solid line. The saturation effectsimportant to the left of this line. For the
comparison, we also show the critical lines from the BGK amiXGanalysis with light quarks only.
We observe that the presence of heavy quarks shifts theattitie towards smaller values @F. This
means that for a give@? we need lower in order to stay in the domain where the saturation effects
are important. In other words, heavy quarks make saturatiore difficult to observe at present and
also future colliders, which is indicated in Fig. 3.5 by tleeegptance regions of HERA and the LHC.

It is appropriate to mention that some time after our analfg3] appeared also the study of heavy
quarks contribution within the IIM saturation model [56] svdone [69]. In order to compare the
critical line obtained in [69] with our result one has to taki account its slightly different definition
in both cases. In the BGK model the critical line is defined uclsa way that it corresponds to
the value of the dipole cross sectiép(z,2/Q) ~ 0.63 0 whereas in the IIM model we have the
conditiongy(x,2/Q) ~ 0.7 0. In Fig. 3.6 we compare the two critical lines calculatedoading to
the definition adopted in [69]. As we see, in the region caddnethe HERA datai.e. the region used
in the fit of Fy, the two results are very similar.

As discussed in Section 3.2, the GBW model featuresettact scaling behavior of the dipole
cross sectiong(z,r) = 6(rQs(x)). The BGK dipole cross section (3.15) seems to abandon these
important element. Fortunately, when the heavy quarksrerleded in fitting the formula (3.1) the
resulting value o in the gluon scale (3.16) is small wherggs~ 1.6 Ge\? is relatively large. It
means that for not too small the dipole cross sections (3.15) effectively featuressttating at large
values ofr with the saturation scale proportional to the gluon distiim at the scal@3

472

Tor a(1p) wg(, 1) - (3.22)

Qi (x) ~
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Figure 3.5: The critical line in thér, Q?)-plane from various saturation models indicating the parsit

of the saturation region (to the left of these lines). Thedsllaareas show the acceptance regions of
HERA and the LHC. The latter region corresponds to the prooiu®f an object with the minimal
mass square@? = 100 GeV? [68].
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Figure 3.6: Comparison of the critical lines from two satiora models with heavy flavors, the BGK
model (solid line) and the 1IM model (dotted line) [69]. Thefohition of the critical line from [69]
was used in both cases.
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Figure 3.7: The dipole cross section in the BGK model withvigeguarks as a function of the scaling
variabler2Q?(x) with the saturation scale given by Eq. (3.21). Geometridirsgas preserved for
moderate dipole sizes, and it is broken for small valuesdife to the DGLAP modification.

Indeed, as we see in Fig. 3.7, which shows the dipole crogmiexs a function of the scaling
variabler?Q?(z), the geometric scaling is preserved for moderate values ltfis broken, however,
for small dipole sizes due to the DGLAP evolution of the glumithe dipole cross section.

3.7 Predictions for inclusive structure functions

The parameters of the dipole cross sections (3.15) have determined from the fit to thé, data.
However, using Eq. (3.1) we can decompdsanto the sum of light and heavy quark contributions

Fy = F)" 4 pee  FIY (3.23)

Hence, taking the parameters from Table 3.5, which are nosdfiallows us tgredict charm and
beauty contributions separately. The dependence of thetste function on the flavor comes through
the the photon wave functiom{;L, which is the function of electric chargg and quark mass:.
In addition, the modification of the Bjorken variable (3.2@oduces an implicit dependence ory
throughz. Let us stress, however, that for the case of fits discussedrHgjorken is modified only in
the heavy quark contributions to the structure functiomeiwe adopted:, = 0 for the light quarks.

The predictions fors® and F4° as functions of: for different@? bins computed with the param-
eters from the first line of Table 3.5 are presented, as the sods, in Figs. 3.8 and 3.9, respectively.
For the comparison, we put also the predictions of the GBWehatth the parameters found in [47]
(dashed lines). We see very good agreement with the dataHileRA, both in the normalization and
the slope in, in contrast to the GBW results which overshoot the datargelaalues of)?. Thus, as
already pointed out in this chapter, presence of the DGLARu&on in the BGK model is essential for
the correct predictions at largg?. In Figs. 3.10 and 3.11 we plot the safg and F%® contributions
but this time as functions af)?. The agreement with the data manifested in Figs. 3.8-3.1jLits
remarkable given the simplicity of the framework we use. sTimiay be an argument in favor of the
k. factorization as a more efficient way of describing DIS atlémdhan the collinear factorization.
It can also be considered as an evidence supporting the igieaton saturation at HERA.

As pointed out in Section 3.5, due to the modification of therBgn variable and finite heavy quark
mass one is also able to provide predictions for the phototep cross section in the photoproduction
limit, @*> — 0. We have found, for the HERA enerdy = 209 GeV, the valued9.3 ub and0.7 ub,
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Figure 3.8: Predictions for the charm structure functigjf in bins of Q2 in the BGK model with
heavy quarks (solid lines). Predictions in the GBW mode] gt'é shown for reference (dashed lines).
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Figure 3.9: Predictions for the beauty structure functﬁéﬁ in bins of Q? in the BGK model with
heavy quarks (solid lines). Predictions of the GBW mode] pté shown for reference (dashed lines).
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Figure 3.10: Predictions for the charm structure funcfi¢fiin bins of Bjorkens in the BGK model
with heavy quarks (solid lines).
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with heavy quarks (solid lines).
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Figure 3.12: The longitudinal structure function predicte the BGK model with heavy quarks to-
gether with the H1 estimations for vario@ at constant energy W = 276 GeV.

respectively. Surprisingly enough, substituting the mags= 140 MeV for the three light quarks to
the formula foro"? and performing then the photoproduction lirgjt — 0, we found177 ub which
agrees with the measured valligt ;b up to the experimental errors.

Another interesting quantity that can be predicted usirggBIGK model with parameters form
Table 3.5 is the longitudinal structure functiéip. In Figure 3.12 we present the longitudinal structure
function from our analysis (solid line) plotted agaidgt for W = 276 GeV. The experimental points
represent the H1 estimations %, [50, 70, 71]. Reasonable agreement is observed, howewr, th
estimation errors are too large to draw firm conclusions.tufately, in the last months of running
of the HERA accelerator, by reduction of the pron beam endigy center-of-mass energy of the
ep system was decreased y& = 251 GeV andy/s = 225 GeV. Together with the data collected
before at,/s = 318 GeV, this allows for the model independent determinatiori’pf Hence, one
should expect much more precise data for the longitudimatcstre function in the near future. In
Fig. 3.12 we also show the charm and beauty contributiafi;t¢dashed line). We observe that in our
analysis heavy quarks are important for large value9oivhile for Q2 < 10 GeV? they may safely
be neglected.

3.8 Concluding remarks

In this chapter we studied the production of the charm andtgeftavors in the DGLAP improved
saturation model [49]. Parameters of the model were fixechbyfit of the formula for the proton
structure function/; to the recent data from HERA. Good quality of the fit was fourithw? /ndf
close to unity. Therefore, we conclude that the success&gription of the inclusivé’, data at lowr,
which was found for the BGK model with light quarks, is alsesgrved when the heavy flavors are
considered. We observe, however, a number of differencisrespect to the light quark fit from [49].
First of all, the parameters vary significantly for the madelth and without heavy flavors, when one
compares the fits with the massless light quarks. This segulthe shift of the dipole cross section
towards larger values of the dipole sizesvith respect to the light quark case. As a consequence,
the critical line in the(z, Q?)-plane moves in the direction of smaller values@f which makes
saturation more difficult to observe.
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The new predictions provided by our analysis concern thenctaand beauty structure functions
F5¢ and F*. We found a very good agreement with H1 and ZEUS data i@abins. The significant
improvement of the slope im for high Q? with respect the GBW model is attributed to the DGLAP
evolution.

In addition, the longitudinal structure functidry, has been predicted. We found reasonable agree-
ment with the H1 estimations. However, large estimatioorsrprevent from making more precise
statement. The comparison with the direct measurementshwgexpected soon, will be particularly
interesting.

Finally, we discussed the issues related to the essentitlrés of parton saturation like the sat-
uration scale and geometric scaling. We showed that theasiatin scale is effectively present in the
BGK model since the gluon distribution becomes frozen foalbwalues of the factorization scalé.
Similarly, the property of geometric scaling of the dipofess section, though in principle not exact,
virtually persists for the moderate and large dipoles. dthowever slightly violated in the regime of
small dipoles.



Chapter 4

Balitsky-Kovchegov equation and the
traveling waves approach

In the previous chapter we saw that the phenomenologicdysieaf saturation based on the idea
of Golec-Biernat and Wiusthoff proves to be very succedafakplaining the experimental data from
HERA. The formal derivation of an equation which descrilfesdense gluonic system and reproduces
all the essential features of the GBW model was presentednaftds, independently by Balitsky and
Kovchegov (BK equation).

In this chapter we discuss the basic features of the leaditer 8K equation and its solutions.
For this purpose, it proves to be the most convenient to wotkecolor dipole frameworkdeveloped
by Mueller [72, 73], which we introduce in Section 4.1. Thésdn alternative description of the
high energy scattering which leads, however, to the equaguivalent to the BFKL equation from
Section 2.1. In Section 4.1, also the precise relation batviiee the standard approach, which we have
used so far, and the Mueller’s approach is established. FhedBiation is introduced in Section 4.2,
following the original paper of Kovchegov [74]. In SectiomB4we discuss a method of analyzing
the BK equation called th&aveling wavesapproach, which we will exploit later on in Chapter 5.
This method was introduced to QCD by Peschanski and Munierthé series of papers [75—77]
they found the relation between the leading order BK eqnatiad the class of equations known in
statistical physics which admit solutions in form of tramgl waves. In terms of QCD the traveling
wave solution is equivalent to the property of geometridisgaln Section 4.4 we quote the derivation
of the original results from [76] for the case of the leadindey BK equation. The saturation scale
and the gluon density are calculated in the limit of asynigadlyy smallz for the equation with fixed
as well as with the running coupling. The obtained resulésiaragreement with the expression for
Q?(x) found earlier in [78] using a very different method.

4.1 BFKL equation from Mueller’s dipole approach

As we have explained in Section 3.1, DIS at levimay be viewed as the two-stages process where at
firstv* forms a color dipoledq pair) which in turn interacts with the hadronic target. Ia tamework

of the Mueller dipole model the whole energy evolution taleee in theyg system rather than in the
hadron target as in the standard description from Sectibrb2sed on the notion of the unintegrated
gluon distribution.

In Fig. 4.1a, we represent schematically the color dipokttedng off a target (a hadron or a
nucleus). The quark and anti-quark coordinates in the eaee plane are denoted hy, (), respec-
tively. In the largelN. limit, the emission of the gluon from thgor g line proves to be equivalent to
the splitting of the parent dipole into the two dipoles =fz{ and &,y). The whole procedure may

46
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Figure 4.1: Color dipole approach: (a) In the lafgglimit, the energy evolution amounts to iterative
dipole splittings and together with the single scatterifighe system of dipoles leads to the BFKL
equation. (b) Relation between vectors of the dipole mwsith the transverse planex,andy, the
impact parameteb, and the dipole siza:,

be iterated and one obtains the probabilistic picture obldiplittings. This, in turn, leads to the
evolution equation for thdipole scattering amplitudevhich in the coordinate space has the form

g _ Qs (x—y)°
aln(l/x)N(x7x’y) T or /d2z(x —z)%(z—y)? N (z,x,2) + N(z,2,y) —N(%XJ)](;‘ )

In the derivation of Eq. (4.1) it was assumed that in the sirgglattering only one dipole from the
projectile interacts with the target.

For the purpose of our discussion, it is convenient to reptae coordinatesx(y) by the dipole
radiusr = x—y and the impact parameter vector= (x+y)/2. The corresponding relations between
the vectors in the transverse plane are depicted in Fig. 4 b elastic dipole scattering amplitude,
N (z,r,b), is related to the total dipole cross section, which we hatreduced in Section 3.1, by the
optical theorem (see for instance [79])

o(x,r) = 2/d2bN(x,r, b). 4.2)

The evolution equation (4.1) is equivalent to the BFKL e@ratvritten in the coordinate space. To see
this, let we assume for simplicity that the amplitude degemaly on the dipole sizé.e. N (z,r,b) =
N (x,r). After applying the Fourier transform o (z, r) /r?

\/ 1 d21‘ —ik-r
N(x, k) = 5 / pol N(z,r), (4.3)
assuming in addition the azimuthal symmetry and denotig: k2, we obtain from (4.1) the follow-
ing equation for the transform (4.3) of the dipole amplitude

0 0

—— N(@, k) =asx | ———— | N(x, k> 4.4
Fn(i/zy " @k =a X( alnk2/kg> N (@, 1), (44)
with x being the Mellin transform of the BFKL kernel (Lipatov furar) defined in Eq. (2.18). Fi-
nally, after using the relation betwedi(x, k%) and the unintegrated gluon distributigifz, £2) from
Eq. (2.14)

asf(x,k?) = k' Vi N (z, k%) = 4k? afn(kz/kg) N(z, k?), (4.5)

one arrives at the BFKL equation in the form given in Eq. (2.20
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One notices that the arguments of the leading order BFKL&t@nrEQgs. (2.20) and (4.4) differ by
the minus sign. This should be connected with the faktdn the relation (4.5) between the uninte-
grated gluon distributiorf (z, k) and the functiom7(x, k?%). This additional power of? corresponds
to the shift of the Mellin variabler — -~ 4+ 1. One can easily check that the Lipatov kernel (2.18) with
the shifted argument givegy + 1) = x(—+) which explains the difference in sign.

4.2 BK evolution equation

As we have already mentioned in Section 2.3, the linear @éeollequations, like DGLAP or BFKL,
predict the untamed growth of the gluon density with deénggs-Bjorken, which eventually leads to
violation of unitarity. This indicates that in order to cectly describe dense gluonic systems one has
to take into account not only splittings but also mergingglabns. In terms of the Pomeron exchange,
this means that also the multi Pomeron exchange diagramsgdshe resummed. The first equation
of this sort was obtained by Gribov, Levin and Ryskin [34,3be GLR equation is valid, however,
only in the DLLA limit.

The non-linear equation for the dipole scattering ampétutl, valid at lowz and for all values
of @2, which is supposed to correctly describe the dense systagiuoifis, was found independently
by Balitsky [37] and Kovchegov [38] (BK equation). It was dted, strictly speaking, for the case
of the scattering of virtual photon on large nucleus with dt@mic numberd. Similarly to the GLR
equation, discussed in Section 2.3, also here only the fgralins of Fig. 2.7a are resumed. This is
because, as argued in [38, 74], other classes of multi Ponsxachange graphs, like for instance those
depicted in Fig. 2.7b, which contain Pomeron loops, are sgsed by powers of and therefore can
be neglected.

The BK equation was originally formulated in coordinate apfB8], where it has the form

B Os x—y)"
——N(z,x,y) = 9 2z(x —(Z)Q(Z)_ y)?

Oln(1/x)
X N(z,x,2) + N(z,2,y) — N(z,x,y) — N(2,x,2)N (2,2,y)] .

(4.6)

The quadratic term, which arises from the triple Pomerotexeand enters Eq. (4.6) with a minus
sign, is responsible for reducing the power-like BFKL grovef the gluon density and in this way
unitarizes the cross section. In the language of the MigltBpole approach, here, in contrast to
Eqg. (4.1), also the simultaneous interaction of two or mapelds from the projectile is present. In
the region of phase space in which gluon densities are shiglhbn-linear term may be neglected and
the BK equation (4.6) reduces to the BFKL equation (4.1).

One can rewrite the BK equation (4.6) in momentum space [K4$uming in addition large size
of the nucleus (which allows to neglect impact parameteeddpnce) and azimuthal symmetry the
equation takes the form

0 ~ _
WN(w,k‘z) = 0O0g X <

) . .
—m> N(l’,k‘z) — Qg Nz(l',k2), (47)
with AV defined in (4.3). The above equation in momentum space redadhe BFKL equation (4.4)
in the dilute regime and in the double logarithmic limit,eafusing the relation (2.49), it recovers the
Gribov, Levin Ryskin result (2.53).

As demonstrated in the original paper of Kovchegov [74], Eg7) admits the solution which
consists of two parts. This translates directly into thengstptic (low z) behavior of theFy(z, Q?)
structure function. More precisely, one or the other parthef solution dominates depending on
whether@? is grater or smaller than some separation scale, decreadting:, called in this context
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the saturation scaleand denoted byp?(z). In the case&)? > Q?(x) the exchange of single BFKL
Pomeron dominates. If we increase energy or decrédsso thatQ? < Q?(r) the saturation scale
starts acting like a cut-off on the transverse momenta aisdatly reduces the growth df,. Hence,
the structure function predicted by the BK equation behat@symptotically smatt like [74]

z=er=1 for Q2 > Q%(x),

In(1/x)  for Q2 < Q%(x).

We see that the emergence of the saturation scale from thegB#tien and its implications of the
behavior of F; are in agreement with the assumptions of the GBW model discuthe previous
section.

Since the time the above the original result was obtained &ycKegov, the properties of the
leading order BK equation have been intensely studied usinky analytic and numerical methods.
One of the most important features established in manywswma@ys [75—-77] is the so callggometric
scaling It means that the solution of Eq. (4.7) is a function of a Engriable combined fromr and
k, namelyk/Q(x). This, in turn, leads to the prediction of scaling for i@ cross section

o P(z,Q%) = o7 P(Q%/Q(x)). (4.9)

The above property has been indeed found in thedddS data [64] as mentioned already in Sec-
tion 3.2.2. Another interesting quality of the solution af.E4.7), found in [80] and emerging from
the existence of the saturation scale and geometric s¢aditige suppression of the diffusion into the
infrared region known from the leading order BFKL.

Along with study of the leading order BK equation various w#yincorporate the next-to-leading
logarithmic corrections where discussed. This involveganticular taking into account the running
coupling effects. In the next chapter we discuss the restittar study of this type. However, formally
correct extension of the Balitsky-Kovchegov equation te tiext-to-leading order has been accom-
plished very recently. The corrections coming from the guaop were obtained by Balitsky [81] and
independently Kovchegov and Weigert [82]. These two graapised however at different results.
Soon after, it was understood [83] that the discrepancy sdimoen neglecting in both cases the so
called subtraction terms which were different in the tworapphes. Once the subtraction terms are
included, the two calculations give the same result. Thergltontribution was calculated by Balitsky
and Chirilli [84]. The full NLL BK equation turns out to be mhenore complicated than in the leading
order case and so far little is known about its solutions.

By(z, Q%) ~ { (4.8)

4.3 Traveling waves approach to BK

The Balitsky-Kovchegov equation (4.7) is a non-linear,tiphdifferential equation containing the
infinite order differential operatox(—alnkz/kg). The exact analytic solution of this equation has not
been found so far. Nevertheless, several approaches hamepbeposed, in which the BK equation
can be solved approximately. The particularly interestimethod was developed by Peschanski and
Munier [75], who found the relationship between the BK etqratnd a class of nonlinear equations
known from statistical physics. The asymptotic solutiohthese equations have the form of a wave
front. If certain conditions are fulfilled, the shape andvk#city of this front does not depend on the
initial condition but it is determined solely by the linearpof the equation.

In what follows we introduce in detail the method of travgliwaves and explain how it can be
useful to study the BK equation. In addition, we present thgvetion of the asymptotic solutions of
the leading order BK equation in the limit of smalifollowing the original papers [75, 76]. These so-
lutions will be the starting point for the next chapter, wdére next-to-leading logarithmic corrections
to the BK equation will be studied in the framework of the gtivg waves approach.
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The starting point is to observe that the leading order BFKinkl, which determines the behavior
of the linear term in the BK equation (4.7), may be expandedirzat some value, and truncated at
the second order

X(=0L) ~ x(ve) T+ X' (7e) (=0 — 1) + %x”(%)(—& — 7.2, (4.10)

where, hereafter, we adopt the notational shorfcut In(k%/k32), with an unspecified constakg,
which only adjusts the dimension, and introduce rapiditfingel asY = In(1/z) . The constant
~. is at this stage a parameter. Later on, we will explain howhoose its value optimally. The
above approximation referred to as ttiéfusive approximations justified when8a,Y > L [75].
By substituting the expansion (4.10) into Eq. (4.7) andraftdefining variables so that= ¢; Y and
x = oL + c3Y, with ¢, co andes being known constants, the leading order BK equation withdfix
coupling reduces to

Owu(x,t) = O2u(x,t) + u(z,t) — u(z,t)?, (4.12)

which is the Fisher or Kolmogorov, Petrovsky and Piscoun®KPP) equation [85, 86]. The F-
KPP equation (4.11) has been known for a long time and itsepti@s are very well understood (see
e.g.[87]). It belongs to a wider class of equations admitting dlsgmptotic solutions in the form of
the traveling waves. The equation from this class satidfiesallowing conditions

() the equation is non-linear,
(i) » = 0is anunstablefixed point,
(i) u =1 is astablefixed point.

The traveling wave solution means thdtz, ¢) in the limit of larget has the form of the wave front
u(z,t) ~ f(x —m(t)). The functionm(t) encodes information about the front velocity and can be
determined by studying solely the linear limit of the F-KRE&- equation. The precise form of the
solution of the F-KPP equation is given in the next sectioher€, we discuss also the issue of the
front velocity.

The existence of traveling wave solutions is particulanhpealing from the point of view of
QCD since it translates directly to the property of geomesgaling of the functionV(L,Y) =
N(L-m(Y)) =N(k/Qs(x)). (For notational simplicity, to this end, we drop the tildedy N we
denote the amplitude in the momentum space.) The origingk efdviunier and Peschanski [75] was,
in fact, the first demonstration of geometric scaling for Bi€ equation based on the fully analytic
approach.

Before we turn to the detailed description of how the trangelvave solution emerges from Eq. (4.11),
let us notice that the BK equation in the diffusive approxioms satisfies all the above conditions (i)-
(ii). Indeed, N = 0 and N = 1 are the fixed point solutions and the former is moreover iesta
since a small perturbation from zero results in the BFKL tgpawth of /. This conclusion does not
change if one considers the BK equations with running cogpdr with a higher order kernegl.

4.3.1 F-KPP equation

Let us introduce, using the example of the F-KPP equatiangdmasics facts about the solutions of the
above mentioned class of nonlinear problems, which we initlirn, use to study the properties of the
Balitsky-Kovchegov equation. Traveling waves are formad tb presence of the non-linear damping
term. However, some characteristics of the solution in tighborhood of the front and at asymptotic
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Figure 4.2: The tree possible shapes of the wave front a¢ lemget: (a) v < 7., the results keeps
the memory of the initial condition, (b)o = 7., (€) 70 > 7., the slope of the front is given by the
universal value ofy. apart from the narrow forward part with diminishes with time

values oft can be determined from the linearized form of the equatioime @eneral solution of the
linear part of Eq. (4.11) is a superposition of plane waves

) = [ ) exp (=3 @+ vurt) +0(1)0). (4.12)
wherew() is the Mellin transform of linear operator from the cons@teequation and is the stan-
dard contour of the inverse Mellin transform (see Append)x Ahe variablez = x — vywy t is the
position in the frame of the wave front, which moves with tleoeity v,.. By the wave frontwe
mean here the leading behavior of the package which can belatdd from Eq. (4.12) with aid of
the saddle point method. The condition introduced by thithoetleads tayr = w'(7.). Each wave
(labeled byy) from the package moves with the phase velocity

opn() = 220, (@.13)
Y
and by definition the shape of the wayebserved in the frame moving with the velocityy () is
time independent. So is the shape of the wave front obsemvitgsiown frame, which gives the second
condition for the wave front velocity namety,» = w(v.)/7.. However, this is true only when the
initial conditionu () does not introduce singularity that could dominate the leglint phase factor.
Assuming for the moment that the above holds, we may compar&vio conditions fov,» and obtain

Yew'(Ve) = w(7e), (4.14)

which is in fact a closed definition of.. It turns out that Eq. (4.14) is identical with the conditifam
the minimum of the phase velocity (4.13).

As signaled above, form of the initial conditian () is of crucial importance since it determines
which of the two possible asymptotic solutions is reachessuining quite general form efz, ¢t = 0),
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namelyu(z,0) = 1 for x < 0 andu(z,0) = exp(—yox) for x > 0, we obtain for large times

exp(—70 Z) if v < e,
u(@1) { exp(—7e T) if 70 > e (4.15)

Hence, three distinct cases are possible. In the first egse; ., the traveling wave asymptotic
solution keeps the memory of the initial condition. The wleat moves with velocity = w(v0)/70
and its slope at large equalsyy as shown in Fig. 4.2a. In the second case, which we call @kjtic
Yo = e, the wave front velocity equals the minimal phase veloeityich we will also refer to as the
group velocity v = w(v.)/v. = vy. This situation is depicted in Fig. 4.2b. In the third cage> 7.,
information about the initial condition is lost at larg@and the asymptotic properties of the solution,
encoded in the values of. andv,, are determined solely by the form of the linear part of EqLI%
The wave front velocity equals minimum of the phase veloaibych is, in turn, the same as the group
velocity. As shown in Fig. 4.2c, at largethe slope of the wave front equals except for the small
forward part which decreases with

The general form of the solution of the F-KPP equation anéro#iguations satisfying the condi-
tions (i)-(iii), is known also beyond the asymptotic limdt.15). As shown in [88], for the casg > ~.
and larget we have

u(z,t) = t°G (”” tj“”) exp (—7e(Z + ¢(£))), (4.16)

where the time derivative of(t) is given byé(t) ~ BtF~!. The parameters, 3 and k can be
determined by a matching procedure as we will show in whéivie. Here, let us only comment that
t* gives the order of the width of this part of the front which ecacterized by the slopg. In turn,
the function¢(t) provides correction to the front velocityye, which is not exactly equal to the group
velocity in the sub-asymptotic regime.

4.3.2 |Initial condition for QCD

Let us come back to QCD. The remaining element which has tpdwfsed before we attempt to study
solutions of the BK equation by the traveling waves methotthésform of the initial condition. As
explained in Section 4.1, the functiovi(L, Y') is a Fourier transform ol (r, Y) /72, whereN (r,Y")

is the dipole elastic scattering amplitude related, thhotlge optical theorem, to the total dipole-
proton cross section. Here, for simplicity, we assume thata@an neglect the dependence on impact
parameter. We have already mentioned that for small dipmiesexpects from the amplitude to posses
the color transparency property. In fact, we know precisiest

N(r,Y) ~ 72 (4.17)
small r
which translates through (4.3) to the momentum space aed thle form
1 -L
N(k,Y) arge ~az e (4.18)

Hence, we can read from the above formula that for the caseC®,Q, = 1. This value is to be
compared withy, characteristic for a particular form of the BK equation uncensideration.

4.4 Solution of the leading order BK equation

4.4.1 Fixed coupling case

In Section 4.3 we saw that the leading order BK equation withdficoupling and in the diffusive
approximation is equivalent to the F-KPP equation. To destrate this one must change variables
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so thatt = 1Y andx = oL + c3Y. However, since the BK equation (4.7) itself satisfies adl th
conditions (i)-(iii), it belongs to the desired class ansldamonstrated in [76], can be studied directly
in the form (4.7).

The general solution of the linear part of the BK equatio@)4s given by €¢f. Eq. (4.12))

N(LY) = [ 5N exp (=7 L+ aax()Y ). (4.19)

where x(vy) = xo(7) is the LL BFKL kernel (2.18). Following the general methoddalissed in
Section 4.3.1, we identify(y) = a,x(y) and write the expressions for the phase and group velocity
d
Uph(7Y) = s —(7)7 Vg = as—fl(w . (4.20)
v v Y=
The critical valuey, is determined from the saddle point condition at la¥gewhich in this case has
has the form
Ve X/(’Yc) = X(’Yc)7 (421)

and gives the value. ~ 0.6275. We see that, sincg > ~. for the case of the LL BK equation with
fixed coupling, we are in the regime in which the asymptotiatian will not keep the memory of the
initial condition. In the diffusive approximation Eg. (4.takes the form

WN(LY) = g0 N(LY) + 20" ()00 + 7D N(LY) ~ 6, N3 (LY). (4.22)

After substituting the Ansatz (4.16), with the identificatic = L, t = Y andu = M, into the above
equation we obtain the ordinary differential equation fa functionG(z)

2

%dsxl/(%)Y_o‘%G(z) + (azY "t — c'(Y))d%G(z) + Y (. &Y)Y —a)G(z) =0, (4.23)

where by dot we mean the derivative with respedt tand we have also denoted= Y ~*(L —v,Y +
c(Y)). If we want the different terms in Eq. (4.23) to contributethie leading order in /Y we must
seta = % andk = 0. Then, collecting all the terms leading in the limit of largje which for the case
of Eq. (4.23) are proportional t6~1/2, we obtain

2

%G(z) + zdiiG(z) + (267, — 1)G(z) = 0. (4.24)

In order to recover the asymptotic solution (4.15), the fiomcG(z) must behave like7(z) ~ =z for
z — 0. This fixes = 3/(2v.) and the solution of Eq. (4.24) is given by

X" (7e)

2 Z exp < - > (4.25)
——zexp| ————~ | - .
asx"(7e) 205 X" (7e)

Finally, the result for the gluon density, written in ternfskcandY’, reads [76]

. B | 2 (R N (B /@A)
N(k7/Q5(Y),Y) = const \/;/(%)1 (Qg(y)> (QE(Y)) p( 205" (7)Y )

(4.26)

G(z) = const:

where we have defined the saturation scale

QX(Y) = k2 exp <aSX(%) Yo Y> : (4.27)
Ve 27
wherek? is an undetermined constant. The form of the dipole scagesimplitude (4.26) exhibits
geometric scaling at asymptotic valuesof However, in the sub-asymptotic region, this scaling is
violated by the last exponential term. Also, we see that weeterms in the saturation scale (4.27),

~ Y and~ InY, are universali.e. they depend only on the form of the BFKL kernel.
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4.4.2 Running coupling case

Let us now, still following [76], consider Eq. (4.7) extemtdey takinga; to be running withZ, accord-
ingtoa, = 1/(bL), whereb = (11C4 —2nys)/(12N.). Then, the Balitsky-Kovchegov equation takes
the form

bLOyN(L,Y) = x(=0L) N(L,Y) — N*(L,Y). (4.28)

Here, we sketch briefly how this equation can be solved in taméwork of the traveling waves
approach. Detailed derivation will be given in the next megtwhere the more general equation is
studied. As explained in [76], the solution of the lineadzaersion of Eq. (4.28) can be expressed in
terms of the double Mellin transform

B dry dw 1

N(L,Y) = / 3 %No(%w) exp <—7L +wY + wX(v)) , (4.29)
with ,
X) = [ av xt) (4.30)
Y
and4 being an arbitrary constant. The saddle point integrati@r © gives
d 4X

N(L,Y) = / %Z,No(fy) exp (—fyL VY b(”) . (4.31)

This result has the same “wave package structure” as thessipn (4.12), which leads us to the
identification ofy/Y” with time and(1/+)+/4X (v)/b with the phase velocity. By finding minimum
of the latter we obtain the group velocity,. However, herey, depends on the arbitrary constant
introduced in Eq. (4.30). Hence, one imposes the conditigfiy)/dy = 0 and arrives at the value
of the critical parametet,. ~ 0.6275, which is identical as in the case of the LL BFKL equation with
fixed coupling. Finally, we have

_ /X0 (4.32)
be

In analogy to the fixed coupling case, after exploiting EqL§J, one arrives at the differential equation

for G(z) in which the parameters must be sette- % andk = % By keeping only the leading terms

in 1/Y this equation reduces to the Airy equation which gives

G(z) = const- Ai <§1 - <% Vg b) ’ z> : (4.33)

Vg

X" (e)

where¢; = —2.338 is the rightmost zero of the Airy function. The resulting gtudensity is

NG =const v () A (gl+<2b%w>31n<k2 )Yé>,

Q2(Y) X" (7e) Q2(Y)
(4.34)
and the saturation scale takes the form

2y — 12 2x(e)y 3 [ X"(0e) : 1

Similarly to the fixed coupling case also the above solutidmités geometric scaling property for
Y — oo, which is violated in the sub-asymptotic regime. Howevema see by comparing Eqgs. (4.27)
and (4.35), the dependence of the saturation scalg differs significantly between the cases with
fixed and running coupling.




Chapter 5

Balitsky-Kovchegov equation beyond the
leading order

It is natural to ask whether the traveling waves methodpdhiced in the previous chapter, can be also
applied to the BK equation with the NLL kernel and, if so, whigsymptotic solutions one obtains.
For the case of fixed coupling, the result has been obtain@9]n The case of the running coupling,
which has not been considered so far, is the subject of tly giesented in this chapter.

The LL BK equation (4.7) in the limit of the dilute system ofughs reduces to the LL BFKL
equation (4.4). Similarly, the NLL BK equation must reduogtie NLL BFKL equation. However,
due to its pathologies, the NLL BFKL kernel should not be aupdirectly. Instead, one ought to
replace it by one of the improved kernels, discussed in &2&il.3, which contains a class of higher
order corrections. The resummed kernels acquire depeadamng, which is the Mellin conjugate of
the rapidityY. In addition, as we will see in the next section, such kernay mlepend explicitly on
the coupling. Hence, the BK equation with the running coupknd the improved NLL BFKL kernel
can be written as

bLOyN (L,Y) = x(=0r,0y,as) N(L,Y) = N*(L,Y). (5.1)

In what follows, the kernels resummed in three specific sd®mralled S3, S4 [27] and CCS [28, 29],
will be considered. These schemes are introduced brieflyeati@ 5.1. We stress, however, that
our results can be easily applied to the case of any resumeraglk In Section 5.2 we present the
detailed calculations which lead to the asymptotic sohgiof Eq. (5.1), in the limit of larg@”. The
issues related to the saturation scale and, in particitagependence on the resummation scheme
are discussed in Section 5.3. There, we compare also outsregth the previously known results
for the CCS scheme obtained, using a very different metho@®0d]. In Section 5.3 we make also
an observation how, within the formalism of traveling wavase can account for the sub-asymptotic,
non-universal terms, relevant at phenomenological eegrgn Section 5.4 we give the summary of
our study of saturation in the deep inelastic scattering.

The results presented in Sections 5.2 and 5.3 are based orighwal publication [91].

5.1 Schemes of collinear resummations of the NLL BFKL kernel

In Section 2.1.3 we pointed out the necessity to improve the BFKL kernel by supplementing it
with the resummed class of higher order corrections. Iniqadar, we discussed the approach based
on the study of the collinear and anti-collinear limits oé tkernel in which, after imposing the renor-
malization group constraints, one is able to unambiguoreglyoduce the most divergent parts of the
higher order corrections. The sub-leading and the regatang are, however, arbitrary and they are

55
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parametrized differently in various resummation scheriese, we discuss briefly three schemes in-
troduces in [27-29]. The kernels resummed in these scheritiesewused in our study of the BK
equation described in the succeeding in Sections 5.2 and 5.3

S3 scheme

In this scheme [27], considered for the symmetric choicecafes the kernel from Eq. (2.40) is modi-
fied according to

Wnw) = (=) (200) —v (v+ 5 +aB) —v(1-9+ 5 +a,B)). (62

The term of the ordefi; from X(Sog is given by

Xs31= T58 T2 T, +0(1), (5.3)

and the constants andB are fixed in such a way that the divergentgs”® of the NLL kernel,x1 (),

from (2.36) fork = 1,2, 3 are reproduced bxgg . Then,xg]:«,z1 has to be subtracted frosy to avoid

double counting and we obtain

Xs3(7,w, @s) = XS5 (7, w) + g (Xl(’Y) - X(SO?Zl) : (5.4)

The second term is finite since we removed all poles i 0 andy = 1. The kernel is exact up to
NLL and, due to the modification (5.2) of the first term in (5.4)is free of double logarithms after
changing the scale t8/2 = k7 or W§ = k3. Hence, it does justice to the renormalization group
requirements.

S4 scheme

This scheme, which was also proposed in [27], is similar iritdp the above, however, here, instead
of the kernel (5.2), the following function is used

(0) 1 1 3 1 1
= - 1 —asA . 5.5
Xsa (7:w) = x0(7) 5 1_7“‘( a )<7+§+&SB+1—7—1—§—|—6¢SB (5.5)
Sincey(y) = 1/v + O(y), the definitions (5.2) and (5.5) differ only by regular teremmitting the
same collinear limit. The constantsand B are determined as in the S3 scheme and the full answer is
given by

xsalr @, ) = X8 (,0) + s (a (1) = x84, ) (5.6)

wherexéoil is calculated in analogy tQ(S(gl. Again, all poles are removed from the second term in
Eq. (5.6).

CCS scheme

Here, the resummed kernel for the symmetric scale choicéhledsrm [28, 29]

xees(,w) = x5 (7, w) + w (5.7)
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with x¢ defined in Eq. (2.40). One arrives at the above results aféing the following steps. First,
the double logarithmic term®(a,/~?) contained in the function (2.40) are subtracted from the
kernel to avoid double counting. These are

XOTW) (' (7) =¥’ (1 =) (5.8)
In contrast to the S3 and S4 schemes, the quadratic and pimigle are not eliminated fromy . They
are instead changed in the same manner as in Eq. (2.40) fteatimg order kernek,. That is the
1/~ pole becomes$ /(v + w/2) and thel /(1 — ~) pole is replaced by/(1 — v 4+ w/2). This is done
by subtracting the unchanged poles frgmand adding the changed ones. Altogether, the we obtain

0w = a0 - 2202 (C0) — w1 - y) - HOF ) + M (v+2)
7T2

—(A1(0) = b)Y/ (1= ) + (A1) = b0 (1 =7+ 5 ) + = (5 (w) = x0(1).
(5.9)

where by taking4; (w) in the shifted poles the resummation of running coupling famite terms of
splitting functions effects is included. Ultimately, theupling is replaced by the ratio/x§(v,w) =
as + O(a?). Hence, the NLL BFKL kernel is correctly reproduced to theei.

5.2 BK equation with NLL BFKL kernel and running coupling

In this and the succeeding sections we study the BK equaiidi) With the running coupling and the
resumed NLL BFKL kernek(—dyr, dy, &). In some schemes, like the CCS scheme, the kernel does
not depend explicitly on the coupling. In those which in whtbe explicit dependence appeaes.
S3, S4 schemes, we fix; in the kernel at some phenomenologically motivated valueorter to
simplify the notation we do not write the dependenceagrexplicitly in what follows. In principle,
the NLL corrections could affect also the nonlinear termmfr(b.1). However, as we explained in the
previous chapter this will not change the traveling-wawepprties since they are determined solely by
the linear part of the equation.

Following the method developed in [76], applied alreadyeatidn 4.4.2 to the leading order case,
we first write the solution to the linearized version of Eql{5 It has the form of the double Mellin
transform [28]

dry dw 1
N(L,Y) = / 5 %J\/’o(%w) exp (—7L +wY + EX(%M)> , (5.10)
where this time the functiotX’ depends also o
.
X(v,w) :/ dy' x(v,w), (5.11)
gl

with 4 being an unspecified constant. With such a fornXoin the limit of large L, using the saddle
point method, one recovers the relation

w = asx(y,w). (5.12)

The saddle point integration over, justified in the limit of largeY’, results in

N(LY) = / D A (y) exp (AL + F)Y), (5.13)

271



58 5.2. BK equation with NLL BFKL kernel and running coupling

where we introduced

Fo) = 35— (2X(n0) - w.X(,0,)) 514

and the condition for the saddle poinj is given by the implicit equation

Ybw? — X (v,ws) + ws X (v, ws) = 0. (5.15)
The last term arises due to the dependence of the resummedeédhél onw. We adopted the notation
in which the prime means the derivative with respect twhereas the dot means the derivative with
respect tav. Now we face the problem of extracting the leading behavfowofrom the implicit
relation (5.15). If we expand (y,w) nearw =0

o (»)
X () = 3 20 (5.16)
p=0 ’

and similarly expand the derivativ€, after substituting both quantities into Eq. (5.15) we obta

o0

> I%X@) (v,0) wg} . (5.17)

[Yb+ %X (7,0)] w2 =X (7,0) - {M »—2)

The leading behavior for asymptotlé is w, ~ Y ~1/2. It is easy check that, the subleading cor-
rections, are of the order af —3/2. Hence, as we will show later on, they may contribute only to
non-universal sub-asymptotic terms.

5.2.1 Traveling wave critical parameters

Since we are interested in the NLL corrections to the firstuwwoersal terms from the saturation scale
it suffices to truncate Eq. (5.17) at the second order,inThis gives

wo= |00 (5.18)

which we use as an argument of the function defined in Eq. J5Hénce, the formula (5.13) for the
gluon density takes the familiar form

N(LY) = [ 5 No) exp(—L +0()0) (5.19)

where now time is interpreted as
t=+Y +Y, (5.20)
with Yy = X (v,0)/2b and the dispersion relation reads

Q(v) = %X(%O) : (5.21)

Noteworthy, here, the rapidity in the time definition is shifted by, with respect to the leading order
result. The constarity absorbs the arbitrary parametefrom X (,0). Similarly to the LL case the
equation for the minimum of phase velocity provides the di@dim of ..

Ye Q/(’Yc) = Q(’Yc)' (522)
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Figure 5.1: Graphical determination of the critical expang. for three resummed NLL kernels. The
curve corresponding to the CCS schemedJat 0) coincides with the LL curve.

However, . determined in such a way still depends on the arbitrary eonst via the function
X (7,0). Thus, requiring, to be independent of the choice pfeads to the conditiodv,(y)/dy =
0 = dug(7.)/dv.. This is because the dependence of the velocity oames throughy. only. Apply-
ing this condition to Eq. (5.21) leads to

2X(7¢,0)

5.23
b’)/c ) ( )

VX' (e, 0) = X(16,0) = vy =
and the arbitrariness related4ads eliminated.

As we see from (5.23), the value of at the NLL level in general depends on the resummation
scheme. This is shown in graphical form in Fig. 5.1. Georoaliyi, the value ofy. is given by the
tangent to the characteristic function of the kernel, ddfe for each NLL scheme. Note also that the
curve corresponding to the CCS scheme a0 is nothing else than the LL curvef( Eq. (5.7)), and
thus the critical parameters are the same in this case. ®lus for any other “implicit” scheme which
recovers the LL kernel at=0.

5.2.2 Asymptotic solution of the BK equation

The linearized version of the BK equation (5.1) with the letrexpanded around = 0 up to the
second order and the rapidity varialfechanged to the time variable= /Y + Y} is given by

“LL

bL b 1
5 0N = {—§v§c‘9L+§x”(3%+2%8L+%2)

Loy }N, (5.24)

1. T, T, 1 .0
+ o X0 = 5 X 010 — 5o X el + g3 X (0 — 5

2t

“NLL”

were we have used the form of the group velocity from Eq. (b&®l introduced the following no-
tational shorthands\ = NV (L,Y), x = x(7.,0) and similarly for the derivatives of the kernel. We
singled out two parts in the above equation. The part deregetlL’ has already been present in the
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LL case €f. Eq. (33) from [76]). The remaining part called “NLL" contagimew terms which originate
from the dependence of the resummed NLL BFKL kernebotn analogy with the leading order case
we use the Ansatz (4.16) which transforms Eq. (5.24) intootttnary differential equation for the
functionG(z).

The NLL equation (5.24) taken in the limit, ', ¥ — 0, when the “NLL" part vanishes, must
recover the LL result. This can be obtained only by settirggfthe parameters and to the values
determined already in Section 4.4.2, namely-  andk = 1. If we now write the equation fof(z)
and organize it in terms of the powers of timewe notice that the leading terms are proportional
to t~1/3. Therefore, in the “NLL” part we should keep only those temufsch contribute to the order
t~1/3. As can be easily checked and as is demonstrated explicifippendix B, the leading behavior
of the time derivatives ol from the “NLL” piece ist!/3. However, since each derivative is multiplied
by at least the factot—! this means that the terms in “NLL” part contribute only at threert—2/3.
Consequently, the BK NLL linearized equation in this apptohas exactly the same form as in the
LL case and reduces to the Airy equation

d? byevg

P (2) = m(z —4B) G(z). (5.25)

The conditionG(z) ~ z asz — 0 allows to fix the constant to

1 (X"(,0)\?

where¢; = —2.338 is the zero of the Airy function. Finally, the result for thiegn density is given by

1 . 279:b x(7e, 0) 3 K2 1 k2 e
N(L.1) = const. £4 - Ai ( bl >1an(t)t e (QZ—(Q) . 27)

and the saturation scale up to a multiplicative constahthas the form

2 _ 1.2 2X(7070) § X”(’}/C,O) % %
Q5 (t) = ki exp ( b t+ 1 <—2%bx(%,0)> &t ) . (5.28)

Hence, the solution of the BK equation with the resummed Neinkl and running coupling, written
in terms oft and L, has the same functional form as the solution for the LL Kefoiend in [76]
and recalled in Section 4.4.2, Egs. (4.34) and (4.35). Itiqudar, in the saturation scale the leading
exponential term proportional to the time variablis supplemented by the second universal term in
t1/3, sub-leading by ordet—2/3. There are, however, two potential sources of differeness/den
the solutions at the LL and NLL level. First is the NLL BFKL kesl, x (7., 0), which is in general
different for various resummation schemes. Second diffarés the definition of time. Namely, in the
NLL case, see Eq. (5.20), we have the shiftoby some undetermined constafnt Both the issue of
the resummation scheme akhgldependence will be addressed in the next section.

5.3 Saturation scales beyond leading order

The saturation scale (5.28) obtained for the BK equatiom wihning coupling and the resummed
NLL BFKL kernel contains a dimensional consta‘rﬁt which cannot be determined in the framework
of the traveling wave approach. Therefore, for the qualgastudies, it is convenient to define the
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Figure 5.2: The logarithmic derivativ¥, for various resummation schemes calculatetipat 0 and
as = 0.15.

logarithmic derivatives of)2. One possible definition, which is motivated by the resul23, has the

form )
&uj:ig%ﬁﬁ. (5.29)

Another commonly adopted definition, reads

_dInQX(Y)

eff

(5.30)
The relation between the two derivatives\igY') = 2t AST(V).
From Eq. (5.29) we obtain

1

t _ 2X(7070) 1 X”(’}/C,O) ’ —%
Agyy_ﬂ—7af—+4<—5ﬁ;626> &t75. (5.31)

We recall that the time is defined by Eq. (5.20), so it contains the arbitrary coristgnIn Fig. 5.2
we show)\! from Eq. (5.31), withYy = 0, as a function of/Y” for the three different resummation
schemes S3, S4 and CCS and the value of the coupling 0.15. The result depends on the scheme
used. In the limity’Y — oo the logarithmic derivative\’ approaches its asymptotic value equal to
the group velocityv,. As we see in Fig. 5.2, in agreement with Eq. (5.23), the value, is also
scheme-dependent.

5.3.1 CCS scheme

By construction, the NLL BFKL kernel resummed in this schesne taken atv = 0 reduces to the
LL kernel. Indeed, from Eq. (5.7) we havgcs(y,w = 0) = xo(7). In mathematical terms, this
means that the CCS scheme falls into the same universalisg df solutions as the equation with the
LL kernel and running coupling constant.

The result for the saturation scale from the evolution eqoatvith the NLL BFKL kernel re-
summed in the CCS scheme was also obtained earlier, usirieeedt method, by Triantafyllopou-
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Figure 5.3: Comparison of the logarithmic derivatigobtained in the traveling waves approach with
the result of [90]. For the sake of compatibility we use CClesge andy = 0. The corresponding
formulas are given in Egs. (5.31) and (5.32).
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Figure 5.4: Comparison of the logarithmic derivatN§f obtained in the traveling waves approach in
the CCS scheme and for variolig values with the results of [90]. The notations BFKL, “L d,
“NL in w” correspond to the running coupling with the LL kernel ana tdifferent treatments of the
CCS scheme, respectively. See [90] for details.
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Figure 5.5: Dependence of the logarithmic derivatNjeobtained in the traveling waves approach in
the S3 and S4 schemes as a functiompofTop: S3 scheme; Bottom: S4 scheme. The curves go up
when the value of; decreases. The fixed curve corresponding to the CCS schemie same as

for LL kernel, is also indicated in both cases.

los [90]. In this approach applied first to the LL case in [7&he considers only the linear evolu-
tion supplemented by the absorbing boundary conditionss fEsults at LL level have been shown
in [75-77] to agree with the traveling waves approach fordfiaad running coupling.

The NLL result [90] goes beyond the asymptotic regime, whicavoidably requires some parame-
trization of the subleading, non-universal terms. Extracthe asymptotic analytic form of the solution
found in [90] f. Egs. (58) and (59) therein) , and after changing it to ourtimia, one obtains

1 _2
_ 200 1 X'(7:0) \° e (¢ 2\ . (5.32)
from [90] brye 4 279:bx (¢, 0) YeX (Ve 0)

We see that the two results (5.31) and (5.32) are consisfetu the corrections of the order?/3.
However, this are the higher order corrections, which ateerpected to be universal and are beyond
the scope of our analysis. In Fig. 5.3 we show the comparisamuoresult for\! from Eq. (5.31)
and the expression (5.32) derived from the result obtaigetrilantafyllopoulos [90]. We observe that
they converge for the asymptotic valuesYof

()
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Let us finally comment on the following observation. Evenutjo our expression for the satu-
ration scale was obtained for asymptalicit can successfully mimic the results from [90] valid at
phenomenological rapidities. This is attained by adjgstime value ofY}, in the definition of time.

In Fig. 5.4 we compara®™, defined in Eq. (5.30), with appropriai§, with the same quantity calcu-
lated by Triantafyllopoulos within three scenarios. Thesenarios are called by the author: BFKL,
L in w and NLL inw (see [90] for details). Here we mention only that the lasecdf L in w, con-
tains most of the higher order, non-universal correctiams$ ia therefore expected to give values of
Aef which are the closest to those extracted from the experaheata. The agreement manifested in
Fig. 5.4 means that in our approach, varyirigplays the rdle of parametrizing typical non-universal
terms,i.e. terms which depend on the initial conditions, details of keenel, or of the method used
for extracting the asymptotic behavior. We note also thatmdty is large compare td” the effective

leading energy growth of the saturation scale changes #ofY to *Y . This is because forp > Y

we have\/Y + Yy ~ /Yy + Y/(2V/Y0).

5.3.2 S3 and S4 schemes

These schemes give the valuesypfandv, different than those from the LL analysis. In that sense,
one can say that they do not lie in the same universality elagbe previous scheme. This is because
the resummed kernels depend explicitly on the the valueeo€tiupling constant. This is depicted in
Fig. 5.5, where one can see how the time derivative of theaidn scale varies with.

Hence, we obtain the new result from the QCD traveling wapgsaach that the specific asymp-
totic solutions of the BK equation at NLL accuracy dependpaatrically on the resummation schemes.
In our case, we identify two distinct classes or resummétamnels which we call “explicit” and “im-
plicit”.

5.4 Concluding remarks

In this chapter we have studied the Balitsky-Kovchegov @qoawith the running coupling and the
renormalization group improved NLL BFKL kernel. Using thetiod of traveling waves we obtained
the asymptotic solution of this equation, valid in the liroftlarge rapiditiesY’. This solution obeys
universality propertieq,e. it is independent of the specific form of the initial condits) the detailed
form of the kernel and the nonlinearities.

We have found that the results for the gluon density and theatéon scale take the same func-
tional forms as in the case of leading order BK equation witining coupling studied in [76]. This is
because those pieces in the NLL BK equation (5.1) which waig from the dependence of the kernel
onw and are new with respect to the LL BK equation (4.28), do natrdoute to the first two universal
terms in the solution. We have shown, however, that the trasguires a parametric dependence on
the scheme in which the NLL BFKL kernel is resummed.

We summarize our discussion of the proton structure, diidi¢he deep inelastic scattering pro-
cesses, in Fig. 5.6. Perturbative QCD is applicabl@3f>> A%. The non-perturbative regime must
be modeled. The photon with virtualit9? can only resolve objects with the transverse size larger
than~ 1/Q. Hence, increasin@? may be interpreted as improving the resolution which leadhé
growth of the number of partons seen by the virtual photongcégthe increase of the parton distri-
bution functions. In the regime of the moderate values-@&jorken, the rise of parton distribution
functions with increasingy? is described by the linear DGLAP equation. As shown schemliti
in Fig. 5.6, the spatial density of partons in the transv@iaae decreases with improved resolution.
This density can be, however increased if, at the fixed valug?p one increases the center-of-mass
energy of they*p systemJ¥2. This is equivalent to reducing If the photon virtuality is not too large
and the system of gluons is dilute the evolution of partonsdiers withz follows the linear BFKL



Chapter 5. Balitsky-Kovchegov equation beyond the leadingrder 65

saturation domain

c
o
=
1
()
=
“E @
o
E
g
I [
s | BFKL oW
c
@ DGLAP

2

InQ

Figure 5.6: Parton densities in the proton and their evauith the ¢, Q?) space.

equation. However, the power-like energy growth generbtethis equation must be slowed down if
the system of gluons becomes dense and one enters the sbgalleation regime. The line which
marks the transition to this regime is called the saturdiima or the saturation scale. In this Thesis,
we have analyzed, in particular, the proton structure irréiggon in the ¢, Q?) plane that is close to
the saturation line. In Chapter 3 we studied the phenomgit@bGBW model and its extensions. In
this chapter we analyzed the nonlinear BK equation.

The properties of the solutions of the BK equation with rugncoupling and the LL as well
as NLL BFKL kernel are in qualitative agreement with the @eas of the saturation model from
Chapter 3.

In particular, in both cases the elastic dipole scatterimgplaude (or the dipole cross section,
cf. Eq. (4.2)) admit the geometric scaling property. This sgpis, however, not exact. In the saturation
model it is broken by the finite quark mass or the DGLAP evolutf gluon density, as reflected in
the behavior of the dipole cross section in Fig. 3.4. In tHatem of the BK equation (5.27) we have,
in turn, the explicit dependence onthat is on rapidityY”, which amounts to the violation of scaling.
Let us stress that the scaling of the cross section, whiahssiine extent broken is also suggested by
the experimental data as depicted in Fig. 3.3.

The result for the saturation scale obtained in this chadptén principle, valid only at asymptot-
ically large values ofY". We have showngf. Eq. (5.28), that the leading behavior of the saturation
scale in the limit of large rapidities i92(Y) ~ exp(A /Y + Yp), whereY is an arbitrary parameter
in our approach. In the saturation model, in turn, this soatdch is valid also at phenomenological
rapidities has the formp?(Y) ~ exp(AY).

In our study of the BK equation we have found that the depereler the saturation scale may
effectively look asxp(\Y') provided that one adjusts accordingly the valu&@fThis is because the
non-zero value ot} in the traveling waves formalism generates and paramstttze higher order,
non-universal corrections, which are relevant at phenatogical rapidities. In addition we have
shown that by this simple procedure one reproduces the fesul [90] for the non-asymptotit’™.

Let us finish the discussion of the saturation physics in BiSdmmenting that our considerations
were confined to the mean field approximation in which oneawglthe effects of fluctuations in the
number of color dipoles in the photon wave function. The$eces are important in the low density
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region of dipoles with very small sizes. As has been showrf#+-99], at extremely smalt one
should expect the geometric scaling to be washed out be thwidlions. Instead, the new form
of scaling, callediffusive scalingappears with the scaling variable of th&p cross section being
In[Q?/Q?(x)]/+/D1In(1/x), which replace€)?/Q?(x). The values of:-Bjorken at which this new
type of scaling should be visible are probably very smalbeeglly that, as shown in [100], taking
into account the running coupling effects strongly supgeedluctuations.



Chapter 6

Time-like branchings and jets

Quarks and gluons can be either exchanged or emitted. Inrtecéise the virtuality = E? — p?

is negativet < 0, and we call the partospace-like In the second case, > 0, we deal with the
time-likeparton. Those partons may, in turn, split into objects watldr virtualities. When the space-
like quark or gluon emits a time-like parton, the processaited space-like (or t-channel) branching.
The deep inelastic scattering, which we have studied in theggling chapters, is certainly the most
important example of the t-channel process. In analogheitime-like parton splits into two time-like
objects, we call the branching time-like (or s-channel)e Sequence of time-like branchings leads to
the production of jets of particles. In the current chapiter,discuss the basic facts concerning these
interesting objects as well as introduce a formalism in Whiey can be studied.

Before we turn entirely to the discussion of the time-likeqasses, let us try to point out the
similarities of the latter to the space-like processeglistliin detail in the previous part of this Thesis.
The space-like and time-like branching, for the progess gg, is represented in a diagrammatic form
in Figs. 6.1a and 6.1b, respectively. The leading behavighe corresponding expressions for the
radiation probability is given by

d 2

do = %@% for space-like branching (6.1)
2 2z k9

fo = 920 for time-like branching (6.2)
2t z 0

where, in accordance with the notation introduced in Figka@&nd 6.1bz may be interpreted as the
parent parton energy fraction carried by the emitted gluber@ask | is its transverse momentum. In
the case of time-like branchirgy denotes the angle between the two gluons created in thergpli

We see from Egs. (6.1) and (6.2) that the branching prolalmligreatly enhanced if the emitted
gluon is collinear which means that it has small transverse momentum (or aiguitly small emission
angle), and thgluon is softwhich means that it carries a tiny fraction of the parentqgagnergy. In
fact, the formula (6.1) has been already introduced in Ghiapt see Egs. (1.28) and (1.31), where
we have shown that it leads to the appearance of the largeittuga of transverse momentum or
energy, which compensate the smallness of the couplinge, kax see that this formula has its time-
like analogue (6.2), which will lead to the enhancement efdbft and small-angle branchings in the
s-channel.

As argued in Chapters 1 and 2, the infinite resummations gueresl in order to properly describe
the DIS processes. Due to the similar nature of the gluoratiadi in the t- and s-channel, which is
manifested in Egs. (6.1) and (6.2), the infinite set of graplist be also resummed if one studies the
production of highly energetic jets. In the case of DIS thacsplike quark or gluon from the hadron
decreases its virtuality by successive emissions of ealirgluons until it reaches the scale of the

67
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Figure 6.2: Multi-gluon branching processes: (a) Inistdte branching in deep inelastic scattering.
(b) Final state branching in the production of jet.

photon with virtualityq? < 0. The corresponding multi-gluon emission process, depictéig. 6.2a,

is also called thenitial state branching In the case of jets the cascade is initiated by the time-like
parton created for instance in thée™ or pp collision at high center-of-mass energy. Such parton also
looses its virtuality by the series of emissions of collinga collinear and soft) gluons, as shown in
Fig. 6.2b, and it hadronizes at the virtuality scale of thdrba mass. This process is called teal
state branching

6.1 Fragmentation of time-like partons

Let focus on the case in which, at the beginning of the evaitive have a quark or a gluon with
positive virtuality. This parent parton will reduce its tuality by emitting soft, time-like gluons.
Such process will continue until a non-perturbative s¢{ds reached. At this virtuality, called the
hadronization scalewe loose the theoretical control over the evolution. Aitthappens below)3,
in particular the transition of colored quarks and gluore tolorless hadrons, can be only modeled.
This comes under the namelwdidronization

The distributions of hadrons inside a quark or a gluon areddhe hadroniéragmentation func-
tions These objects are complementary to the distributions bps inside a hadron.e. the parton
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distribution functions, discussed in Sections 1.4 and Snilarly to the space-like case, also here
the perturbative and the non-perturbative contributicas lge factorized. Hence, the fragmentation
function D" for the partona with positive virtuality Q% going into the hadror which carries the
fraction z of the parton light-cone momentum can be written in the fotGi]

1
DMz, Q%) = / %Df;(y, Q% Q3)hy! (3@8) : (6.3)

0

whereD{ (y, Q%, Q3) is the partonic and}! (%, Qg) the hadronic fragmentation function. The former

is the inclusive distributions of partons of typevaluated the scal@? in the partona with virtuality
Q?. This function is an entirely perturbative object. Thedattbeing in contrast non-perturbative,
describes the transition of the partbwith virtuality Q2 into the hadrorh.

This collinear factorization formula (6.3) is a time-likeadogue of Eq. (1.42) and, as in the space-
like case, the evolution db{ (y, Q?, Q2) is governed by the equation that can be derived in the frame-
work of pQCD. The analogy is, however, not exact since itguoat that in the case of time-like
evolution the interference terms can be neglected onlyeifttomentum fractior: is of the order of
unity. Customary, one uses the DGLAP equation to calculaeartonic fragmentation function just
for x 2 0.1. In these equations, similarly to the space-like case \tbkion parameter is a decreasing
parton virtuality. However, the space-like and time-likditing functions are the same exclusively at
the leading order. As we will explain in Section 6.2, the desttve quantum interference plays a cru-
cial role in the description of small-fragmentation. The equation which has to replace DGLAP in
this regime is called MLLA [102,103]. The evolution paraerein this equation is no longer parton
virtuality but the decreasing angle between two partonaterein the splitting. The MLLA equation
is discussed at length in Section 6.3.

To obtain a physical cross section the structure functianse lio be convoluted with the cross
section for hard process in which the quark or gluon is createor instance, if we consider e~
annihilation at the center-of-mass enexgdy, the cross section for the inclusive production of hadron
at the lowest order is given by

1 do" zq €§D3($7 Q%)
—_— = , (6.4)
Otot dx Eq eg

whereote is the total hadronic cross sectial,= +/s/2 andz = 2p/+/s, with p denoting the hadron
momentum.

As signaled already at the beginning of this chapter, dukdaollinear enhancement of the gluon
emission, the produced partons are highly collimated indinection of the original parent quark or
gluon. Such an object is callgdt. The leading order formula (6.4) corresponds to creatiotwof
back-to-back jets in the processe™ — qq — (2 Jets. The emission of the large angle gluon off the
quark or anti-quark line is suppresseddy, which in contrast to the collinear gluon, is not balanced
by the large logarithm. Such process, although less prebabturs and leads to the three jets event.
Similarly, the events withlV jets can be discussed. This goes under the name dftéregjet structure
At the same time, each jet has its own substructure chaizedes.g. by longitudinal or transverse
momentum distributions of particles as well as by ratiosadron species. This belongsitdra-jet
structure which will be the subject of the succeeding sections andthey described in Chapter 7.
Let us conclude that the separation of the inter- and imtragtivity is always somewhat arbitrary,
depending on the precise definition of the jet. This congémparticular, the adopted size of thet
opening anglewhich is a polar angle measured with respect to the jet aXie issue of jet finding
algorithms is, however, beyond the scope of our discussiemce, it what follows we assume that we
have a well separated jet characterized by an opening éngle
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6.2 Coherent branchings and double logarithmic approximaion (DLA)

In this section we are interested in calculating the dontimamtribution to the distribution of soft
gluons inside a quark or a gluon or, equivalently, the pacttragmentation functions. This means
that we are going to study a multi-gluon final states of thetyp

q(g) — q(g9) + 91+ g2 +...9n, (6.5)

where the parent quark)or gluon @) may be created for instance in thee™ or pp collisions.
As in the space-like case, we exploit the freedom of the gahgé&e and this time we select the
planar gaugedefined as [6]
Ain' = B%(z), (6.6)

whereB“(x) is the scalar field taking values in the Lie algebra of SU(3)e §luon propagator in this
ghost-free gauge has the relatively simple form [4]

dyuw ()
ab ab “pv
Guu(k) = 5 kg—i—le’
k,n, +n,k,
dl“/(k) = .g,uzz — %, n2 < 0. (67)

In contrast to the light-cone gauge, discussed in Sect®rhkre the vector is not light-like. For the
specific case of e~ collision choosing: to be proportional to the total four-momentum of #he:~
pair proves to be most convenient since this results in kamsof the interference terms between the
emissions fromy andg. Hence, the quark and anti-quark radiate soft gluons intégaly. We may

also writed,,,, in terms of the gluon polarization vectoerg)(k)
A (k) = =Y eV (k)elM (k). (6.8)

In the planar gauge the unphysical polarizatimﬁ,%), andeff’), are strongly suppressed and gluon has,
effectively, only two transverse polarizations. This ie teason why the above gauge is also referred
to as the physical gauge.

Since we study the leading order approximation we need tatifgen the first place the regions
of phase space from which the dominant contributions to thescsection come. Let us begin with
a simple process of two gluon emission off a quark

q — q(p) + g1(k1) + ga(k2). (6.9)

The three possible, leading order graphs are shown in F&y.véherek; = (w;,k;) is the four-
momentum of theth gluon. The corresponding amplitudes can be written as

@, o0
M, = 2&7P P__jasqen 6.10
I Teap (kr + ka)p (6.10)
)y @
M, 26 P ey 6.11
’ kip (ki + k2)p (61D)
. dP (k) e@p, . .
M, = 926(1)“6(2) 'Vuup(klyk%_k) kg ) kp Zf(ll(lzct7 (612)

whereay, as, ¢ denote the gluon color indices and, t%2, t¢ are the SU(3) generators in the fun-
damental representation. The gluon polarization vectors@ ande®. Let us examine first the
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Figure 6.3: Two gluon emission graphs off a quark at leadinigio

amplitude M. In the region of small emission angles the denominator dfQ)6is proportional to
w3 (w16? + w03), whered; 5 are the angles betwegnandk; ». After taking into account phase
space element the contribution to the cross section reads

2% @ 91 d91 d92

dog ~ « —_— —
Swl w2 9%4—%9% 0

(6.13)

Thus, we see that in the kinematical regigr> g—j 62 we obtain thedouble logarithmigDL) terms in
the cross section with one soft energy and one collinearithga associated with each gluon emission

O ~ a? dw—ufdw—?%%:(aslanHQ)Q. (6.14)
This is the region in which the graph from Fig. 6.3a dominatEsom symmetry we can instantly
establish that the region in which the amplitudl&,, corresponding to Fig. 6.3b, acquires the DL
enhancement i&3 > o 62. We also notice that the two regions never overlap so thefémence term
of the typeM, M}’ is not enhanced logarithmically.

In the above derivation we made no statement about thevelaite of the gluon energies;
andw,. In fact, without imposing any condition on the /w, ratio, the only DL contributions come
from the graphs (a) and (b) and the cross section is just a $ym9? and|M;|? with no additional
interference terms. This is the case of the time-like DGLARation. However, we still have the third
graph of Fig. 6.3 ¢ and it turns out that this graph can alsdriate to the DL terms in the kinematical
region

%9% > 02 > 62, (6.15)
2

We see that this contribution can be neglected whefi, ~ 1 but it starts to be as important as the
diagrams (a) and (b) in the region of thigong energy orderingv; > wy. Moreover, in the this case
the double logarithmic regions of (a) and (c) overlap andefoge one should expect the interference
terms M, M to appear in the cross section. The quantum coherences#fextherefore negligible
only for relatively larger and in this regime the DGLAP equation may be used to calcylatenic
distributions. However, below a certain valueagftypically 0.1, the interference terms provide sub-
stantial contribution to the cross section.

Instead of analyzing the interference diagrams, it is mam/enient to use a slightly different
approach. In the above, we first wrote the diagrams and ttsarciased with them the regions of phase
space where each of the diagrams gives the DL contributiacaMld approach the problem from the
opposite direction by starting from considering threeidgitangular regions

(I) 01 > 0y,
(11) 6, > 01,
(I11) b0 < 61 ~ 0. (6.16)
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It is easy to check that in (I) only the graph (a) gives the Dhtdbution. Similarly, graph (c) domi-
nates in the region (IIl). For the case of (II) we can split (g 65) plane into the regiof; >> 167,
where amplitude\f, dominates, and the regicﬁ@% > 02 > 62, where both), and M.. contribute.
It can be shown that in this casd, + M. ~ M, and the expression (6.11) is valid over the entire
region (lI).

We summarize our considerations on the two gluon emissiooess by writing down the cross
section in the double logarithmic approximation

| M, |? for 61 > 6,
do~ < |My>  for 6y > 04, (6.17)
| M, |? for 01 =~ 6y > 0O19.

Other regions of phase space do not provide the terms of thgyjpd. This, in turn, means that the
contribution is non-vanishing only when the second gluamigted at the angle which is much smaller
than the emission angle of the first gluon. This property isvkm as thestrong angular ordering It
can be generalized to the multi-gluon emission processkghvallows to regard this processes as
a probabilistic cascade of independent gluon emissionacélémposing the strong angular ordering
on the parton shower is equivalent to including interfeestezms. Since we consider only those terms
in the cross section which are enhanced by two large logasitinis approach is known as tbeuble
logarithmic approximation(DLA). In general, the DLA cross section fg¥-gluon emission can be
written as [4]

doy = dog F* [ [ dK(ky), (6.18)

(2

where
_ 2CF as dw; dsz_J'

dK(k;) ,
b w; 27 kii

(6.19)

anddog denotes the cross section for the hard process in which teapparton is produced. For
the case okte~ collision this is just the annihilation process. The facf@raccounts for virtual
corrections. All the gluons in (6.18) are strongly ordenedthieir emission angles. Here, we discussed
the cascade initiated by a quark, which we will also call iratviollows thequark jet For the case of
the multi-gluon emission process off a gluae, thegluon jet the Casimir invarianCr in Eq. (6.19)
has to be replaced by 4.

When analyzing multi-gluon final states, it is useful to auluce the concept of thgenerating
functional Then, the cross section may be written in the functionahfas

do{u} = doy Z ({u}), (6.20)
with -
Z({u})=> ] /d/C(k,-)u(k,-). (6.21)
N=0 i YT

We see that thexclusivecross section folV-gluon production can be obtained from Eq. (6.20) after
applying NV functional derivatives and taking the resuluat= 0

, (6.22)

u=0

N
do$® = Hdi”kL do{u}
i Oulky)

where the functional derivative is defined as

(505) w10 = 8~ ©29)
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The generating functional also allows to calculate Ahgluoninclusivecross section

(6.24)

N
don® = de*"kjL do{u}
o oulky)

u=1

Hence, we see that the function&{{«}) contains all information about the intra-jet momentum dis-
tributions.

A gluonic cascade forms the tree-like structure, which canléfined recursively. Let us assume
that we have a parto®, which can be either quarkk(= Q) or gluon (R = G), with momentumk
emitted at the anglé. This parton, after a sequence of splittings, will everiyyaloduce a jet described
by Zr(k,0;{u}). If, instead of the whole evolution, we consider only thesimtl df, the partonR
can either stay intact or split by emitting a soft gluon. Theducts of the splitting will evolve to form
the jetsZg (k, 0 + df; {u}) andZq(k, 0 + do; {u}). This, in turn, leads to the differential equation for
the evolution of the generating functiondlwith the angled. The solution can be easily found and has
the form

dw d?k; Cr
b w 27k? N, 0 [Za(k, Or; {u}) — 1]) : (6.25)

Zr(p,0: {u}) = u(p) exp (

where we have introduced the notational shorthagd= 4N.a;(k?)/(27). The evolution terminates
whenkf = Qq, with Qy being a cut-off on transverse momentum which equals theality at which
hadronization starts. In the above, we took the initial ¢oorl

Zr(k, 0; {u ‘ = u(k), 6.26
Rk, 0 {ub)|,_ = u(k) (6.26)
which states that if we start the cascade at the hadronizatiale), we can only have the original
partonR in the jet.

One of the most important characteristics of a jet is thelsipgrton distribution. It can be obtained
from the generating functional using

D% (x, ER,0) = E; Zr(ER, 0; {uk)})| . (6.27)

u=1

The functionD}é(m, Eg, 0) is the distribution (density) of partons of typén the jet with the opening
angled initiated by the partorR. Here, byz we denote the energy momentum fractios- E;/Ep ~
|k;|/ER. Itis convenient to introduce new variables

1 Ek T
=1In— '=In— =1n—
=, ¢ =l =l
/ (6.28)
ER6 Er6
Y:hl—, Y' =In 9
Qo Qo

with z = E}/Er =~ |k|/Egr and E}, 6’ being the energy and the emission angle of the intermediate
gluons in the cascade. Let us stress that the variglfimm Eq. (6.28) is unrelated to the rapidity
used frequently in the previous chapters. The motivatiornife notation introduced here and adopted
in what follows is purely historical. The single power0bn the left hand side of the definition (6.27)
comes from the Jacobian related to the change of varialdesifto £. This is because the functidhj}2

is in fact the differential expressiol}}, = dD%,/dx, cf. Eq. (6.4). Hereatfter, for notational simplicity,
we will not write this Jacobian explicitly, which means the adopt the notatiorli)j}2 =z dDjé/dm.
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Applying the functional derivative to Eqg. (6.25) gives theA equation for particle spectrum a
jet which reads

4 . 3 Y C .
Dib(€,Y) = 616(6) + /0 o’ /0 av' SRR DY~ 6+ €). (6.29)

A few comments are in order. Firstly, let us notice that thiét she + ¢’ of the second argument @iz

on the right hand side of Eq. (6.29) means that only cascadkstiong decrease of energy contribute
to the spectrum. Secondly, the lack of the virtual term in @®R9) reflects the fact that in DLA the
recoil effects are not taken into account. In other wordggpa do not change their energies even after
the emission of an arbitrary number of soft gluons. In thet sextion we discuss how this important
deficiency can be treated by formulating the equation whadsdustice to the exact kinematics.

The next comment concerns the anomalous dimension. THigl ggmntity, defined as the deriva-
tive of the spectrum with respect to the evolution varialidfe, can be estimated for the case of
DLA from Eg. (6.29). Let us notice that the functlo%G on both sides of Eg. (6.29) are of the
same order of magnitude. Therefore, the logarithmic iatiégmns have to compensate the coupling,
fo ay’ fo d¢'as ~ 1, which means that the integration ovef as well as¢’ acts effectively as the

1/2 factor
Y / ¢ / —1/2
dy’' ~ A& ~ag " (6.30)
0 0

This should not be surprising given the fact that we are wagykn the double logarithmic approxi-
mation which by definition keeps only terms of the typgln? ~ 1. Differentiating Eq. (6.29) with
respect tdr” gives

Oy Diy(€,Y /d&—R 2D Y — €+ 8. (6.31)

Hence, from the fact thdt)ém ~ 1 and from Eq. (6.30) we estimate the DLA anomalous dimension
as

P () ~ Oy DR(E,Y) ~ V/as. (6.32)

We conclude this section by mentioning that the solutionapf(B.29) in the limit of large values &f
has the form

Di(6,Y) ~ exp (290 VIV — €)¢) (6.33)

It can be easily checked that the above spectrum has a maxanum
1
max =57 (6.34)

the feature which is often referred to as themp-backed plateauThus, the particle distribution
decreases for large valuesaaf This is the consequence of the color coherence since imgpagiong
angular ordering significantly reduces the phase spacenfiigsin of soft particles. The smail
decrease of the spectrum is expected also from kinemategever it would lead to twice as rapid
growth of the peak position with” which is excluded by data.

6.3 Modified leading logarithmic approximation (MLLA)

The double logarithmic approximation to the soft gluonisades discussed in the previous sec-
tion gives a very interesting result of the smaldecrease of single particle spectra. However, the
approximation made in DLA happen to be too severe to obtamthalitative agreement with exper-
imental data. Therefore, a more refined approach was dectloy Dokshitzer, Khoze and Troyan
[4,102,103], who included the following subleading effeaiith respect to DLA:
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e The effects of running of the strong coupling are taken imimant withk | of parton being the
argument of;.

e The full splitting functions are used instead of solely Ioemically enhanced /z terms and
all splittings are considered that4gs— ¢g, ¢ — qg andg — ¢q. This means that the decays
with z ~ 1, which loose one energy logarithm, are also included.

e The configurations with the emission angles comparablezmdsi ~ 0, are considered, which
results in the loss of one collinear logarithm. This amountshe prescription of the exact
angular ordering.

All these effects provide the contributions of the ordgito the anomalous dimension and of the order
/o to the particle spectra. So, we can symbolically write

AMUA () ~ Ve + as, (6.35)
D™ (& Y) ~ 1+ Vs, (6.36)

We see that in addition to the DL terms now also $iregle logarithmic(SL) contributions are taken

into account. It is highly nontrivial to show that at this acacy the probabilistic pattern of iterative,
independent emissions may be retained. In fact, as deratetstn [4, 102, 103], the graphs that
spoil the probabilistic picture also appear. They providatdbutions to the anomalous dimension
which are, however, beyond the MLLA accuracy. Hence, théopadlecay probability for the process
A — B + C has the the following form, which replaces the DLA formulal@

dKpa = a(Ql;i)PBA(z)sz(n);l—S, (6.37)

where
v (n) = W (6.38)
air=1—m; -n, =1—cosb. (6.39)

The partonic cascade forms a “family” where grand the fagremits the fathe)f, which in turn emits
the sons. It can be shown that the integration‘éfg over the azimuthal angle gives the property of the
exact angular ordering, namely

g 2
/0 B Vi) = 0 (ag, ). (6.40)

where0 is the Heaviside step function.
The MLLA master equatioffior the generating functional reads

0 1 Loa(k?) -
Zap0) = 33 [ a2 Poa(2) (Z5(:.0) Z0((1 = 2.0) ~ 20,00, (641
81119 2 BC 0 2T
wherePp 4 () are theunregularizedeading order splitting functions. The tetfi:((1—z)p, §) comes

from considering also the decays with~ 1 and the virtual tern¥ 4 (p, 0) reflect the fact that energy
is conserved exactly at each splitting. After applying thvectional derivative to (6.41) one obtains the
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(@) D¢ (¥/(1-2), (1-2)E, 11® ) Do (/(1-2). (1-2)E, 18 )
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Figure 6.4: The possible processes that may give contoitbiiii the parton density inside the quark (a)
or gluon (b) jet at the scale 6 + dh and lead to the evolution equations (6.42).

system of two coupled equations for the single inclusiveégramomentum distributions in the quark
and gluon jet

ovvoey) = 3 [ a2 o - 2p0- g

{ b (%) [DQ@,YHM) +DG<%,Y+1D(1 —2)) - DQ(:E,Y)}

+ Pyy(2) [DG g,y+1nz) +DQ<%,Y+1H(1 =) —DQ(:U,Y)} }
ovpoey) = 3 [ a2 o1 - 2m0 - Qo

99 (%) |:Dg<§, Y +1n z) + DG(lf—z’Y +1In(1 — z)> - Dg(ac,Y)]

+ ——

2n s pqg(z) [DQ (%,Y +In z) + Dg (I%z’ Y +1In(1 — z)) — D(;(ac,Y)] },

(6.42)

where the Heaviside theta function guaranties that thexenaremissions of partons with, below

the cut-off value)y. The above equations have a clear probabilistic interfioetalet us consider the
probability of finding some parton with momentum fractiemn a quark with energys and emission
angle (being the scale or time of the evolution) correspumthIn 6 + 67 . We denote this distribution
by Dg(z, E,In 6§ + 6h). During the intervabh our initial quark characterized by andln § + 6% can
split according taP,,(z) or P,,(z) producing the quark and gluon with energiefs and (1 — z)E.
Subsequently, the parton with the energy fractiocen be created by fragmentation of the quark and
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gluon with Dg (%, 2E,In ) or Dg (7%, (1 — 2)E,In6). There is, however, always a possibility
that during the time of evolutioih nothing will happen with the initial quark and afterwardsvitl
fragment withDg(z, E,In 6). Thus, on the whole, the quark with energyat scaleln 6 + h left
alone for the tim&h produces the following number of partons with energy fracti

5h/ dz P2 )[DQ(— 2 1n9) +DG( v —.(1-2)E, ln@)}
+ 6h/0 dz Pyy(z )[DG( 2 1n9)+DQ( —.(1-2)E, ln9>}
+ [1—6h /0 ' (Puat2) +qu(z))]DQ (x,E,lnH). (6.43)

However, by definition, the same number is given, by the gfragmentation functioDg (x, £, In 6+
0h). Hence, we obtain the equation whose diagrammatic repegs®emis shown in Fig. 6.4a. By tak-
ing the limit 6h — 0 we arrive at the first equation from (6.42). Similarly, themsd equation,
schematically represented in Fig 6.4b, can be derived.

6.3.1 Solutions of the MLLA equation

The system of equations (6.42) has been approximately gatvie limit of largeY” and smalke in
which one can perform the expansion in powers/ei,. Keeping only the terms of the ordéX(, /o)

on the right hand side of Eq. (6.42)4. termsO(1) kept in the distributiond and D) would reduce
the above equations to the DLA equation with running cogplWhen one goes one step further and
keeps also the term8(c) (thus termsO(,/a;) in Dg and Dg) one obtains, in the limit < 1, the
following approximation of Eq. (6.42)

dyDo(xY) = SF { / L0 +m po(Ly +nz) - 2520) g <:c,Y>}, (6.44)
c Uo
Vdz x 9
Oy Dg(z,Y) = / — %Y +1nz) DG(;,Y+1HZ) - % (Y)aDg (2,Y), (6.45)
0
where
1 1 QO
20y _ + =0
VO(Y)_ﬁY+lnz+ln(1—z)+/\’ A=n (6-46)
and
1 |11 4 2Cr 1 11 4
a] = AN, |:ch + gnfTR <1 - N, >:| , 0= AN, <§Nc — gnfTR> . (6.47)

We see, in particular, that at this level of accuracy the ggudor the gluon distribution (6.45) is
diagonal. Since Egs. (6.44) and (6.45) are supposed to likindhe limit of smallz, the semi-hard
splittingsz ~ 1 are taken into account only partially and therefore thegyniernot conserved exactly.
Nevertheless, with respect to the DLA equation (6.31) thedgsential improvements are included in
Egs. (6.44) and (6.45):

e the recoil effects, accounted for by the negative term prtagpeal to —~2(Y) D¢ (z,Y), lead to
the softening of the spectra with respect to DLA,

e the running coupling.
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It is easy to show that at this accuracy the following retatetween the distributions in the quark and
gluon jets holds fo€ # 0

Dot V) = S Dot )+ (- 2 ) 10eDole v) 4 v Dot V) + Ol | (6.49)

. 4
which replaces the DLA relatiobg (¢,Y) = Cr/N.Dq(£,Y). This means that in MLLA the intra-
jet distributions in a quark and in a gluon differ not only iormalization but also in shape.
The analytic solution of the equation for the gluon jet hasrbebtained in [4,102, 103]. In the
Mellin space Eg. (6.45) has the form

(w+dy) Oy Dg(w,Y) =15(Y)Da(w,Y) — ar (w+ dy) 15 (Y)Da(w,Y). (6.49)

After introducing the functionn(w,Y) = 72(Y)Dg(w,Y) and consecutively changing the variable
fromY tot = —w(Y + \), Eq. (6.49) boils down to the Kummer’s equation

tdFm(w,t) — (t — (B +2)) 0y m(w,t) — <1 - é + B> m(w,t) =0, (6.50)

where we have introduced the notation

1 aj
A=—, B=—. 6.51
3 3 (6.51)
This equation has two independent solutions which are théuant hypergeometric functiors and
W. Taking into account the initial conditions f@ anddy D¢ and transforming the result backgo
space we finally obtain the solution of Eq. (6.45)

AY +X) [ do p g <_é +B+1,B+2—w(Y + A)) . (652)
w

De(z. Y \) = 22 =)
a(@, ¥, A) BB+1) ) 2m

where we denoted
r4)

K(w,\) = B)

Aw)? o (g B+ 1,w)\> . (6.53)

—~

6.3.2 Hypothesis of local parton-hadron duality (LPHD)

The solution (6.52) gives the momentum distribution of gastinside the gluon characterized ¥y
Here, ) (or equivalently)y) is a free parameter. Having obtained the partonic spectéubs), can we
say something about the distribution of hadrons inside theny Let us recall that the parametgs,
introduced to regularize the collinear divergendes & ()y), sets the formal boundary on the pertur-
bative approach. We expect that bel@y some non-perturbative description of how partons change
into hadrons should be used. In principle, one could stogéseade at| = (), and subsequently
employ one of the available hadronization models. Here gdvew we are going to proceed differently.
Let us first notice that for large values &f we can make the approximation + A ~ Y in
Eq. (6.52). Then, the dependence grand therefore o)y, comes only throughi(w, A). It can be
shown thatvA ~ A/V/Y, so in the limit of largeY”, which we discuss here, we have. < 1 and it is
easy to check that )
(B)
whereK g is the modified Bessel function of the third kind and of thesot2, with B from Eq. (6.51).
The above result suggests that for asymptotically largegeseethe dependence of the shape of the

K(w,\) ~ (ANB2 K (\/4A)\) — const (6.54)
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Figure 6.5: Comparison of the MLLA+LPHD predictions withtrigi-jet distributions of all charged
hadrons measured it e~ annihilation by TASSO [107] and OPAL [108, 109].

spectra on the hadronization scé)g disappears and one can expect the hadronic spectra to be very
similar to the partonic ones.

This observation supports the idea of theal parton-hadron dualitf104—106] which states that
confinement acts locally in the phase space and consequbstligadronic spectra should be very
similar to the partonic spectra differing only by the overalrmalization factor, which we will denote
in what follows ask| pyp. This means that perturbative evolution determines alesential features
of the hadronic system such as distributions, correlatofmparticlesetc.

6.3.3 Limiting spectrum

If, as just argued, th€), dependence is washed out at lakgeit should suffice to study the spectra at
A = 0. At this value of\
K(w,0)=1, (6.55)

and we obtain the simplified version of Eq. (6.52) which idezhithelimiting spectrum It has the
form

; AY dw A

DMz y)=—=——— [ —27“®(-=+B+1,B+2 —wY ). 6.56

G(x,)B(BH)/mx <w+ +,+,w> (6.56)
Strictly speaking, choosing the limiting spectrum is sonaetipular way of modeling confinement.
Using the integral representation of the confluent hypergaadc function® one can derive the ex-
pression for the limiting spectrum which is especially cament for numerical evaluation [102, 103]

cosha + (1 — 2¢) sinh« B/2
AY &

sinh a

Dipey) = ar) [* Lo

Ip <\/4AYSin(:1a[cosha + (1 —20) Sinha]> , (6.57)

where
(6.58)

=i

a = g + 1T, tanh g = 2¢ — 1, (=1-
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Figure 6.6: Suppression of the high momentum hadrons peatlic central Au+Au collisions at
200 GeV at RHIC. Figure from [110].

In Fig. 6.5, we compare the intra-jet distributions of alaged hadrons from the" e~ collisions
at three center-of-mass energigss, with the results of MLLA+LPHD. The theoretical curves were
obtained from the limiting spectrum (6.57), withy = A = 253 MeV, multiplied by the accordingly
adjusted LPHD facto¥<| pyp. The position of the maximum of the MLLA limiting spectrum.%&)
reads [4]

1 c c _
MLLA _ y [§+,/?—7+0(Y 32y (6.59)

with ¢ ~ 0.29 for ny = 3. As we see itis larger than in the case of DIoAEq. (6.34). In other words
the MLLA spectrum is softer.

6.4 Jet quenching

The particles observed in experiments are hadrons. Howbesre are not the degrees of freedom of
the fundamental theory but the bound states of fields thatr ¢iné QCD Lagrangian, namely quarks
and gluons. Impossibility of observation of free quarkslaogs has its origin in the essential property
of QCD called confinement. It is argued, however, that thefioed phase is not the only possible
phase of QCD but also the state willeconfinementnay be attained above a certain value of the
energy density. Such phase is referred to agqtherk gluon plasmgQGP) and is most likely to be
created in the collisions of heavy nuclei, with large atomimberA.

Among several possible signatures of the appearance of @@Ransiders the phenomenon of
attenuation of the yield of highs particles, calledet quenching Hereafter, bypr we mean the
momentum component form the plane that is transverse toghmlaxis. At the present state of the
art, the following mechanism is believed to dominate. Theiques created in the hard process loose
more energy when they traverse the medium than in the cabe vdtuum. This is due to the medium-
induced emission of soft gluons. Hence, the probability the hadron with high momentum appears
at the hadronization scale is diminished for the case of dasion collision.

To quantify the suppression, one definestbelear modification factoR 4 4. It is formed as the
ratio of the hadron yield in thé A collision to the yield for the case in which one collides tlystem
being the incoherent superpositiondfprotons.

d?>Naa/dprdy

Taa(b))d?0,,/dprdy” (6.60)

Raa(pr,y,b) = <
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Here,pr is the component of the hadron momentum transverse witlecésp the beam ang is the
rapidity of the hadrongf. Eq. (2.7). The distance in the transverse plane betweerotldirng objects
well before the interaction is called impact parameter ardienote it as. The collisions withh = 0
are called central and the collisions with lafgperipheral. Finally(T'44(b)) is the Glauber overlap
function which gives the number of binapy collisions.

The experimental results from RHIC, where two gold ions atkded at,/s = 200 GeV, provide
the evidence in favor of the attenuation of the high momemtdighes [111-114]. As we see in
Fig. 6.6, the magnitude of the suppression of hadrons faraeeollision isR44 ~ 0.2. In Fig. 6.6,
data for the modification factor for the case of direct phet@also shown. As we see they are not
suppressed. This is because for photons the medium is tna@mgsince they do not interact strongly.

Unfortunately, the measurements of jets is very difficulRBiiC mostly because of the high back-
ground and relatively low jet energies. However, this wél possible at the LHC and will allow to
test other signatures of jet modification like: jet broadegnisoftening of the spectra or change of the
hadronic composition.



Chapter 7

Hadronic composition as a characteristic
of jet quenching

Apart from being excellent objects for the precise study eftyrbative QCD, jets may serve also
as probes on which new phenomena can leave their signaturg@srticular, as briefly discussed in
Section 6.4, if the new state of the deconfined matter calledquark gluon plasma is created, the
jet that traverses it will certainly differ from the jet wiiadevelops in the vacuum. This is because
fragmentation pattern changes in the presence of a stramiglsacting medium. The experimental
result supporting the above picture is the suppression ehtgh-momentum particles observed at
RHIC [111-114]. These measurements can be accounted farttmgiicing the mechanism of the
radiative parton energy loss [115-120], in which the addal medium-induced parton splitting leads
to softening of the spectrum and therefore reducing thelyéparticles with large.

Thepp-distribution of particles, which is the transverse disition with respect to the beam axis
but the longitudinal distribution with respect to the axfstize jet, is however not the only quantity
that can be affected by the medium. Also, the distributionhim momentum transverse to the jet
axis is expected to change in the case of medium modified jaerelis however a third class of
characteristics, which may show significant medium effaats this is the hadrochemical composition
of jet. The current chapter is devoted precisely to this lemb

As a theoretical framework we shall use the perturbativenédism of MLLA, introduced already
in Section 6.3, supplemented by the simplest model of hazltaon, namely LPHD. This framework
is known to provide a reliable description of the charged mlahtified hadron spectra inside jets
and it allows for easy implementation of the medium effedike analysis presented in this chapter
considers only some aspects of the medium madification f Mtvertheless, an interesting behavior
of the particle spectra and particle ratios can be noticed @vthis simplified framework. Moreover,
it can serve as a baseline on top of which other effects casthbleshed.

We begin by discussing in Section 7.1 the possible mechanikat may lead to the change of
hadrochemistry of the jets which develop in a medium. In the following sections we introduce
some further facts concerning the MLLA+LPHD formalism. Thg in Section 7.2 the case of jets
with restricted opening angles is discussed and in Sect®bw@ explain how one obtains the MLLA jet
spectra for identified hadrons. A specific model of the medwwdlification of jets proposed in [121] is
described in Section 7.4. In Section 7.5, we introduce lyrtb® model of the underlying event which
provides an estimate of the background expected at the LHE predictions for the modification of
jet hadrochemistry at the LHC are given in Sections 7.6,Herdase of pure jets, and in Section 7.7,
for the case of jets which are not separated from the backgroline concluding remarks concerning
our study of jet quenching are given in Section 7.8.

The results presented in Sections 7.6 and 7.7 are based orighmal publication [122].

82
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Figure 7.1: The MLLA+LPHD distribution of all charged hadsin the jet of energyjet =
108 GeV for various opening anglés, compared to CDF data fropp collisions [129].

7.1 Conceivable mechanisms of hadrochemistry change

A number of mechanisms of parton energy loss may lead to tegehof the hadronic composition of
ajet. In particular, the fully realistic model of radiatigaeergy loss (see for instance [123-128]) should
take into account the transfer of color between the partmrs the cascade and the QCD medium,
since this changes the color flow in the parton shower is tkalylto affect hadronization. Similarly,
other quantum numbers like flavor or baryon number can, incppie, be exchanged between the
medium and the partonic cascade. Another conceivable mieschavould be the recombination of
the partons from the shower with those from the medium. Initiadd if the energy loss via inelastic
collisions is non-negligible than one should take into arta@lso the recoil effects. This, in turn, can
lead to the medium components being kicked into the jet cohesh will certainly alter the hadronic
composition of the jet. Finally, the elastic interactiontioé partons from jet with the medium results
in the enhancement of the parton branching probability.

In this study, we consider solely this last mechanism of mmedinduced radiative energy loss
that is we take into account only the elastic scatteringaéeh the partons from the cascade and the
medium. Moreover, we do not introduce any changes with dpehe vacuum case at the level of
hadronization.

7.2 MLLA spectra within restricted jet opening angle

In Section 6.3 we wrote the solutions of the MLLA equation énnis of the evolution variabl¥ .
The definition ofY for the case of small angles was given in Eq. (6.28). The isnludvaluated at
a given value oft” corresponds to the jet with enerdye: and opening anglé., which we define as
the half-angle of the jet cone. Therefore, the MLLA formidiallows also to determine the spectra of
hadrons for the jets with restricted opening angles. Wheis not very small one should, however,
use the exact definition

N Ejetsin 0,

Qo

To illustrate this point we have plotted in Fig. 7.1 the iAghadistributions of all charged hadrons,
contained inside three different jet subcones of openingead.. As expected, the yield of hadrons is

Y =1 (7.1
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Figure 7.2: The distribution (7.5) of charged pions (+7~), kaons * + K ) and (anti)-protons
(p + p) in the jet of energyFje; = 14.5 GeV, compared to TPC data efie collisions [130]. For
better visibility, rates of kaons and protons are multghley the factor 2.5.

greater for the jets with larger aperture. Moreover, witr@asingd.., the momentum range broadens
and the peak position moves towards largethat is smaller hadron momenta. We also see that the
MLLA limiting spectra agree fairly well with the data. Let &$ress at this point that we used the
common parameters for the three curves that is )y = 235 MeV and Ky, = 0.555.

7.3 MLLA spectra of identified hadrons

The MLLA formalism also allows to calculate the spectra dfritified hadrons. We have already
mentioned that the paramet€x, specifies the endpoint of the partonic cascade. In the catieeof
identified spectra one relates this point with the mass oh#wron,Qy ~ M [105, 106]. In other
words, for the case of heavier hadrons, the perturbativiien stops earlier and the hadronization
occurs at higher virtuality scale.

In order to calculate the spectruby; (£, Y, A) for M;, # A, that isA # 0, one should in principle
perform the complex integration in Eq. (6.52). However, asced in Section 6.3.2, at large energies
the dependence ok, and hence on the hadron mass, comes only via the funéfion \), defined
in Eq. (6.53), and can be factorized out. Therefore, it iseeigd in this limit that the shape of the
spectrum forA ~ 1 will be very close to the shape of the limiting spectrum araltiio spectra will
differ only by normalization fixed by the factor

Ko(Mp) = %(A N2 (\/4 )\) . A=In % (7.2)

The energies reached in experiments are, however, not ¢éargegh for this asymptotic result to
be applicable. Nevertheless, as argued in [105, 106], oneaaectly describe the spectra that are
presently available by redefinition of the variablappearing in Eq. (6.57), which has the interpretation
of normalized rapidity. The more suitable definition of tteemalized rapidity is [105, 106],

_ E
7= y, y=In h + Dh

, 7.3
Ymax My, 73
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and the limiting spectrum (6.57) may be written as a functiba by substituting

C=1-— i In cosh Ymax

Y " cosh(C ymax) (7.4)

It can be easily shown that for ultra high energjeand( coincide. There is, however, another element
which has to be taken into account. Namely, in order to pigmkrscribe the region of smajlwhere
the mass of a particle is comparable with its momentum onddasrrect the original expression
for DE;”‘ (&,Y) by using exact definition of momentum fraction thatrjs= py,/ Ejet rather thane =
E},/ Ejet Which appears in Eq. (6.57). By combining all the elementdeed above one is able to
express the distribution of identified hadrdns the gluon jet by the limiting spectrum

dNh 2 ) _
wp—(x]m Ejet, Oc, Mp) = Kipuo Ko(Mp) v 7‘7)2 chl;m (€(€),Y,0.), (7.5)
dx 2 My,
’ 73+ (#)

where, following [106], we have introduced the factgr, which depends on the hadron species. This
factor in commonly used and for instance in the case of ka@tsounts for the fact that the probability
of hadronizing into strange hadrons is reduced due to tigedanass of the strange quark. This effect
is known as the strangeness suppression. For more detdit® aterivation of Eq. (7.5), we refer to
Appendix C as well as to the original papers [105, 106].

In Fig. 7.2, we compare the distribution (7.5) with the spedf identified hadrons in jets pro-
duced ineTe~ collision, measured by the TPC collaboration. The limitspectrum was calculated
taking Qo = A =~ M. The parameters were setAo= 155 MeV and K ryp, = 1.22. In accor-
dance with data, one observes that the spectrum becomes lfi@rdnore massive hadrons. Also, the
mass-dependent hierarchy of hadron multiplicity is reposdl. To account for the strangeness sup-
pression, following [106], we adoptegd; = 0.73. The relative normalizatiod’y (M}, ) was calculated
from (7.2), in contrast to the original analysis [106], wiérwas extracted from the fit to the TPC
data.

Since we are not aware of an experimental study of the jebcdgmical composition as a function
of the jet opening angle, we assume in what follows that ttagive distributions of identified hadron
species inside a jet do not change significantly as a funci@h, so that the definition (7.1) applies
also in this case.

7.4 Borghini-Wiedemann model of medium modification

After discussing the formalism of MLLA+LPHD, which providea reliable framework for studying
the vacuum jets produces éte™ or pp/pp collisions, let us turn to the description of jets modified
by the dense QCD medium created in the collisions of heawy. i®here is no unique prescription of
how to model the fragmentation inside a medium. One poggildd introduce the medium induced
gluon radiation into the formalism is to enhance the prdiigbdf parton branching. The model
of this sort, in which the singular parts of the unreguladizplitting functionsﬁqq(m), ng(x) and
qu(x) are enhanced by one common model-dependent fatter fmeq), was proposed by Borghini
and Wiedemann [121]. Such a treatment is motivated by thaulegions of medium-induced gluon
radiation of hard partons [123-128]. The regular parts efdplitting functions are beyond control
and they are left unchanged in order to avoid introducingtexhdl parameters. Consequently, we
have [121]

2 (1 + fmed

qu(l") = Cp 1—=x

- (1+2)], (7.6)
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Figure 7.3: Medium modification of the all charged hadrorscsa inside a jet calculated within the
radiative energy loss model of Borghini and Wiedemann [121]

Raa (1) Au-Au - 7°, 0-10% centrality

1 - - e e —
a4 PHENIX v syn =200 GeV

0.8 —MLLA, f,.=0.8,n=7
sl = MLLA, fe=0.6, n=n(pr)
0.4} 4
0.2t i
N -~k

pr (GeV)

Figure 7.4: Nuclear modification factéia o obtained from the model [121] compared to the PHENIX
data taken from [131]. Figure from [121].

2(1+ fmed
f_‘_

Pylz) = Cp[ z—2|, (7.7)

N 1—=x

Pule) = 2Ca [(1+ Frad s + (14 fred

+a(l-2), (7.8)

Py(r) = Trp[x*+(1-2)]. (7.9)

The above modification is very easy to implement within thelMlformalism since it amounts solely

to redefinition of the parameters and B, which appear in Eq. (6.57) as well as in Eq. (7.2) and were
originally defined in Eq. (6.51). In the case of medium modifimgmentation these parameters take
the form

A

The LPHD-prescription is adopted unchanged in the moddl][12
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As shown in Fig. 7.3, the single particle intra-jet spectites when the partonic cascade develops
inside a medium. In Section 6.1 we have explained that thesetre. can be interpreted as the frag-
mentation functions. By convoluting the fragmentationdiion with the parent parton spectrum one
obtains thesingle inclusive spectrurof the leading hadrons that can be used to calculate thearucle
modification factorR 4 4. The typical distribution of parent partons is power IM@Q(”T), wherepr
is the component of the momentum perpendicular to the be&n Bixe powem (pr) depends on the
center-of-mass energy and can be taken either as a constamtare sophisticated function pf. The
simple model of medium modification proposed in [121] is ablaccount for theR 4 4 suppression
measured at RHIC. As shown in Fig. 7.4, the correct magnitdidgienching is obtained both for the
case of partonic spectrum with the constant powes; 7, as well as with the power parametrized as
n(pr) =7+ 0.003p% and with the value 0fmeq = 0.8 oOr fimeq = 0.6, respectively.

7.5 Two component model of underlying event

Jets measured in the heavy ion collisions at the LHC will beags accompanied by a large abundance
of the underlying event particles. Therefore, it is impottto examine whether the hadrochemistry
of the background is similar to that of the jet or whether they qualitatively different. Moreover,
the estimation of the relative yields of the jet and the bagkgd particles would allow to asses if the
modification of jets can be observed without separatinginfbackground.

In order to estimate the underlying event we use the modgigsed in [132, 133] and further
explored in [134], in which hadrons are produced via two cetimg mechanisms, recombination and
fragmentation. We limit ourselves to central collisionsl ave specify the input following [134]. The
transverse momentum spectra of hadrons are modeled by edmpenent distribution, showing an
exponential "thermal” slope at low transverse momentumdisplaying a characteristic power-law at
high transverse momentum.

We characterize the exponential component of the quark amdjaark spectrum by the distribu-
tion

w;i(R,p) ~ e PunB/T (7.11)

This distribution is assumed to be emitted from spatio-teralppositionsR* = (7 cosh 7, p cos ¢,
psin ¢, T sinhn), which lie in a thermally equilibrated system at tempematliralong a space-like
freeze-out hypersurfacg. Here,n is the space-time rapidity; the radial coordinate, and a suitable
hypersurface can be specified by fixing= v/t2 — 22 = const. The system is expanding at position
R with a longitudinally boost-invariant flow profile, (R), which displays a velocity, = tanh 7,
in the transverse direction. Integrating along the freeze-out hypersurface is a standard procedure t
find the soft contribution to the quark spectrLdWCfO“/dea,T dy. In the following, we denote by, -
the momentum of partons, and py the momentum of hadrons.

The hard, power-law contribution to the quark spectrum tereined by

N =K ¢ (7.12)
Epazdy| - (L+par/B)7 .

Here, the parameters, B and/3 are taken from the leading order perturbative QCD calauhat{135]
and the constank’ ~ 1.5 accounts for higher order corrections [132, 133]. Partoergynloss is
modeled by quenching this partonic spectrum via shiftisgnomentum distribution bAp, +(pa,r) =
€0 \/Pa,r» @S suggested in [136].

We now explain how these partonic spectra are turned intoohadyields. For an exponential
spectrum based on (7.11), recombination always wins oagnientation, since there are exponen-
tially many recombination partners at spft. For a power-law tail (7.12), however, fragmentation
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wins over recombination, since there are sufficiently magy4pr components which can fragment
into softer ones. Thus, the partonig r-scale at which the power-law contribution (7.12) overceme
the exponential one sets the hadropjescale at which fragmentation starts to dominate over recom
bination [132].

The momentum spectrum for mesons and baryons from recotidrirGan be written as [132,134]

AN, B
d*pr dy

TA sinh
= CM,BMTﬁ 2114 va Lo []%

] kaa(pr) (7.13)

y=0

where~, are quark fugacities('ys g the degeneracy factors for meson and baryon respectivady, a
M their transverse masdl, = 7p3 is the transverse area of the parton system at freeze-out tued

2
hadronization time. Here, we also introduced the shorthan@,) = K, {% Zivzl m2 + %] .

The spectrum for hadrons from fragmentation is given by

1
dNy, dz . o . dNhad
E—=> | 5D E,—% 7.14
o = 2| SR 79
0

with D"(z,Q?) denoting the fragmentation function of a parterinto a hadronk. We use KKP
fragmentation functions [137].

It has been shown [132-134] that with appropriately choseameters, this two component model
accounts successfully for the baryon-to-meson enhandeofserved in a large class of RHIC data
on Au+Au collisions at intermediatg,. In particular, recombination models can reproduce the pro
ton to pion and kaon to pion ratio at intermediate transvarsenentum [132—134]. Recombination
dominates at RHIC up tpl}adfo” ~ 4 — 6 GeV, and fragmentation takes over for higher transverse
momentum.

This model has been extrapolated to the LHC, where two leakkinill be collided at the center-
of-mass energy/s = 5.5 TeV [134,138]. The temperature of the quark phase was fixed abhea-
tion at 175 MeV, similarly to the RHIC case the parametersandr A have been rescaled such that
the results of fluid simulations [139] are reproduceg: = 0.68 and7 A, = 11.5 x 10® fm3 [134].
The quenching of higlp partons is fixed by the choicg = 2.5, which amounts to a factar 10
suppression of the single inclusive hadron spectgg-at 10 GeV. The single inclusive hadron spectra
calculated for LHC are dominated by recombination up to &sedich lies~ 2 GeV higher than the
corresponding scale at RHIC [134, 138].

7.6 Hadronic composition of jets produced in heavy ion colsion at LHC

The change of jet hadrochemistry resulting from the modificeof the fragmentation pattern via en-
hancing the splitting rate according to Egs. (7.6)—(7.9) lma studied directly using the formula (7.5).
In what follows we adopt the choick,eq = 1 for this only parameter characterizing the medium. This
value clearly lies in the right order of magnitude given thetfthat the choicgneg = 0.6 — 0.8 was
compatible withR 4 4 measured at RHIC [121]. This choice should be also regarsled astimate for
the LHC that, in the absence of other constraints, is faiughdor our illustrative purposes.

The effect of the medium modification of the partonic casciatdghe case of identified hadron
spectra is seen in Fig. 7.5. The modified spectra are softamethe hierarchy of the intra-jet distribu-
tions is preserved,e. the peak position moves towards smaller value$ (¢drger values of momenta)
with increasing the hadron mass.

Let us now investigate how the change observed in Fig. 7&anfles the ratios of identified hadron
yields. For that purpose, we translate fxdependence at fixeflje; into a transverse momentum
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Figure 7.5: The modification of the pion, kaon and proton Bpem the jet of energyle =
14.5 GeV and opening angle. = /2 expected in our approach witfpeq = 1.

dependence. For a single jet of enefgy;, the pr-spectrum of identified hadron of tyge collected
within the opening anglé,, takes the form

dN"(6.) pbr lim (=
[T] = Koo KolM) oy Ly O (Cprs My, Beo), Bew 6, 4). (7.15)

We choosey;, = 1 for pions and protons, angs = 0.73 for kaons [106], which are the same choices
as those made in Section 7.3. The limiting spectrum was ledéziiwithA ~ M, = 155 MeV. For the
local parton-hadron duality parameter, we td6k.s, = 0.5. This factor must be slightly lower than
the one used in Fig. 7.2, since it determines the normadizaif the identified hadron spectra, while
Fig. 7.2 shows the spectrum of all charged particles. Thiapier K,(M},) itself depends orfmeqd
according to Eq. (7.2). We have checked, however, that ngbs only mildly for protons+ 5%) and
for kaons ¢ 12%). By definition K, does not change for the case of pions, which in our approach
are described by the limitting spectrum. In the followingg ghall focus on results for the opening
angled. = 0.28 rad although, in principle, the calculations can be cardetfor any value of,, as
discussed in Section 7.2. We have tested that the dependartbe opening angl®.. is, in fact, very
weak .

One of the main results of our study is shown in Fig. 7.6. Weeolss that in our model the
hadrochemical composition of jet fragments changes saamifly in the presence of parton energy
loss (.e. for finite fmeqd). Heavier hadrons become more abundant. For instancehdarase of jets
with Ejet = 50 GeV, the kaon to pion ratio increases wy50%, the proton to pion ratio by 100%.
These medium-induced changes persist over the entirevei@@s momentum range. They decrease
slightly with the increase of jet energy but remain cleaibible even for theljer = 200 GeV jets.

Let us stress once more that the significant medium modidicat jet hadrochemistry manifested
in Fig. 7.6 comes solely form the modification of the probibibf parton splitting. In our approach,
we have not changed the process of hadronization. Besithes, @ffects that could be present at the
partonic level were not included in our analysis like fortamee the transfer of quantum numbers.
Therefore, since the enhanced parton splitting alone ialdamf changing the jet hadronic composi-
tion one expects that measuring the identified hadron jettspprovides an additional and important
handle to study the phenomenon of jet quenching.
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Figure 7.6: Results of our calculations f&f* /7% andp(p)/x ratios in the vacuum and medium
modified jets with energiesje: = 50, 100 and 200 GeV and opening angle= 0.28.

We have also investigated whether medium effects generalignce the yield of heavier hadrons,
as seen in Fig. 7.6, or whether the opposite may be possibis.difficult to answer this question
strictly and in general. Let us notice, however, by lookibgig. 7.5, that there is always such region of
£ in which the medium modified spectrum of the heavier hadrenlsnced with respect to the vacuum
case whereas the medium modified spectrum of the lighterohadrdepleted. Specifically, in the
rangel.5 < £ < 2.5 the pion yield decreases with increasifigeq for £ < 2.5, while the proton yield
increases fo€ > 1.5. This oppositefmesdependence at intermediaieexcludes the possibility that
the ratiosK* /7 andp(p) /7 decrease over the entire transverse momentum range wittasiog
medium-effects. This gives support to the idea that the medraent of heavier hadrons, observed in
Fig. 7.6, is rather generic for jet quenching models.



Chapter 7. Hadronic composition as a characteristic of jet gienching 91

Eje = 50 GeV Ejo = 100 GeV Ejo, = 200 GeV

+ +
™ ™

- jet+backgr:*-.
‘(medi‘um) ‘

jet + backgF. -+

10 L=~ background'-..
$vacut‘1m)

oo vacuum jet
£ P R A [

K* K* K*

L o0 || o) || b(P)

10 F

Eo e B "\\‘w (IR | S R "Q‘\‘u L
5 10 15 20 255 10 15 20 255 10 15 20 25
p; (GeV)

Figure 7.7: ldentified transverse momentum spectra withborge of opening anglé. = 0.28 for
pions, kaons and protons.

7.7 Hadronic composition of jets within high multiplicity b ackground

In the realistic event of the heavy ions collision the higklyergetic jet will sit on the top of the
background. In order to see to what extent this backgrounglahacure the effects discussed in the
previous section we must determine its yield within the cohepening anglé.. Using the result
for the double differential spectrum for mesons and baryb¥ig; 5 Jd*pr dy|y=o from Section 7.5 we
integrate it over one unit in rapidity and the full azimutipdlase space. In th&y x A¢-space, this
is an area ofw. We subsequently have multiplied our result by the fractiép/2x, which a cone of
opening anglé. occupies in this plane. Since the spectrum is flat aroundrapdtity, the phase-space
integral is trivial and we obtain

AN (6,) AN

[ de ]background d pr dy y=0

In Fig. 7.7, we compare the above background yield in the adrepening anglé). = 0.28 rad
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Figure 7.8: The particle ratio& * /7 andp(p)/7* obtained from the spectra shown in Fig. 7.7.
These ratios are measured in a cone of opening #&gte0.28 in the Ay x A¢-plane, which contains
both soft background and a jet of energjy;.

with the spectrum of hadrons from the vacuum jet given in Ed4.5). We observe that this two spectra
differ significantly and the harder distribution of jet fragnts dominates rapidly over the distribution
of the background particles at transverse momenta largaith 7 GeV. Consequently, if one adds the
two contributions one obtains the total yield of particleseging the cone with the opening angle
Aswe see in Fig. 7.7, in the highr region, the slope of this combined transverse momentunirsjpec
is entirely dominated by jet fragments. This slope steejretise presence of medium-induced parton
energy loss. Hence, if the energy of a jet can be measuradhkelin heavy ion collisions, then such
transverse momentum spectra provide direct experimeotaka to the longitudinal jet fragmentation
function without the necessity to subtract the background.

In Fig. 7.8, we have plotted the identified particle ratigs /7= andp(p)/7*, in the cone of
opening angled. = 0.28 rad. The measurement of such ratios should be much easiemarel
direct than the measurement of the ratios in pure jets discli; the previous section and depicted in
Fig. 7.6. This is because here it suffices to count all pagialithin the cone with the opening angle
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Figure 7.9: The jet modification factoks 4, defined in (7.17) within the cone of opening anfle=
0.28 as a function of transverse momentum for different jet eilesrgnd different hadron species.

as a function opr without separating those hadrons which come from the jettlaoske that belong
to the background. Let us also notice that the determinatfohlie; does not need to be particularly
good, since the hadronic ratios shown in Fig. 7.8 depend lweakLje;. Since abover > 5—7 GeV
the spectra within the cone are essentially background ditee the particle ratios above this values of
transverse momenta match those shown in Fig. 7.6. which eadcalated for pure jets.

It is worth noticing that in this highyr range, medium-effects enhance the particle ratios, which
for the case of the protons means that they become even natirectithan those of the background.
As depicted in Fig. 7.8, at lower transverse momentum, tlegdraund yield dominates the hadronic
abundances and particle ratios.

The complementary way of presenting information about th@éréchemical composition of jets
and their change in a medium is by forming another type obrati

AN

4PT | med
—r (7.17)

dpr

Jaa =

vac
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which we will call the jet modification factor, in analogy Withe nuclear modification factor. Here, we
have the same hadron species in the numerator and in the @etomIn both cases they are calculated
as a sum of the jet (7.15) an the background (7.16) particiésriag the cond.. The numerator
corresponds, however, to the quenched fat.§ = 1) whereas the denominator to the vacuum jet
(fmed= 0). As we have seen several times already, and in particukbigiry.5, jet quenching amounts
to the reshuffling of hadronic yield from high to low transsemomentum. This is reflected also in
the behavior of the jet modification factor depicted in Fig. Above a certain value of the transverse
momentunp&it, at whichJa 4 (p$it) = 1, the yield of particles in the medium modified jet is depleted
with respect to the vacuum case. At the same time the sublgédigments, additionally produced due
to the medium, populate the region belp§#* and therefore enhanck 4. As manifested in Fig. 7.9,
the value ofp?prit varies significantly both with the jet energy and with hadspecies. In particular,
since the total amount of additional multiplicity, proddcdue to parton energy loss, increases with
the jet energy alsd 44 increases withEje. Similarly, the order of the particle species dependence of
Jaa, seen in the left column of Fig. 7.9, is a direct consequeifitkeomedium-induced enhancement
of the ratiosK* /z* andp (p) /= from Figs. 7.6 and 7.8. Namely, if for instance at fixed tramse
momentuma<Ki>med/<7Ti>med > <Ki>vac/<77i>vac- then <Ki>med/<Ki>vac > <7Ti>med/<77i>vac1
and this order is reflected in Fig. 7.9.

7.8 Concluding remarks

We have analyzed the phenomenon of jet quenching in heawoltisions at the LHC. Specifically,
we studied change of the hadronic composition of jets duateractions with the QCD medium. In
order to describe the development of the partonic cascaglesed the framework of MLLA. Together
with this formalism the hypothesis of LPHD was employed asngke hadronization model. The
interaction of the jet with the medium was assumed in the fofmradiative energy loss. It was im-
plemented, following the model proposed in [121], by enlvanthe singular parts of the splitting
functions.

We observe that the modification of the partonic cascadeealatthout changing the process
of hadronization, is capable to significantly affect the roatiemical composition of jets. Our main
prediction for the LHC concerns the ratioAS* /7* andp(p)/7*, which, according to our analysis,
increase if the jet is modified by the medium. We give argusevtiy this is likely to be a generic
feature for a wide class of jet quenching models.

We have also checked whether this effect persists whentienet separated from the abundant
underlying event particles. Using the prediction of the Lb#gkground from [132,133] we calculated
the background yield inside the jet cone and added it to th& MLLPHD jets spectra. We observe
that above the transverse momentpm = 5 — 7 GeV the slope of such combined distributions is
entirely dominated by the slope of the jet spectrum. Moreabés slope steepens in the presence of
a medium. Finally, we have shown that the increas& &f/7* andp(p) /7™ ratios due to the medium
modification, found for the case of pure jets, is not obscumatie presence of the background. This
results from the characteristically different hadrochsngi of the jet and the underlying event. For
the case ofy(p)/x* ratios the medium modification leads to further increasehef difference in
hadrochemistry between the jet and the background. On tige band, any jet quenching mechanism
which kicks components of the background into the jet cong beaexpected to have the opposite
effect. Therefore, the results of our study can also be vieaga baseline, on top of which effects
indicative of specific microscopic mechanisms of partorrgnioss may be established.

The identified hadron spectra inside the jets created inyhieavcollisions as well as their ratios
predicted from our study differ significantly from those ebsed in the vacuum case. This conclusion
remains valid also if the jets are not separated from thedrackd. The ALICE collaboration has
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an extensive program devoted to the measurement of thej@ttdastributions of identified hadrons.
Therefore, we expect that, in the near future, the set ofigtieds concerning the medium-modified
jets, which we have presented in this chapter, will be ableetbested against the experimental data
from the LHC.



Chapter 8

Summary

In this Thesis we have presented theoretical study of twamntapt processes, which are experimen-
tally investigated in the collisions of particles at higmts-of-mass energy. The first process, dis-
cussed in Chapters 1-5, was deep inelastic electron-psatattering, for which a large abundance of
data from the experiments at HERA is available. We focusegatticular, on the phenomenological
and theoretical study of the phenomenon of saturation. €hersl process, examined in Chapter 6
and 7, was the production of jets and their modification infteavy ion collisions at the LHC.

The phenomenological analysis of saturation, documemte@hiapter 3, was performed in the
framework of the model of Bartels, Golec-Biernat and Kowia[d9]. This is an extension of the
Golec-Biernat and Wisthoff model [47], which was improwsdincluding the proper DGLAP evo-
lution of the gluon density at large virtuality scales. Sunprovement modifies slightly the behavior
of the dipole cross section at small values of dipole sizeadlogvs for better description of the proton
structure functionF,(x, @?) at large photon virtualityQ?. We studied the production of the charm
and beauty flavors within the BGK model [49]. The five modelgmaeters were set by the fit to the
recent data for the proton structurg(z, Q?) at low 2. We assumed the light quarks to be massless.
We found the values of? /ndf = 1.06 — 1.16, which is close to unity and enables us to conclude that
the quality of the fit is good. Consequently, the model fittdthvmeavy quarks correctly describes
the inclusive proton structure function. We observe thatghrameters of the model differ signifi-
cantly from those obtained in [49], in the fit without heavyadks. Also, the the dipole cross section
is changed. Adding the heavy quarks cures its pathologigaayior found in [49] for the case of fit
with massless light quarks. Comparing our result for theldigross section with the result from [49],
obtained in the fit with the massive light quarks, we see thatfit with heavy quarks leads to the
shift of the dipole cross section towards smaller valueshefdipole size. This has a consequence
on the position of the critical line which moves in the difentof smaller values of)?> making the
saturation more difficult to observe in the future experitaefhis last finding agrees with the result
obtained in a different saturation model [56] by Soyez [@8]addition, we were able to predict the
charm and beauty contributions to the proton structuretfomc We found very good agreement of
our results forfs¢ and F3° with the data from H1 and ZEUS collaborations. Although this not
discussed extensively in the Thesis, let us mention thatthéspredictions for the diffractive structure
function agree well with the data. Finally, the longitudis&ructure functionf;, has been predicted
and compared with the H1 estimations. The large experirhentars, however, disable from making
a firm conclusion. Fortunately, the direct measuremeri;gfshould be available in the near future.

The theoretical study of the saturation effects was presemt Chapter 5. For that purpose, the
BK equation with running coupling and the improved NLL BFKErkel was used. As a method of
solving the equation for asymptotic energies, we adoptedréveling waves approach. This approach,
known since long ago in statistical physics, allows to abthe solutions of a certain class of nonlinear
equations by analyzing solely their linear part. The existeof the traveling wave solution, in terms
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of QCD, is equivalent to the property of geometric scalinge Mund that the parts of the equation that
are generated by the NLL corrections to the BFKL kernel doauaitribute to the first two universal
terms in the asymptotic result for the saturation scale. themowords, the functional form of this
solutions is the same as in the case of the LL BK equation witining coupling studied in [76]. The
NLL result depends, however, parametrically on the resutiemacheme used for the BFKL kernel.
We studied our results with the kernels resummed in thresethpecific schemes S3, S4 and CCS.
The first two depend explicitly on; and the value of the coupling influences the critical paranset
which enter the expressions for the amplitude and the gainracale. In contrast, the third scheme
is independent ofy; and therefore the results obtained within this scheme ametiichl with those
found at the leading order [76]. Finally, we found that aitbb our results are, strictly speaking,
valid for asymptotic values df’, we are able to mimic the non-asymptotic behavior for tharssibn
scale from [90]. This can be achieved by choosing an ap@teprialue ofYy, which is an arbitrary
parameter in our approach. The non-zero valugyafenerates and parametrizes the higher order, non-
universal corrections, which are relevant at phenomenabgapidities. This is true, in particular, for
the energy of the HERA collider.

In Chapter 7 we turned to the study of jets. We analyzed the rwawhich they develop in the
dense QCD medium. Such jets are modified with respect to tres¢ed in the vacuum, which can be
used to study medium properties. A number of signaturestiagtbe left on jets created in the heavy
ion collisions have been explored so far. In Chapter 7 wesinyate a new possibility to study jet
modification, namely by looking at the change of its hadragiotent. We analyzed the single particle
spectra of identified hadrons. To obtain these quantitieyjsed the perturbative framework of MLLA
supplemented by the hypothesis of LPHD. This formalism igwkm to successfully describe jets in
ete™, pp/pp andep collisions. Moreover, it was particularly convenient sirtbe available analytic
results allow for easy implementation of the medium indueedrgy loss. More specifically, this
interaction of the jet with the medium was introduced, faflog the model proposed in [121], by
enhancing the singular parts of the splitting functions.sAewn in [121], this is sufficient to account
for the suppression of the high-momentum particles at RMV€ predict for the LHC that the rations
K*/r* andp(p)/r, significantly increase if the jet is modified by the mediume #Wgue that this
feature should be more general and remain valid for a laggs af the radiative energy loss models.
The significant change of hadrochemistry that we observeobtaéned only by the modification of the
partonic cascade, without changing the process of haditimiz Therefore, we view the study of jet
hadrochemistry as a source of valuable information comegithe microscopic mechanism underlying
jet quenching. We checked that due to the characteristidiferent hadrochemistry of the jet and the
underlying event the effects predicted for pure jets peesien if the jets are not separated from the
high-multiplicity environment of the heavy ion collisiofio estimate the underlying event at LHC we
used the result form [132, 133] and calculated the backgrqueld inside the jet cone. The ALICE
experiment, which will soon start operating, has an extenprogram of measuring the identified
particle distribution. Therefore one, will be able to camit our predictions with data in the near
future.
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Appendix A

Mellin transform and its properties

The Mellin transform and its inverse are defined as follows

flw) = /Ooodtt“—lf(t), (A.1)
c+1i00 _
0 = [ Ereie) (a.2)

wherea < ¢ < b. The limitsa andb are specified by the so callé&hdamental strithat is the area in
the plane of complex in which the Mellin transform exists. In other Worq§(,w) has no singularities
if a < Re{w} < ¢. The Mellin transform (A.1) of the functiorf(¢) is equivalent to the two-sided
Laplace transform of (e ).

In this Thesis we exploit in several places the transfornheftieaviside step functiof(a — t)

/ dt 10 (a — t) = L. (A.3)
0 w

The above integral converges fore (0,0). In fact, very often in practical applications, the funda-
mental strip stretches fromy to 400, wherewy is the rightmost singularity of (w). In that case, the
condition forcis ¢ > wy.

Interestingly enough, the functions of the Bjorken vamablvanish, by definition, for: > 1. In
such case, the Mellin transform boils down to

1
flw) = / dta* 1 (2), (A4)

0

with the fundamental strigwg, oo). It is straightforward to check that this is equivalent te tine-
sided Laplace transform gf(e™7).
An important property of the Mellin transform is the algabedion of the following convolution

/Old:nx‘”_l [/xld—;A(g)B(z)} - /Oldx:nw_l Vl %A(z)B@ﬂ — AwBW). (AS5)

where we assume that the functiofgr) andB(x) vanish forxz > 1. This relation is used for instance
in Section 1.5.2 to find the solution of the DGLAP equatiorhi@ imit of smallx as well as in Section
3.5 to obtain the gluon density in the DGLAP improved sataremodel.
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Appendix B

“NLL” part of the BK equation with the
NLL BFKL kernel

After substituting the Ansatz (4.16), with=_/, into Eq. (5.24), setting = % a = % and keeping
only the term@(t‘ﬁ), which are leading in the limit of large one arrives at the following equation

Genevy(z ~ 48 = 'G5 4 5= (G, G Ot ()

where byY (G(z),G(z),G(z)", z,t) we denoted terms of the ordé}(t‘é) from the “NLL” part of
Eq. (5.24)

113 ”» __ i- _i-/ _i./ i._ 2_1
NLL” = {% X(7e) O = 55 X (76) 1.0 — 5 X' (7e) 10 + 3 X(0e) (9 t&)}./\/'(L,t). (B.2)

The derivatives which appear in the above expression caadily ealculated and are given by

AN = e_%Ztl/B{G(Z) E £75 + vgyets — B'yct‘é] +G'(2) [ - %Zt_g — Vg + 5t—§] }

wlot

2 2 2
RN = e—%ztl/s{G(Z) [ B §t_ + —Ug%t_% — §ﬁ%t_% + vg%zt% —

3

2
20,872t 75 + 8242t + gﬂ%t‘é} +

2 2 2
G'(2) [gzt_% - gzvg%t_% + gzﬁ%t_% - 2U§% +
2
40y Bet ™5 = 2877t 7S — §5t_%] +

1 5 2 5 2 5
@ {52%—3 = AT 4 Saugt T+ BT = 200t vgt_é} }
: 1
oLoON = 6_%th{G(z){_§’th‘§_vg’th%+6’y§t‘%] +
/ 1 _2 2
G'(2) |37t ™5 + 2097 — 20eBt73 | +

G"(2) { - %zt‘l — gt s A+ m—l} } (B.3)
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Extracting the terms which dominate for larggives

N = e_%Ztl/BG(z)Ug’yct%—i—(’)(t_%),
BN = 2"’ G(2) 02425 + O(t73),

OLON = —e e Ztl/SG(z) Ugvft% + O(t_%). (B.4)

We see that the leading terms of of the derivatives are of Ider@(t%). However, each derivative
in (B.2) is suppressed either by! or t=2 . Therefore, the “NLL” term contributes only at the order
O(t%) and this is why the solutions of the BK equation with the LL aid_ kernel have the same
functional form.



Appendix C

Particle identified hadron spectra in
MLLA

In the case of ultra high energiegdefined in Eq. (6.58) can be interpreted as the normalizeditap
However, for the presently available energies the norredliapidity should be defined rather as

Y 1 En +pn Ejet + Pmax
=M — Ymax = In ——r——,

‘= ymax’ Y My, ’ My,

(C.1)

wherekF, is the hadron energy ang its momentum. The variablg which appears in the result (6.57),
is defined ag = In(Ejet/E},). Itis straightforward to show using the definition (C.1)ttha

En, = Mjcoshy, (C.2)
Ejet = Mh COSh ymax. (C3)
Hence, we have
Ei h h
¢=1In Ziet _ In COSIl Ymax _ COoS szax ’ (C.4)
E cosh y cosh (( ymax)

and substituting the above into the definitionédrom Eg. (6.58) gives the relation between the two
normalized rapidities

£

(6e)

3 In cosh Ymax
Y(Qc) COSh (é_'ymax) ’

¢ =1

~

-1 (C.5)

This is the result given in Eq. (7.4) which we exploit in Chept.
The rapidityy and its maximal valugmax can be expressed explicitly for a given hadfoim terms
of the variablex,, = py, / Ejet

E Ph + p2+M2 M 2 E
_pEtee \/ Ph P Ty + x%+<_h> 4 n & (C.6)

n )
My, M, Eiet My,

Mh Mh ﬁh

Ejet + \/ By — Mj; B Ejer )2
Ymax = In £ =Inq 2%y ( Jet) —-1,. (C.7)
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The relation (C.5) substituted to the limiting spectrumaiken withy!m = ynax(M), = M, = A).
This, together with the hypothesis of the local parton-badtuality, leads to

IN® - ! 1 cosh y/im
= Kipuo Ko(Mp) 4, DI [ ¢ =1 — 1 = c8
T e ) tero Ko(Mn) vh D¢ << Y(6.) " cosh ({ ylh”;x) 7 ©9)

and after accounting for the difference betwees E),/Ejet andz, = p,/Ejet We arrive at

1 cosh yim.

0" comn (Eym‘;x)>’ (C.9)

dN" z2 -
wp—(o = Kipro Ko(Mp) v 7‘7)2 chl;m ¢(=1-
jet

where the Jacobian? /(22 + (Mj,/Ejet))* comes from changing variables from = Ej,/Eje; to
z, = pp/Ejet. The redefined normalized rapidity, depends on the hadron momentum fractign
hadron mas3/;, and the jet energyjet

(C.10)

Hence, we obtained Eq. (7.5), which is the basic formulatierstudy presented in Chapter 7.
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