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Abstract

In this thesis, the analysis of diffractive processes imtedm-proton and hadronic collision is pre-
sented. Diffractive parton distributions are determinszht fits with a twist-4 contribution to the
diffractive deep inelastic scattering data from HERA. A mawdiction for the longitudinal diffractive
structure functionF'? is presented which differs significantly from that obtairiedhe pure twist-2
analysis.The newest diffractive data from HERA are analyzsng the dipole model. Good agreement
between the predictions and the data on the diffractivecttre functions is found. For the diffrac-
tive open charm production, a significant sensitivity tofibren of the diffractive gluon distribution is
found. Diffractive production at hadronic colliders is@Bnalyzed. The determined diffractive parton
distributions are used to assess the gap survival protyaaiid to make predictions for the diffractive
production of electroweak bosons at the LHC. It is noted thati/’ boson asymmetry in rapidity
is a good observable to test of the concept of flavor symmeaiton distribution functions in the
pomeron.

Streszczenie

Niniejsza praca prezentuje analize procesow dyfrakeyjny zderzeniach elektron-proton i proton-
proton. Wyznaczone zostaty dyfrakcyjne rozktady partomanfitu do danych z HERY, z uwzgled-
nieniem wkfadu typu wyszy twist. Wykonano nowe przewidywanie dla pautaj dyfrakcyjnej
funkcji struktury F'2. Pokazanoze po uwzglednieniu waszego twistu, funkcja ta znaczaca@nd
sie od tej tylko z wiodacym twistem. Wykonano rkporéwnania przewidyviadla tej funkcji z
ostatnio zmierzonymi danymi. Zanalizowano najnowsze didyfeakcyjne z HERY przy pomocy
modeli dipolowych. Znaleziono dobra zgodiioz danymi przewidywa dla dyfrakcyjnej funkciji
struktury. Policzono dyfrakcyjna produkcje charmu pa8lajac istotna role rozktadéw gluonowych
w pomeronie. Wyznaczone dyfrakcyjne rozktady partonowstaty wyte do oszacowania faktora
przezycia przerwy w rapidity i wykonania przewidywalla dyfrakcyjnej produkcji elektrostabych bo-
zondéw na LHC. Pokazanage asymetria w rapidity produkcji natadowanych bozoridijest dobra
obserwabla do zbadania rozktadéw partonowych w pomeronie
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Preface

Diffractive processes constitute a substantial fractibithe total cross section for electron-hadron
collisions. They are also observed at hadronic colliddtepagh at a lower rate. A typical signature
of the diffractive processes is a rapidity gap between ttad §itate particles, which form the diffractive
system, and a loosely scattered hadron(s). We can claseg processes into two distinct classesdt
diffractive processeandhard diffractive processedA classical example of soft reaction is diffractive
dissociation, being a special case of inclusive producitioa quasi two-body process, wherein all
quantum numbers of two final state groups of particles (iberge, isospin, strangeness etc.) are the
same as of the initial hadrons. The study of hard diffracpvecesses is a relatively new research
field, initiated by the observation of diffractive eventdieep inelastic scattering (DIS) at HERA. The
characteristic feature of hard diffraction is the preseoickarge scale (like the photon virtualit®?

in DIS) which allows to use perturbative QCD in the descoptof these processes. The example of
such events in hadronic collisions is the high dijet production with large rapidity gap, which was
first observed by the UA8 Collaboration [1] and later by CDE &0 Collaborations at the Tevatron
(1995) [2,3].

In the last years, it was possible to discover and invegtigdfractive processes which have soft
and hard properties at the same time. A typical process stype isdiffractive deep inelastic scat-
tering (DDIS) DDIS is simply a deep inelastic scattering reaction withagtipular final state con-
figuration, characterized by a largapidity gapbetween the proton remnant and the products of the
hadronization of the photon. It implies that there is no exale of quantum numbers (except those
of the vacuum) between the virtual photon and the proton.sé&ipeocesses have been first observed
at HERA in the year 1993 by the ZEUS and the H1 Collaboratidn§][ They amount to about %
of the total deep inelastic scattering events. In DDIS twitedint energy scales coexist: a soft one,
lt| < 1 GeVZ, which is an energy scale characterizing the momentumfeabetween the initial
and final state proton, and a hard one, the photon virtuglty> 1 GeV2. When the hard scale is
present, it is allowed to apply perturbative QCD and undeistsuch processes in terms of quarks
and gluons. However, soft part of hard diffraction, resjladasfor the rapidity gap formation, stays
outside perturbative QCD and is usually described usingRégge pole phenomenology. In this
framework, the exchange of the so callRdgge trajectoriess given by the exchange of particles in
thet-channel, which are summed coherently. Diffraction is absarized by the exchange of a specific
trajectory, called aomeron which dominates at high energy and carries vacuum quantumnbers.
The exchange of the pomeron is responsible for nonperfuebedpidity gap formation. Indeed, a
very appealing interpretation of the rapidity gap reliesmp partonic interpretation of the structure
of the pomeron. It is possible to nicely describe the ditikaccross-sections from HERA by a QCD
DGLAP evolution of parton distributions in the pomeron, doned with a Regge parametrization of
the flux factor describing the pomeron emission [6]. Thigliptetation is linked with the issue of
diffractive parton distribution functions (DPDF) in diffctive deep inelastic scattering. The first part
of this Thesis is devoted to the determination of the DPDffits to the HERA data.

Regge theory has also put forward a successful descripfi@ofo hadron-hadron scattering at
high energies. The difference between diffraction at HERA at the Tevatron is that diffraction at
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the Tevatron can occur not only on eitheor p side as at HERA, but also on both sides. The former
case is called single diffraction, whereas the other ondlégoomeron exchange. It has been shown
that the diffractive parton distributions from HERA can hetused directly to make predictions at the
Tevatron. Indeed, factorization does not hold arghp survival probabilityhas to be considered. It
corresponds to the probability that there are no additienélinteractions or in other words, that the
event remains diffractive. The study of diffraction at trevdtron and at the LHC is the subject of the
second part of this Thesis.

The outline of the dissertation is the following.

Chapter 1 serves as an introduction in which we review basitsfconcerning diffractive deep
inelastic scattering and diffractive processes in hadvadron collisions. In this way, we establish the
notation and present the standard approach to DIS in theefvank of the collinear factorization. We
also introduce the concept of the pomeron and the diffragiarton distribution functions.

In Chapter 2, we focus on the diffractive parton distribotfanctions. We determined these distri-
butions from fits to the diffractive data from HERA. In our fiis addition to the twist—2 contribution,
the twist—4 contribution from longitudinally polarizedritial photons is considered, which is impor-
tant in the region of small diffractive masses (large valokthe parametefi). As a result, a new
prediction for the longitudinal diffractive structure fetion, F2, is made, which differs significantly
from that obtained in the pure twist—2 analysis in the regiblarge 5. Finally, we show a comparison
for our predictions for”? with the preliminary data from the H1 Collaboration at HERA.

In Chapter 3, we present a comprehensive analysis of thesteliffeactive data using the dipole
model approach. We consider two most popular parametiimmtof the interaction between the
diffractive system and the proton (the Golec-Biernat-Wagt(GBW) and Color Glass Condensate
(CGC) parametrizations) which are based on the idea of paa&turation. We present an updated
and more consistent analysis which clearly shows the sigmifie of the dipole models with parton
saturation for the precise description of the diffractiVERA data .

In Chapter 4, we present the study of the heavy flavor prodiudti diffractive deep inelastic
scattering within the dipole models. We demonstrate thaptiesent dipole models of DIS diffraction
are able to describe the diffractive charm data from HERAvipled we supplement them by a collinear
factorization prescription for the generation of the difftive state with ac pair.

Chapter 5 is devoted to the diffractive dijet production.eTdiffractive parton distributions ob-
tained from the QCD fits to the H1 [7] and ZEUS Collaboratiortiadg8] allow us to make direct
comparisons with measurements at the Tevatron. It is istiegeto directly test the factorization
breaking beetwen HERA and the Tevatron, using the measuterperformed at both accelerators.
We thus compare the extrapolations of the results of ourtam#ifl and ZEUS Collaboration fits to the
recent CDF measurement of the single diffractive crossaeir events with leading antiproton [7].
A special attention is paid to the role of the secondary reggmntribution in the discussed results.

In Chapter 6, we study the electroweak boson production dndmhadron collisions. We show
that the measurement &+ boson production asymmetry in rapidity in the diffractjye collisions
can serve as a test of the concept of the flavor symmetricrpdistributions in the pomeron. In addi-
tion, this measurement may also be a valuable method tondieterdetails of the parton distribution
in the proton. The summary of the Thesis is given in Chapter 7.

The results discussed in this Thesis are based on the falippublications:

¢ “Diffractive parton distributions from the analysis with h igher twist”
K. J. Golec-Biernat and A. Luszczak, Phys. Revr® 114014 (2007)

¢ “Dipole model analysis of the newest diffractive deep inelstic scattering data”
K. J. Golec-Biernat and A. Luszczak, Phys. Reww® 114010 (2009)



“Diffractive hadroproduction of electroweak vector bosons at the LHC”
K. J. Golec-Biernat and A. Luszczak, Phys. Re\81)014009 (2010)

The results of this Thesis were also presented by me at tlosviol international conferences:

1.

Results with diffractive parton distributions for the HERA, Tevatron and the LHC.
Proceedings of Hadron Collider Physics Symposium, Eviaanée, 16-20 November, 2009.

Diffractive asymmetry of electroweak vector bosons at the LHC.
Proceedings of European Physical Society Europhysicseemée on High Energy Physics,
EPS-HEP 2009, 16 - 22 July, 2009, Krakow,e-Print: arXivD9809 [hep-phl].

Diffractive open charm production from the dipole model analysis.
Proceedings of European Physical Society Europhysicseemée on High Energy Physics,
EPS-HEP 2009, 16 - 22 July, 2009, Krakow, e-Print: arXiv®@g077 [hep-ph].

Precise dipole model analysis of diffractive DIS.
Proceedings of 17th International Workshop on Deep Iriel&tattering and Related Subjects
(DIS 2009), Madrid, Spain, 26-30 April 2009, e-Print: arXi909.3956 [hep-ph].

Diffractive processes in electron-proton and proton-proton collisions.
Proceedings of the Xlll Mexican School of Particles and dgelSan Carlos, Sonora, Mexico,
2-11 October 2008, AIP Conf.Proc.1116:434-436, 2009.

Diffractive processes in electron-proton collisions at HERA.
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Chapter 1

Introduction

1.1 Diffractive phenomena

In the 1950s, the termdiffraction was introduced in high-energy nuclear physics. Among thmse
whom it was first used were Landau and Pomeranchuk [9-12]. tdine is applied in strict anal-
ogy with the familiar optical phenomenon that is observedmvh beam of light meets an obstacle
and travels through a hole whose dimensions are compamlite wavelength (if the wavelength is
much smaller than these dimensions, geometrical shadawiogind to be taking place). It is shown
schematically in Fig. 1.1. To the extent the propagation thedinteraction of extended objects like
the hadrons are insignificant but the absorption of theireMawnction caused by the many inelastic
channels open at high energy the use of the optical ternmggaeems by all means appropriate [13].
Below, proper optical conditions for diffraction are pretal.

Diffraction relies on a number of approximations. First bfiéa plane wave of wavelength hits
a screen with a hole of dimensiofisand the wave numbér = 27/ is sufficiently large, theshort
wavelength condition

ER > 1 (1.1)

is satisfied. If the hole on the screen is describell@ghen, according to the Huygens-Fresnel prin-
ciple, each point becomes the center of a spherical wave) fihose envelope, the wave will be
deflected. Lek is the plane at a distande in which the image is collected.€. the detector plane).
Due to the fact that distances to the point and angles witterdo the original direction of the beam
vary, the amplitudes and phases of the waves collected htpeznt will also be different. There-
fore, cancellations and reinforcements may occur at diffepoints, giving rise to the phenomenon of
diffraction. This propagation maps the value of this enadgyribution 7y on Xy into its valueT" at
the pointP(z, y, z) on the detector’s plane. The Fresnel-Kirchhoff formulalais the mathematical
aspect of this phenomenon [14]

L T 0
= — 1 S

oy fp 5T (14 cos0)
wheres'is the distance of the point P froky andcos 8 is the inclination of this vector with respect to
the normal tax.

The problem is greatly simplified when the detector is scadisthat all rays front, to the point
P(z,y,z) onX can be considered to be parallel. Whether the teraunhofer diffractionor Fresnel
diffraction is applied, depends on a distance to a source, more precigdayher it can be considered
infinitely large. The large distance approximation will alyg be valid for the case at hand. If the
distanceD satisfies the large distance condition

R/D < 1 (1.3)

exp ik b

T(z,y,z) (1.2)

8
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Figure 1.1: Diffraction of a plane wave by a hole in a screen

the exponentiat’®* /s in power series oks may be expanded. The following various cases can occur:

e Fraunhofer diffraction whekR?/D < 1
e Fresnel diffraction whe# R?/D ~ 1
e geometrical optics whehR?/D > 1

What follows, is that the optical regime is determined by plagametek R?/D. It needs to be
pointed out that Fraunhofer diffraction is the focus of mtiten in terms of the application of optical
concepts to hadronic phenomena.

Let us show the diffraction more precisely. On Fig. 1.2, by light of wavelength\ impinging
on a black disk of radiug?y, a diffraction pattern is produced on a distant screen. phitern is
characterized by a large forward peak for scattering afigie0 (the diffraction pealk and a series of
symmetric minima and maxima, with the first minimumdat,, ~ +X/(2Ry) (Fig. 1.2). The intensity
I as a function of the scattering anglés given by

10) _[2h@)? _, R
I0=0) a2 - 4

in which J; is the Bessel function of the first order and= kR sin 0 ~ kR, 6 with &k = 27/\. The
diffraction pattern is, thus, related to the size of theeaand the wavelength of the light beam.

The differential cross sectiotv/dt for elastic proton-proton scatteringg{ — pp) is remarkably
similar to the diffraction pattern and is described in [1A}.low values of|¢|, one has

(k6)?, (1.4)

do
2 (t
ai () ~ e M ~ 1 — b (PY)?, (1.5)
do (¢ — 0)
dt
1(60)
X 1(6)
___________ > 7
___________ = < MR,
___________ > 1ii:i,,§,,,,, /
——————————— >
___________ S LS
___________ > 0

Figure 1.2: Distribution of the intensity in the diffraction of light of wavelength\ from a circular
target of sizeR.
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(a) (b)

Figure 1.3: (a) Elastic scattering. (b) Single diffractig¢o) Double diffraction.

in which |t| ~ (P§)? is the absolute value of the squared four-momentum tranBfes the incident
proton momentum and is the scattering angle. Theslopeb can be defined as= R2/4, in which
once againR is related to the target size (or, more precisely, to thestrarse distance between the
projectile and target). A dip followed by a secondary maximias also been observed. The dip ap-
pears to be decreasing with increasing proton momentune atte ofj¢|. Itis, hence, not surprising
that the term diffraction is used for elasfip scattering. Similat distributions have been discovered
for the other diffractive reactions mentioned above, legdd the use of the term diffraction for all
such processes.

1.2 Definition of diffractive processes in particle physics

The next task will be talefinediffraction in terms related to pure particle physics. Thstfauthors to
give a definition of relevant modern terms were Good and W4#e For the sake of definiteness, it
will be said that

e every reaction in which no quantum numbers are exchangedebat high energy colliding
particles is dominated asymptotically by diffraction.

Looking at the issue from a different point of view, one maylynthat diffraction dominates as the
energy increases anytime the diffused particles, or threiemmbles, have the quantum numbers equal
to those of the incident particles.

The request alone of no exchange of quantum numbers is asaegaondition for the process
to be diffractive, but not a sufficient one. It is essentiathpossible to define diffraction without any
ambiguities whatsoever. A contamination of non-diffreetorigin, such as the exchange of scalar par-
ticles, is always possible. However, it weakens asympatiyi@s the center-of-mass energy increases,
and this is why in the definition above, it is explicitly dendaal the process to be a high energy one.

Another advantage of this definition is that all cases ofdiffive processes, shown in Fig. 1.3 and
discussed later in the introduction, are covered by it, ngneéastic scattering, single diffraction and
double diffraction.

One usually refers to a diffractive processes in particlgss, as a kind of processes which are
dominated by the exchange opameron Here,pomeron exchangs synonymous with the exchange
of no-quantum numbers. As it was mentioned above, our definif diffraction is a little too simple.
What is actually made possible by it, is differentiatingvbetn the true diffraction and the exchange
of scalar systems which priori are non-diffractive. However, the exchange of scalarsughtylloses
its importance while the energy increases.
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LRG

Figure 1.4: A DIS event with a large rapidity gap observechvtiite ZEUS detector at HERA. The
scattered proton escapes into the beam pipe. The syfxbdenotes the difference in pseudorapidity
between the scattered proton and the most forward partiche@bserved hadronic systekn

\s = 320 GeV

1.2.1 Diffraction at HERA

HERA, a Collider in which27.5 GeV electrons or positrons strike20 or 920 GeV protons, was
originally conceived as the machine by which the field of DI&Nd have been entirely cleared. As it
turned out, it did not fail to deliver what had been promised HERA was also the number one device
to investigate diffraction in particle physics, triggaginenewed interest in theoretical approaches to
diffraction.

However, diffractive DIS has the advantage of being simgiece only one initial state hadron is
involved. A typical diffractive event in DIS is shown in Fid@.4. In the theoretical interpretation of
such events a virtual photon is radiated by an electron ¢ooal’V boson), which then interacts with
the proton. Looking at the scattering in a frame in which threual photon moves very fast (e.g. in
the proton rest frame, in which thg has a momentum of maximum 50 TeV at HERA), the virtual
photon can fluctuate into a quark-antiquark pair. Becausésdarge Lorentz's boost, the lifetime
of this virtual pair is much longer than that of a typical siganteraction time. In other words, the
photon fluctuates into a pair long before the collision, drid the pair that interacts with the proton.
Diffractive events are possible because the interactitwd®n the pair and the proton is mediated by
the strong interaction with a net colorless exchange (uacguantum number exchange).

An advantage of studying diffraction ip collisions is that, for sufficiently large photon virtuglit
Q?, the typical transverse dimensions of the quark pair (caliuole) are small if compared to the size
of a hadron. Then, the interaction between the quark andrtiguark (as well as that of the pair and
the proton) can be treated perturbatively. @%is decreasing, the colour dipole becomes larger, and at
very low Q?, these interactions strengthen so much that it is no longssiple to describe the process
in terms of quarks and gluons. Instead, one may then regarghbton as fluctuating into a vector
meson [16] (this is the basis of the well-known vector mesamidance model). It can, therefore, lead
to the expectation that diffractive reactions are very kinib those in hadron-hadron scattering.

A different physical picture is obtained in a frame in whitte incident proton is very fast. The
diffractive reaction can be seen as the deep inelasticestagt(DIS) of a virtual photon on the proton
target here, and in the final state of it the proton is very féBus, it is likely that partons will be probed
in the proton in a very specific way. There are actually differtypes of QCD-factorization theorems
for such processes, by which certain expectations are owedir The collision of the virtual photon
and the proton results in a hadronic final statevith the photon quantum numbers and invariant mass
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Figure 1.5: Diffractive (a) vs. inclusive (b)'p scattering.

Mx. A large gap in rapidity (or pseudorapidity) betwe&rand the final-state proton is observed.

1.3 Diffractive deep inelastic scattering

In certain fraction of deep inelastic scattering event® @l 0-15%) the target proton remains nearly
intact. We speak, in these case, of diffractive deep inelasattering (DDIS). The process depicted
in Fig. 1.5(a) is a semi-inclusive diffractive reactionacficterized by a particular final state config-
uration, wherein the presence of a rapidity gap betweendattesed proton and the hadronic final
stateX signals that no quantum numbers are exchanged betweentila whoton and the incoming
proton. In other words the main difference between thesepnwoesses is that, diffractive scattering
is mediated by a pomeron, which carries vacuum quantum nisnarel produces a rapidity gap. In
inclusive case the rapidity space is completely filled, Sge E5(b).

Following diffractive processes;p — ¢’ Xp/, in which X is a diffractive system, depicted in
Fig. 1.6, are considered. There are several dimensioniaisscediffractive DIS scattering. In addition
to the photon virtualityQ? and total energy of the*p systemi¥, which define the Bjorken variable

Q2

there are two additional invariant variables related todiffeactive nature of the process: the invariant
mass of the diffractive systed/? and the squared momentum transfefFor the events, showed in
this picture, the final state proton is well separated indigpirom the rest of the system. The two new
variablesr p and 3, which are built out of above variables, are introduced. \fdréable

Q*+ M —t
rp = Q2+ W2 a.7)
is a fraction of the incident proton momentum transferrdd the diffractive system, and
QQ
_ 1.
B QQ + M2 —t ? ( 8)

is an analogue of the Bjorken variabidor the diffractive system. Experimentall§j < Q?, M?, thus
t can be neglected in the above formulas.
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Figure 1.6: Kinematics of diffractive DIS in pomeron model.

The quoted interpretation of these variables can be defieed the two conditions resulting from
the momentum conservation at the vertex with the diffraéctiystem, see Fig. 1.6.

(epp+q)?=M  => Tp R YT (1.9)
2
@+8Em)P=0 = et (1.10)

Notice that whem3 — 0 thenM? > Q? (diffractive mass is large), and wheéh— 1 thenM? < Q?
(diffractive mass is small).

1.3.1 Diffractive structure functions

Diffractive structure function analogous to the inclusbase is defined. This is determined by the four
invariant variablegz, Q2, zp, t) and defined with the use of the diffractive DIS cross sectidf] |

4 D 9 2 2FD dQFD
A g S s S A (1.12)
dzdQ?dx pdt Q4 dzpdt dxpdt
we introduce the following notation
D4 dQFD
BV, @apt) = 5t (,Q% ap, D) (1.12)
dQFD
FPY@, Q% ap,t) = ——L(2,Q%zp,t), (1.13)
d.%'ﬂ:!dt

in which it is explicitly indicated that the diffractive sitture functions are dependent on four variables.
In addition
F2D(4) _ Fq{)(ﬂt) + Ff(4) 7 (1.14)

It should be noticed that the introduced diffractive staetfunctions have dimensidieV ~2 because
of the differentialdt in the definition of the cross section.
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The structure functions integrated oveaire also defined since they are measured when the final
state proton momentum is not detected. In this case

0
Fgf)(m,Qz,xﬂ:):/ thgf)(m,Qz,mp,t), (1.15)

are dimensionless. The diffractive structure functioresratated to the diffractive photon-proton cross
sections in the following way

Q> dorp(y'p — p'X)
AT 200, dx pdt

PP (2 Q% ap) =

)

(1.16)

1.4 Regge approach to diffraction

1.4.1 Soft pomeron

The basic idea of Regge theory is that sequences of hadromasdgm,; and spinj; lie on Regge
trajectoriesa(t) such that(m?) = j;. Prior to QCD, strong interactions were thought to be due to
the exchange of complete trajectories of particles. In Reggdel, all kinds of “soft” high energy
hadronic scattering data: differential, elastic and totaks section measurements can be described
successfully. The high energy behavior of a hadron scagierinplitude at small angles has the form

Z B(t) (s/s0)r®, (1.17)

wheresy = 1 GeV? For the sake of simplicity, the signature factor is omittékhe variables is
the square of the centre-of-mass energy, whilsis the square of the four-momentum transfer. The
observed hadrons were found to be located on trajectarigs), which are approximately linear in
and parallel to each other [18]. These hadrons have inagasgin and mass, but they do not differ
as far as the other quantum numbers are concerned. Theywaré ém a single trajectoryp(t).
The leading trajectories of this kind are thens, w and f trajectories, all of them are approximately
degenerate with the trajectory

ar(t) ~ 0.5 + 0.9GeV~2-¢. (1.18)

The Regge trajectories are shown in Fig. 1.7. For exampleg,the p trajectory has the appropriate
quantum numbers to be exchanged in the progegs— 7'n. From thes dependence of the differ-
ential cross sectiotio /dt, the trajectoryw,(t) can be determined far< 0, see (1.17). For smalt|

the trajectoryn, () is found to be linear it and, when extrapolated to posititt passes through the
p(17)andp(37)... states, i.eap(m?,) = 1,3,... at the appropriate mass values. From the optical
theorem, the total cross section (say, foB — X scattering) is expressed in terms of the imaginary
part of the forward elastic scattering amplitude. Totaksreections are observed to be slowly increase
with s at high energies. In connection with that a higher lyingettégry withar > 1 is required.

1 1
o"(AB — X) = ~ImA(s,0) = — > B (s/s0)** 0. (1.19)
S S0 R

Vacuum quantum number exchange (pomeron) was introducadctmunt for the asymptotic energy
dependence of the total cross sections [19]. Originallyttital cross sections were thought to asymp-
tote to a constant at high energies and so a pomeron with téxeépta»(0) = 1 was invoked. The
slow rise at the total cross sections, however, negd&) ~ 1.08. Due to introduction of a pomeron,
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M=t (GeV)?

Figure 1.7: Regge trajectories.

the total, elastic and differential hadronic cross sectiata are found to be well described (for small
|t|) by taking a universal pole form for the pomeron,

ap(t) ~ 1.08 + 0.25GeV 2 -, (1.20)

shown in Fig. 1.8 from [20]. The pomeron should be seen asfantee description only, since the
5998 power behavior of the total cross sections will ultimateiylate the Froissart bound

™
o (AB — X) < = In?(s/sq) . (1.21)

™

wherem, is pion mass. The link between this successful Regge déseripf soft processes and
the underlying fundamental theory of QCD is not yet known étiadl. It is most likely that pomeron
exchange is mainly originated from the exchange of a twomglound state, whilst the meson trajec-
tories(p, az,w, f) correspond t@g bound states. The Regge theory pomeron discussed abow is no
frequently called theoft pomeron

1.4.2 Triple Regge limit

Let us consider the single inclusive reactian+ 2 — 3 + X, in the limits > M? > |t| in which
M? is the invariant mass of the hadronic systéimsee Fig. 1.9. The particlg is produced in the
fragmentation region of particle. If 3 has the same quantum numberlasuch a process is called
diffractive dissociation. In the limit — oo, the scattering amplitude of the process is given by [13]

a;(t
i ) © (1.22)

A2 = 3X) = 3 gis®) b O m(t) (573

where the sum is done over the contributing reggegsi$) is the corresponding signature factor and
gi5(t) andgs . (t) factors describe the coupling of the reggeons to the extparticles. According to
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Figure 1.8: Pomeron trajectory.

Mueller generalized optical theorem, the DIS cross sediaelated to the corresponding scattering
amplitude in the following way

2 dzo'SD 1 . — —
1677 = - DISCMzA(123 — 123) (1.23)

dM?2dt
s \@i(t)+a;(t)
= —2913 913 ()77]()(@> ’

Discp2 A(i2 — j2),

whereA(i2 — j2) is the reggeon-particle scattering amplitude. Its disoaity, in the limit /2 —
00, is predicted by the Regge theory to be

M2 (0)
Discp2 A(i2 — j2) = ng Gijk(t <§> . (1.24)

Note that reggeons and j carry the momentum squared whereask carries no momentum. In
Eq. (1.24)g;j1. is the triple-reggeon coupling and is an arbitrary reference scale. Inserting Eq. (1.24)
into Eq. (1.23) gives in the triple Regge linsit> M? > |t| ands, M? — oo:

dQO—SD 1 i j % * s \eilbFe;)
16725 dM2dt 22913(t)9{3(t)77i(t)nj(t) <W) J
ij
M2 a(0)
X g55(0) gigie(1) <3—0>
) N M? 1.25
MZszgk()(Mz) <0> | -

where in the last line all the couplings and signatures weserporated into the functiors; ;. (t).
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(a)

Figure 1.9: (a) Single-inclusive reactiant+ 2 — 3 + X mediated by the exchange of a reggeo(b)
The discontinuity acrosa/? of the scattering amplitude. (c) The triple reggeon diagram

1 X1

2 ‘ X2 2 2

(@) (b)

Figure 1.10: (a) Double diffractive dissociation. (b) Thamperon loop ( a discontinuity is to be taken
across the loop).

Let us focus now on a specific single-inclusive reactith,— 1’X5 in the limit of high energy
s — oo. This process is called diffractive if the outgoing pasdics equal to one of the incoming
particles and carries most of its momentum, and the hadetaie X, has the same quantum numbers
as the other incoming particle. In this case the two trajeedothat we previously called and j
(i.e.,those exchanged between partidlend?2) are the pomeron trajectory; (t) = «;(t) = ap(t).
The trajectoryk can be either a pomeron or another regg#owith the trajectoryar(t) (the former
dominates whe/? is very large). Therefore, we have

oD s \2apt)—-1 /M2 ap(0)—1
torts ey = Gren®)(57) " ()
s \2ap(t)—1 /M2 ar(0)—1
+ Crer(t) <m> (?0) : (1.26)

Another inclusive process, shown on Fig. 1.10, is doublé&atifive dissociation (DD)12 —
X1 X5, whereX; and X, carry the same quantum numbers of partidlesmd?2, respectively (from the
experimental point of view, the reaction is characterizga barge rapidity gap betweeX; and X5).

If the massed/2 and M2 of the produced states are large, we can proceed as for siiffgéetion, and
we find that the process is dominated by a pomeron loop, whisbsafrom gluing together two triple
pomeron diagrams. Regge factorization relates the crat®sef double diffraction dissociation to
the cross section single diffractive dissociation andtiglasattering in the following way
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doPP(12 — X1X3)  do®P(12 — X12) do®P (12 —» 1X1) , doy(12 — 12)

= 1.27
dMZdMZdt dMZdt dMZdt / dt (1.27)

We shall make use of the Regge theory predictions for diffraalissociation presented above,
when discussing diffractive deep inelastic scattering D

1.4.3 DDIS from Regge theory

It will now be proved that the results on single inclusiveqass, discussed above, lead to Regge theory
predictions for diffractive DIS. The correspondence betwéhe general reaction+ 2 — 3 + X

and DDIS is shown in Fig. 1.11. Particlésand3 are now the incoming and outgoing protop’,
respectively while particle 2 is the virtual photef. in Eq. (1.25), the center-of-mass energy squared
of v*p scattering is denoted By’2 and the replacemedt/? — (M? + Q?) must be made in order to
take photon virtuality into account. In additiof? is also chosen for the reference scaje

) @

Figure 1.11: From hadronic diffractive dissociation tdmdiftive DIS.

2

For W2 > M? Q? > |[t|, DDIS is described by the triple Regge diagrams, see Fig®.1.1
There are two dominant contributions, shown in Fig. 1.13ctvlare described by the triple-pomeron,
IPIPIP, and the pomeron-pomeron-reggedf/P IR, diagrams. The diffractive deep inelastic cross
section then reads

9 d2O,SD W2 2app(t)—1 M2+Q2 ap(0)-1
Vara = Y ierg T

dM?dt’
W2 )2@P(t)_1 <M2 + Q2>0¢1R(0)—1

in which all couplings are incorporated into the functiofig . In particular, considering only the
triple pomeron case we have

d*o5P 1 w2 2ap(t)-1 M2 4+ Q2 ap(0)—1
w? aM2dt 16#2\9113(0!2 <7M2+Q2> 9 (0) g3 (t) (T) . (1.29)

wheregsp is the triple-pomeron coupling. For the sake of simplicitys assumed that the pomeron
couples in the same way to the proton and to the virtual phdtbe triple-pomeron mass spectrum in
the large mass limit is given by

dQO_SD 1 1 1 (l 30)
dMzdt (M2 +Q2)azz>(0) ~ (M?)CMP(O) ~ (M2)1+e’ .

for the pomeron with the trajectoryp(0) = 1 + e.
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pr p’

Figure 1.12: Diffractivey*p scattering and the triple Regge diagram that describesgheifimitiv’? >

M?,Q% > t.
P IR IP IR
P@P P§7777 Jg/h/%la R£§7/LL IR

P IR
Figure 1.13: Triple Regge diagrams contributing to diffi@ dissociation.

Sincet is limited and the triple-pomeron coupling does not dependhron it, the approximation
g3p(t) = g3p(0) can be made. Inserting the variablg «~ M?/W?, Eq. (1.29) can be rewritten as

dQO,SD ) )
drpdt fp(zp,t) oy p(M*,Q7), (1.31)
in which .
fp(zp,t) = W!glp(t)\? 2o ®, (1.32)

is the pomeron flux factor and

M2 + QQ)&P(O)—l

o (M2, Q) = g3(0) gp(0) (7 | (1.33)

is the~*-pomeron scattering cross section. If the variabte Q?/M? is used, Eq. (1.31) becomes

do” = fp(xp,t) oy p (B, Q%) (1.34)

depdt PR L) 0y PO, &), .
in which

oyp(8,Q%) = Ap(Q*) '~ r©). (1.35)

It needs to be noted that ti¢* dependence which is embodied inp(Q?) is actually irrelevant in
the context of the Regge theory, in which the virtuality of fphoton is a fixed parameter (a mass)
and one cannot predict the dependence of the cross sectiQi.owhat is actually predicted in the
Regge theory, is thg dependence aof.,-p at fixed Q?. The interesting feature of Eq. (1.34) is the
factorization of ther» dependence from th@ dependence, calleBegge factorization This is an
important and highly non-trivial prediction based on theygetheory that the dependenceagp, i.e.
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in W2, is completely determined by the flux factor. Withr = 1 + ¢, the diffractive cross section
behaves as

doP 1
~ 1.36
dx pdt (xlp)lJrQE ’ ( )
In terms of the diffractive structure functidﬂZD “ Eg. (1.34) can be rewritten as
Fy Y wp,t,8,Q%) = fr(zr,t) Y (8,Q%), (1.37)

in which Ff is the so callegppomeron structure functioriThe triple Regge limit expectation for thie
dependence aflf in the limit 3 — 0 is given by

FF(B,Q%) ~ p=or® ~ g, (1.38)

Integrating Eq. (1.37) over, FQD ®) can be put in the factorized form

FP®(xp, 8,Q%) = Tplzr) FF(8,Q%), (1.39)

where the-integrated pomeron flux is given by

0
711:(35113) = / dtfﬂ:l(l'lp,t). (1.40)

—00

In practical measurements, théntegration has a limited range due to experimental cadit

1.5 Partonic structure of the pomeron

It is tempting to interpret the quasi-elastic high-energattering of photon fluctuation and proton
in terms of pomeron exchange, thus introducing a soft enéggendence. Essentially, one assumes
that the pomeron (just like a real hadron) can be charaetkriwy a parton distribution (Ingelman
and Schlein model [21]). This distribution is assumed tddaze from the pomeron trajectory and
the pomeron-proton-proton vertex, which are both obtainea the analysis of purely soft hadronic
reactions. At leading order, the pomeron structure funcigogiven as a superposition of quark and
antiquark distributions in the pomeron

Ny

FP(3,Q%) = el 8|ayw(8.Q%) + 08,0 (1.41)

i=1

where the sum is performed over quark flavors. The varigble z/x p is interpreted as the fraction
of the pomeron momentum carried by its partonic constitienty; (3, Q?) is the probability to
find, inside the pomeron, a quark of flaviarvith the momentum fractiogs. Clearly, this interpretation
makes sense only insofar as the probability of finding a pomar the proton can be specified clearly
and with certainty (i.e., the pomeron flux). It also needsdwiable that the pomeron is a real particle.
Since it is not so, the whole picture must be regarded as dyppinenomenological one combining
Regge factorization and QCD-factorization.

TheQ? dependence of the quark and the gluon density in the pomggmverned by the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution eqtians [22,23], which can be written in follow-
ing way:

2 0 211’(@@?))_%(@2) 1@<P it ) /e (p 0 &) )
Q 6Q2 < gl{:’(ﬁ7 QQ) - o /ﬁ . PZZ ngqg (ﬁ/ ’ S(Q )) glP(Z,QQ)( ’2)
14
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where by " (3, Q?) we mean the sum of quarks and anti-quarks of all flavagsthe so calleaginglet
quark distribution

Ny

P(5,0%) =Y [ayw(8.Q) + 308,07 (1.43)

=1
We symbolically denoted the dependence of the splittingtions F;; under the integral on the parton
momentum fractiong?/~ and the scal€)?. The above equation is an analogue of the renormaliza-
tion group equation for evolution of the running coupliag(Q?). Similarly to the renormalization
group equation, it allows to calculate the change of theopadtistribution functions with a scale, but
the absolute value at a given scale cannot be determinedwigipecifying initial conditions for the
evolution, which are not provided by the theory itself.

The problem in the analysis of both DIS and DDIS data is that parturbative QCD (pQCD) at
small distances (that means, at larg®) can be used. Within pQCD, one can study the evolution of
parton distributions, but the initial distributions at semelatively low scal&), > Agcp are of non-
perturbative origin and, at present, have to be determigditting to the data. A factorization theorem
underlies the analysis. It enables the amplitude to befedtimto two parts, one purely in the pQCD
domain, and the other parametrized by a phenomenologisatann terms of Feynman diagrams, the
factorization is based on the resummation of the serieseofrtbist important higher-order corrections
where the small couplings is enhanced by a large logartithim(Q?/Q3). That is, it is possible to
divide such diagrams, at a “logarithmic loop or cell”, intpart depending only on large scales from
a part containing the low scale.

1.5.1 From partonic pomeron to diffractive parton distribu tions

Having introduced the pomeron parton distributions, tHé&aditive structure functions can also be
written in the terms of the diffractive parton distribut®im the proton, for the quarks

1 —2a
Foler,t,8.Q%) = 5 lor ()P e 4,p(8,Q%), (1.44)

and for the gluons

FDwp.t.8.Q%) = —5lapO)P 22" g7 (8,Q), (1.45)

162

Now, in the leading logarithmic (i)?) approximation the diffractive structure function is giMey

F2D(4)(.Z'P7t 67 Ze ﬁxP |: z/p vat ﬁ7Q2) +fl/p(xp7t ﬁ7Q )] : (146)

At the next-to-leading order the above formula acquiresra tontaining diffractive gluon distribution

]—“g/p The particular form of the diffractive parton distributig i.e. that the(xp,t) dependence is

factorized from the 3, Q) dependenceg.g.

is only an assumption reflecting Regge factorization. Téatsdrization allows to introduce the model
of DDIS with the pomeron as a quasi-real particle with padatructure.

In general, the diffractive parton distributions are olbgewhich are firmly rooted in perturbative
QCD. They are conditional probabilities describing diffiree process with a hard scale. For example,
the diffractive parton distribution’-‘ﬁp(xﬂ:,t,ﬁ, Q?) is the probability of finding, in a fast moving
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proton, a parton with flavarand the momentum fraction= z p - 3, under the additional requirement
that the proton remains intact while being scattered witlariant momentum transfeérand losing

a small fractionzp of its longitudinal momentum. A precise and consistent mheiteation of the
diffractive PDFs and their uncertainties is very importeoitmaking predictions of cross sections of
hard diffractive processes at the LHC.

It should be mentioned, however, that there is a strong #ieai obstacle to apply straightfor-
wardly the diffractive parton distributions to hadronimpesses. Soft gluonic interactions between
the colliding partons in the incoming hadrons lead to cbations which spoil a simple description
with partonic distributions by adding additional nonpaitoterms. An effective way to describe such
soft processes is to consider a gap survival factor whichnistmes cross sections computed with the
diffractive parton distributions.

1.5.2 Soft vs hard pomeron

The soft pomeron is the vacuum guantum number exchangeilnddn the Regge theory by the
rightmost pole of the elastic scattering amplitudies, ¢) in the complex momentum planei.e. after
performing the Mellin transform with respect tothe amplitude behaves in the following way close
to the pomeron pole gt= ap(t),

A(j,t) ~ (1.48)

j—ap(t)’
whereap(t) is given by Eq. (1.20). From the optical theorem, the asytiptzehavior of the total
cross section fog — oo is determined by the pomeron intercegt(0) = 1.08:

gtot  gar(0)=1 _ 0.08 (1.49)

Such a power-like behavior, however, ultimately violates Eroissart bound (1.21), which takes into
account unitarity of the scattering amplitude. Thus, tHegameron behavior contradicts unitarity for
asymptotically large energies, and the agreement of pilgsmeasured total cross sections with the
soft pomeron behavior is only a reflection of a preasympteiigon ofs in the experiments preformed
up till now. The diffractive data from the Tevatron, howe\ae more sensitive to unitarity corrections
(which take into account cuts in addition to a simple pomegole) than the data on’’. This is
why the diffractive data are so important. More details da &spect will be given in the forthcoming
section on diffraction in hadron-hadron collisions.

The observation of diffractive processes with hard scaleERA (with largeQ? or heavy vector
meson mass\{y) or at the Tevatron (diffractively produced jets with laryansverse momentum
kr) invoke QCD to describe these processes in terms of the QQ@emmm. The simplest picture
of the vacuum quantum number exchange which dominates ihigjteenergy limit is provided by
two exchanged gluons in the color singlet state. Virtuatexiions lead to the BFKL pomeron in the
form of an infinite gluon ladder with non-local vertices anthgs being reggeized gluons. Formally,
the BFKL pomeron emerges as a solution to the BFKL equatiome §cattering amplitude of two
colorless objects with the BFKL pomeron exchanged givesveepike behavior ors, stronger than
for the soft pomeron. In the leading logarithmicsmapproximationnp(0) = 1 + 4N a4 In 2/, and

glot  gap(0)-1 o 503, (1.50)

for N.ags/m = 0.2 and N. = 3 quark colors. The next-to-leading order corrections toBf&L
equation reduce the power &2 — 0.3, nevertheless, strong unitarity corrections are necgsedre

in agreement with the Froissart bound. Such correctionsegorid the gluon ladder picture and need
multiple gluon exchanges inchannel.
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Figure 1.14: Partonic structure of the pomeron vs. colooldifiuctuations of the photon.

Thus, crucial difference betwesnft phenomenological pomeron and tierd, BFKL pomeron is
the intercept, much bigger in the latter case . One can ask Wwlether the soft pomeron is intrinsically
distinct from the hard pomeron. That, however, would notiaty be a well posed questions. The
answer to that, in fact, depends on the definition of the pome©n the one hand, in perturbative
QCD, pomeron is synonymous withladder of interacting reggeized gluan®©n the other hand, in
phenomenological approaches, such as those from whiclthetercept comes out, the pomeron is
not associated to a physical object, but is generically istded as something that must lie behind a
successful, and amazingly simple, parametrization of bsgges of data. Quite obviously, comparing
these two concepts of pomeron and understanding their tmaelagionships, is just impossible. The
missing information is relevant to the physical picture emging the soft pomeron. This is clearly
determined by the non-perturbative structure of the pomalmut which very little is known.

DDIS is particularly sensitive to the pomeron energy betrasince the diffractive scattering am-
plitudes are squared in the diffractive cross sections.sThuaitarization effects play more important
role than for the total cross section which is proportiooahe imaginary part of the scattering ampli-
tudes. This observation was a basis of successful deseripfithe first diffractive data from HERA
in which the diffractive system was formed by the quark-gurirk ¢g) and quark-antiquark-gluon
(¢q9) systems which could be viewed as dipoles in the space ofié¢famansformed transverse mo-
menta [24]. The pomeron was modelled by the two-gluon exghavhich was subsequently substi-
tuted (unitarized) by the effective dipole—proton crosgisa [25].

1.5.3 Is pomeron a particle?

One may find it tempting to interpret diffractivg’p processes as the scattering a virtual photon on a
pomeron which has been radiated off the initial proton. Rdfive DIS would then probe the distribu-
tion of partons in gomeron target This is what Ingelman and Schlein proposed in their mod#]. [2
Nevertheless, this idea is contrary to an analysis in QCB ésg. [26]). As it was discussed in the pre-
vious section, the high-energy scattering in QCD is doneithdity the exchange of two gluons, whose
interaction is described by ladder diagrams. By analyzivesé diagrams in terms of time-ordered
perturbation theory, the dominant space-time orderingpénhigh-energy limit may be obtained. The
result is determined by the reference frame. In the Breih&dnatural for a parton-model interpre-
tation), the photon doesot scatter off a parton in a pre-existing two-gluon system. uatly, some

of the interactions which build up in the gluon ladder in poomeexchange take place long after the
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Figure 1.15: Partonic structure of the pomeron vs. colooldifluctuations of the photon.

absorption of the virtual photon. The picture in the Bredinfie is, however, compatible with the inter-
pretation of diffractive parton distributions, namely fr@bability to find a parton under the condition
that subsequent interactions, will produce a fast protaherfinal state.

Since the pomeron is not a particle, its parton distribuida not satisfy energy-momentum con-
servation. Moreover, the pomeron flux is ambiguously defifugdto the normalization) and so are
the parton distributions of the pomeron. What can be adopsed point of view mentioned in the
previous section, the color dipole approach. From thisgaative, probing the quark and antiquark
distributions of the pomeron corresponds to considerimgthexcitations of the virtual photon and
their interaction with the proton via two-gluon (or the BFkKddder) exchange. The gluonic contribu-
tion to the pomeron structure function is reinterpreteceimis ofqgg fluctuations of the photon. The
correspondence between the infinite-momentum frame pictidiffractive DIS (wherein the inter-
nal structure of the pomeron is resolved) and the protonfraste description (wherein the hadronic
fluctuations of the photon are involved) is sketched in Fig4land Fig. 1.15. One ought to note,
nevertheless, that the QCD formulas which define the diffragarton distributions fail to take into
account higher-twist contributions. These instead emigrgiee colour dipole approach and turn out
to be non-negligible for large values 6f

1.6 Dipole approach

The colour dipole formalism has been developed as an aliegrta the Feynman diagram approach
to smallx physics. It is formulated in impact parameter space and @as bhown to reproduce Feyn-
man diagram results for inclusive processes in the Regge s embodied in the BFKL equation.
With regard to gluon radiation in diffraction it can be aggliin the triple Regge limiti.e. for large
diffractive masses only}/2 > Q2.

In QCD the pomeron in its simplest form is represented by tlworgs since the minimum number
of gluons to form a colourless state is two. It is not exclutted more than two gluons are exchanged
and it is important that whenever we talk about two-gluonhexge to remember, there is the possi-
bility to extend the formalism to multigluon exchange. Orighmh object that the whole process is soft
and perturbation theory not applicable. Saturation efféat high parton densities, however, screen
soft contributions, so that a fairly large fraction of thess section is hard and therefore eligible for a
perturbative treatment.

The intuitive picture behind the dipole picture of DDIS i tlollowing. In the target (proton) rest
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Figure 1.16: The three components of the diffractive stmgtunction as a function gf.

frame the virtual photon dissociates intgi@pair far upstream the proton target. Thgpair may
radiate a gluon, forming agg state, and the whole parton configuration scatters quasiiedlly off
the proton via a colorless gluon exchange (two gluons in ith@lest case). The timescale on which
the fluctuation occurs is proportional ig(zm,) wherem,, is the proton mass. At very small the
fluctuation is long lived whereas the scattering is a sudtient smpact of theyg-pair or theggg-final
state, which eventually form a diffractive state, on thgeéar The impact changes the virtual into a real
state but it does not change the position in impact parareptare which can be viewed as being frozen
during the scattering. The significance of ffigandqqg diffractive states produced from transverse or
longitudinaly polarized virtual photons in DIS is shown iigFL.16. Hence

FP = F + Fj7 + FJY (1.51)
and each component has its own dominance region for thadliffe structure functiod’:
e thegg component from transverse photo:ﬂ#ﬁ, dominates fop3 ~ 1/2 whenM? ~ Q?
e the gg component from logintudinal photongga, dominates fo3 — 1 whenM? < Q?
e theggg component from transverse photoﬂ#ﬁg dominates fo3 — 0 whenM? > Q2.

It should be noticed that thé‘L‘ﬁ component is especially important for largesince it goes to a
constant value ag — 1 [27]. Formally, it is a twist-four contribution to the lortgdinal structure
function FP which, however, appears to be important numerically. Thisttfour contribution goes
beyond the leading twist-two approximation with the difiime parton distributions, however, due to
its numerical importance it cannot be neglected in any amalyf DDIS. In Section 2 we will present
such an analysis with higher twist.

1.7 Diffractive dissociation in hadron-hadron collisions

In hadron-hadron scattering, a substantial fraction oftti@ cross section is due to diffractive reac-
tions. Diffractive dissociation is a special case of intlagroduction in a quasi two-body process,
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Figure 1.17: Elastic scattering, single and double diffvacdissociation, and double pomeron ex-
change in the collision of two hadronsandb. The two groups of final state hadrons are separated by
a large rapidity gap (LRG). The zigzag lines denote the exgbaf a pomeroniP) in thet-channel.

wherein all quantum numbers (charge, isospin, strangeiegsof the final states are the same as for
initial hadrons. Spin and parity can, of course, be diffel@nce orbital angular momentum can be
transferred in the collision.

In Fig. 1.17, the different types of diffractive processeshie collision of two hadrons are shown.
In elastic scatteringboth projectiles emerge intact in the final state, whes#agle (SD) or double
diffractive dissociatior{DD) corresponds to one or both of them being scattered ifdwanass state.
The latter has the same quantum numbers as the initial hasidmay be a resonance or continuum
state [16]. In all cases, the energy of the outgoing hadwhwr the statesX, Y is approximately
equal to that of the incoming beam patrticles, to within a fescpnt. The two (groups of) final-state
particles are well separated in phase space and, in paritave a large gap in rapidity between them.
The scheme of inclusivdouble pomeron exchangBPE) is also shown in Fig. 1.17.

Diffractive dissociation, therefore, is closely connelctdth elastic scattering, as it may be visual-
ized by the quasi two-body reaction: feingle diffractiona + b — b’ + X. Double diffraction occurs
when both incoming particles andb are excited to systems with the same initial quantum numbers
a+b — X +Y. Whenever the basic conditions for single or double diffoacare satisfied, the
differential cross sections exhibit a sharp forward peak.

Fig. 1.18 taken from [29], collects the existing measuretehthe single diffractive cross section,
osp, Which does not continue to increase with energy followingje-Regge behavior (which would
eventually violate unitarity). The observed flattening feé integrated single-diffraction cross section
has been attributed by Goulianos [29] to the saturation@pttmeron flux factofp(zp, t). In other
terms, it is suggested thdip(xp,t) integrated over: and t should not exceed unity. Therefore,
above some energy valug’§ = 22 GeV), fp(xp,t) is renormalized, and this gives the solid curve
in Fig. 1.18. If one reinterprets the pomeron flux as rapigitgbability (recall that the rapidity gap
Ay = In(1/xp)), renormalizing the pomeron flux is equivalent to demandivay the integrated gap
probability be always smaller than 1. The integrated douliffeactive cross sectiompp seems to
scale withy/s in a similar way [30].

1.8 Hard diffraction at the Tevatron

The first suggestion of hard diffractive events in hadrodrba collisions appeared in a paper by
Ingelman and Schlein [21] in 1985. They presented a modelgbf-fy- jet production via pomeron
exchange, responsible for diffraction. In this way, a magfgpomeron with partonic structure which
gives rise to two jets was proposed.
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Figure 1.18: The total single diffractive cross sectionsus,/s compared with the predictions of the
renormalized pomeron flux model of Goulianos [28].

Hard diffraction program in hadron-hadron scattering heenbpursued by the UA8 Collaboration
at the CERN SPS Collider [31], and by the CDF and DO Collalmmatat the Tevatron [2,32]. The
general situation is illustrated in Fig. 1.17. Dijets canobserved in single and double diffraction or
being centrally produced via double pomeron exchange.

1.8.1 Single diffraction

The signature of hard single diffraction(SD) at the Tevatotwo jets produced on the same side and
either a forward rapidity gap along the direction of one @fithitial particles. From a phenomenologi-
cal point of view, the single dissociation procggs— pX is described by assuming that a pomeron is
emitted by the incident antiproton and undergoes a hartesitag with the proton. This is an ideal re-
action to study the partonic content of the pomeron, thétdg tdependence of the diffractive structure
functions [13]

1

TPmax — LPPmin

D __
Fyj =

/I]Pmaz dxp fP(fUP)ﬁ{gP(ﬁ)+g Z {qf/lp(ﬁ) +§f/1p(ﬁ)] } (152
T f

Pmin

As we will see in Chapter 5, the substitution of the pomerorigpadistributions, determined from
the diffractive HERA data, overshoots the experimentaliltesby a factor of 10. This questions
universality of the diffractive parton distributions, véting form the QCD collinear factorization, and
calls for a modification which takes into account the gap isahfactor.

1.8.2 Double diffraction

Rapidity gaps between jets were proposed by Dokshitzerz&baod Troyan [33] and Bjorken [34] as
a signature of color-singlet exchange. Events of this typesedominantly of diffractive nature, since
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Figure 1.19: Diffractively produced dijets in single, déeiliffraction and in double pomeron ex-
change.

Gap

the contribution from electroweak processes, which woild g similar configuration is small.

The CDF and DO experiments have collected dijet data wittrakrapidity gaps [2,32] and found
the diffractive to non diffractive production ratio to beaalh 1% at energys = 1.8 GeV, that is
10 times smaller than the diffractive rate measured at HERA.décrease of the double diffractive
contribution with increasing energy can be explained bsoohiicting the concept of the gap survival
factor.

1.8.3 Double pomeron exchange (DPE)

The first observation of dijet production via double pomeexchange (DPE) inp collisions was
reported by the CDF Collaboration [35]. The events are chiaraed by a leading antiproton, two jets
in the central pseudorapidity region with transverse gnétg > 7 GeV and a large rapidity gap on
the outgoing proton side. The ratio of the DPE to SD rdtg$” was determined as a function of the
proton Bjorken variablerz. In leading order QCDREL? is equal to the ratio of the diffractive to
non-diffractive color weighted structure functions of ghreton. Thus assuming collinear factorization
one should have:

REHP = R, (1.53)
However, from CDF data this equality is not fulfilled since:
R JREED ~0.2. (1.54)

1.9 Gap survival factor

The survival probability of a rapidity gap in hard difframmi, S?, is defined as the fraction of events for
which the soft interactions between the quark spectatatseirolliding hadrons do not fill the gap.
The survival probability is easily defined in the eikonal rabid the impact parameter space. Letas
assume thaf (s, t) denote the elastiz — 2 scattering amplitude, andand¢ be standard Mandelstam
variables. Its normalization is defined such that the elastd total cross sections are defined as

Y — 25,1 (1.55)
oot = 4mlm f(s,0), (1.56)

The scattering amplitude Fourier transformed into the ichparameter space is given by
a(s,b) = % /d2qeiq'bf(s,t), (1.57)

where q is the transverse momentum of the scattered particles and-q2. It is easy to derive that
in theb—space:

7= [ @blals b (1.58)
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and
Otot = 2/d2b1m a(s,b). (1.59)

The condition ofs—channel unitarity implies the following relation
2Im a(s, b) = [a(s,b)]* + Gin(s,b), (1.60)

whereG,,(s,b) is related to inelastic processes since from Egs. (1.58)h&@) we obtain for the
inelastic cross section,,, = oot — Tel,

Oin = / d?b G (s,b). (1.61)
The s—channel unitarity relation (1.60) also implies that
0 < Gin(s,b) < 1. (1.62)

s-channel unitarity is most easily enforced in the eikonglrapch. Assuming that(s, b) is purely
imaginary, we can write
a(s,b) = i(1 — e b)), (1.63)

where the eikonal)(s, b), called opacity, is a real function. From Eq. (1.60) we campote
Gin(s,b) =1 — e 29250 (1.64)

thus the quantity
P(s,b) = e 29%(sb) (1.65)

may be interpreted as the probability that no inelastioautigon takes place at impact parameter b.
We follow Bjorken [34] and define the gap survival probalibis

g2 _ [ d®b |au(s,b)|> P(s,b)
[ d®blag(s,b))2

(1.66)

whereay (s,b) denotes the amplitude associated with hard collisions2fxdb) is the probability
that no other interaction takes place in the rapidity irdeof interest. Some preliminary calculations
of 52 have been presented by Bjorken in Ref. [34]

S2~0.05—-0.10 at /s=18TeV. (1.67)

Similar values are found by Gotsman, Levin and Maor [36] weeduvarious phenomenological mod-
els. It is reasonable to expect tht varies with energy , in particular that it decreases witheasing
\/s, since the interactions between the particle remnantstbestronger and tend to destroy the gap.
The comprehensive analysis of the gap survival energy digmee can be found in [37].



Chapter 2

Diffractive parton distributions from the
analysis with higher twist

As it was mentioned in Chapter 1, a very interesting examptaainterplay between hard and soft
aspects of QCD-interactions is provided by the diffractiéep inelastic scattering at HERA. On the
one hand, the virtuality of the photon proli# is hard (much bigger thaAéCD), whilst on the
other hand, the scattered proton remains intact, and onfgadl $raction of the initial longitudinal
momentum is lost. Its transverse momentum with respecta@lioton-proton collision axis is small.
The ratio of the diffractive and inclusive DIS cross secsids) to a good approximation, a constant as
a function of energy of the gamma-proton system or as a fomatf the photon virtuality. The latter
fact reflects the logarithmic dependence of the DDIS strediunctions orQ? in the Bjorken limit.

The diffractive interactions can be viewed as a colourl@asuum quantum number exchange
between the diffractive system and the proton, in #fuhannel picture. In the old days of Regge
phenomenology, such mechanisnof interactions, which dominates in the high energy limigsw
termed gpomeron see Section 1.4. With the advent of QCD, a new way of undeaig the pomeron
by modelling it with the help of gluon exchanges, projectedoothe colour singlet state, became
possible. In the lowest approximation, the pomeron is adWwon exchange, independent of energy.
If radiative corrections of this process in the high eneigyitl(typical of diffraction) are studied, it is
necessary to take into account an infinite set of diagramss I€ads to the famous BFKL pomeron
[38—41], introduced in Section 1.5.2. One of its featuresa strong dependence on energy. This
dependence ultimately violates unitarity, which means &xahanges with more gluons need to be
considered. A systematic program which sums up exchangbsgivion number changing vertices
was formulated in [42, 43] and developed in [44—47]. Anotired more intuitive formulation (Colour
Glass Condensate [48,49], see also [50,51] for a reviewgssdbon the idea of parton saturation [52]
in which DDIS is observed on a dense gluonic system in theoproln every one of the approaches
discussed here, unitarization is supposed to change thegastjyc energy behavior of the cross sections
involving the pomeron from power-like to logarithmic. DDéi&splays an especially strong sensitivity
to the pomeron energy behavior due to the fact that the difftla scattering amplitudes are squared in
the diffractive cross sections.

Therefore, unitarization effects are more important héantin case of the total cross section
which is proportional to the imaginary part of the scattgramplitudes. As a consequence of this
observation, the basis of successful description of thediffsactive data from HERA was formed: in
this way, the diffractive system was formed by first Fock comgnts of the light-cone wave function
of the virtual photon, namely quark-antiquatkg) and quark-antiquark-gluomgg) systems which can
be viewed as dipoles in the space of Fourier transformedvisase momenta [24]. The pomeron was
modelled by the two-gluon exchange, which was subsequeubgtituted (unitarized) by the effective

30
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dipole-proton cross section [25].

According to the alternative approach to DDIS, the diffraestructure functions are expressed in
terms of the diffractive parton distributions (DPD), evialy in Q2 with the DGLAP evolution equa-
tions [22,23,53]. Here, the diffractive structure funoadepend logarithmically of? in the Bjorken
limit, and that means that they provide the twist-2 desiipdf DDIS. The theoretical justification of
this approach can be found in the collinear factorizati@otbm, valid for hard diffractive scattering in
ep collisions [54-58]. Nevertheless, collinear factoriaatis ineffective in hadron-hadron scattering
due to non-factorizable soft interactions between théainftadrons [18, 59]. Thus, unlike inclusive
parton distributions, DPD are not universal objects. Thay anly be safely used for the description
of diffractive processes in thep DIS. The relation between the dipole approach withd¢fiend ggg
diffractive components and the DGLAP-based descriptior stadied in detail in [60]. In short, af-
ter extracting the twist-2 part, the dipole approach presiQ?-independent quark and gluon DPD.
Moreover, theggg component, which was computed, assuming strong orderitwgele@ transverse
momenta of the gluon and th@ pair, gives the first step in th@>-evolution of the gluon distribution.

In this sense, the two component dipole picture is extendethé twist-2 approach based on
the DGLAP-equations, taking into account more complicatifactive final state. In the DGLAP-
based analysis, performed so far, the diffractive partstridutions were determined through fits to
the diffractive HERA data [7]. This approach will now be fmlled by an important modification. We
included into our analysis twist-4 contribution, which @ taken into account in previous descriptions
of diffractive parton distributions.

The seemingly subleading twist-4 contribution, given by ¢ pair from longitudinally polarized
virtual photons(Lqq), is revealed. Formally, it is suppressed by a powet /@p? with respect to the
leading twist-2 transverse contribution. Neverthelgss pgerturbative QCD calculation shows that for
a small diffractive masa/2, whenj3 = Q%/(M? + Q?) — 1, the longitudinal component dominates
over the twist-2 one which vanishes in this limit. The effe€tthe Lqg component is particularly
important for the longitudinal diffractive structure fuion F7, which has been already determined
from the high luminosity run data at HERA. That is why, we giahat it is absolutely necessary to
consider the twist-4 contribution in the determinationhd tiffractive parton distributions through the
DGLAP fits.

The relevance of this issue for predictifitf’ is confirmed by the analysis presented here, which
makes it significantly different from the predictions basedthe pure DGLAP analysis. This is the
main goal of the study presented in this chapter.

We start from introducing the diffractive parton distrilauts in Section 2.1. Subsequently, we ex-
plain the main features of Ingelman-Schlein model and R&ggentribution, respectively, in Sections
2.2 and 2.3. In Sections 2.4 we describe the tree contritsitiovist—2, twist—2 charm, twist—4 and the
Reggeon contribution which we included in the descriptibithe diffractive structure functions. In
Section 2.5 and 2.6 we provide details of the preformed fitdE®RA data and show the results of the
diffractive parton distributions and diffractive strucdfunctions from fits with and without the twist-4
contribution. Predictions for the longitudinal diffragi structure function are presented in Section 2.8.
Finally, the conclusions are given in Section 2.9.

The results presented in Sections 2.5- 2.8 are based onigliabpublication [61].

2.1 Diffractive parton distribution formalism

Let us now come back to the diffractive parton distributidfis  from Section 1.5.1, which are now
introduced according to the collinear factorization fotanj2],

E (e, Q%ap.t) = Y /O " e F (€1 e 1) Caln /.G 1), (22)
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with a = ¢, ¢, g denoting a quark, antiquark (of different flavors) or gludstributions in the proton,
respectively. In the infinite momentum frame, the diffraetparton distributions describe the prob-
ability to find a parton with the fractios of the proton momentum, provided the proton stays intact
and loses only a small fractionp of its original momentumcC,, are the coefficient functions describ-
ing hard scattering of the virtual photon on a partorirhey are identical to the coefficient functions
known from inclusive DIS,

Calx/&, Q% /1) = €2 6(1 — /&) + O(as). (2.2)

Formula (2.1) is an analogue of the inclusive leading twéstadiption for inclusive DIS. The inclu-
sive structure functiorf is factorized in a similar way into computed in pQCD coefintiGunctions
and nonperturbative parton distributions. The sgdlés the factorization/renormalization scale. In the
next step we find the renormalization group equations (¢eoiLequations) for the diffractive parton
distribution [60]

d P dz
,U, d— fc{}p(faﬂ27xﬂ37 Z/ - ab /Z Oés )) -7:19[/)p(27M27xﬂ37t)7 (23)

whereP,; are the standard Altarelli-Parisi splitting functions éading or next-to-leading logarithmic
approximation. Since the scafeis arbitrary, we can choose = @ > Agcp. With this scale the
evolution equations are usually presented.

The integration in (2.1) and (2.3) is only done up to the fract:p of the proton momentum,
since the active parton cannot carry more than this fracifaonomentum. The proton remnants carry
the remaining fractioril — z ). If we refer the longitudinal momenta of the partonscipp instead
of the proton total momentum, the structure functions and parton distributions becammetfons of
B = x/xp or = ¢/xp. With this notation, we rewrite (2.1) and (2.3) in the folliog form:

FY(8,Q% wp.t) Z / df xpFo, (6 10% wp.t) Ca(B/B Q% /W% (2.4)

and
d
/LQ d—/ﬂ fgp(ﬂ,ﬂ2,$ﬂ3, = / — Lab ﬁ/Z Oés( 2)) flgp(za#2>xlpat)‘ (25)

Thus, we obtain a description similar to inclusive DIS butdified by the additional variablegp
and¢. Moreover, the Bjorken variable is replaced by its diffractive analogy® Eq. (1.8). Notice
thatz p andt play the role of parameters of the evolution equations ams dot affect the evolution.
According to the factorization theorem the evolution egpret (2.5) are applicable to all orders in
perturbation theory.

In the lowest order approximation for the coefficient fuong (2.2), we find for the diffractive
structure function

Fy (@ ap.t) = 37 € BapF,(5.Q%ap ), (26)

a=q,q

where the sum over the quark/antiquark flavors is performed.

The collinear factorization formula (2.4) holds to all orslen o for diffractive DIS [55]. However,
this is no longer true in hadron—hadron hard diffractivettecang [18, 59], where collinear factoriza-
tion fails due to final state soft interactions. Thus, uniikelusive scattering, the diffractive parton
distributions are no universal quantities. The can safelyiked, however, to describe hard diffrac-
tive processes involving leptons. can only be used in therigition of diffractive DIS. A systematic
approach to diffractive parton distributions, based orrkjaad gluon operators, is given in [54,56,63].
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Figure 2.1: Diffractive structure function in the Ingelm8chlein model. The spring-like lines repre-
sent the pomeron.

2.2 The Ingelman-Schlein model

Until now, we have not referred to the pomeron. In the Ingelf8ahlein (1S) model [21], diffraction
is described with the help of the concept of the soft pomexahange. In addition, it is assumed that
the pomeron has a hard structure. In DIS diffraction, thigcstire is resolved by the virtual photon,
as in the standard DIS processes. Following the results g&theory, the IS model is based on the
assumption oRegge factorizationIn the context of the diffractive parton distributions ieans that
the following factorization holds [54, 62, 63]

xlpf (/BaQQ TP, ) = f]P(w]P7t) qa/P(BaQQ)v (27)

The structure function (2.7 is schematically shown in Fid.. 2The “pomeron flux” (1.32) is now
parametrized as

_ Bp(t) 1-2ap()
f]p(.%'ﬂ:!,t) 3 o9 IP . (28)

Thus, the variableézp, t), related to the loosely scattered proton, are factorizeoh fthe variables
characterizing the diffractive syste(®, Q%). Bpp(t) is the Dirac electromagnetic form factor [20],
describing the pomeron coupling to the proton,

B,(t) = B%(0)e Brli, (2.9)

where B%,(0) = 54.4 GeV =2 [64] and Bp = 5.5 GeV 2 [7]. In the IS model the soft pomeron
trajectory (1.20) is used [65].

The functiong,, (3, Q?) describes the hard structure in DIS diffraction and is joreted as the
pomeron quark distribution. The pomeron parton distrimgiare determined as the parton distribu-
tions of real hadrons. Therefore, some functional form wéheral parameters is assumed at an initial
scale and then the parameters are found from a fit to data][Ws6@& the DGLAP evolution equations.

In summary, the diffractive structure function (2.6) in #8emodel becomes

Fy (@, Q% ap,t) = fplep,t Z €2 8 4a/p(53. Q). (2.10)

where the summation over quark/antiquark flavors is peréormThe@? evolution ofg, (B, Q?)
is given by the DGLAP equations (2.5) while thelependence in the pomeron quark distributions is
neglected.
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Figure 2.2: The reggeon-reggeon-pomeron contributiorifiadtive structure function.

2.3 Reggeon contributions

The exchange of subleading reggeons can account for theeRagmrization breaking of diffractive

structure function for large values afp > 0.01. Strictly speaking, we cannot call such processes
diffractive since diffraction is usually associated wittetleading pomeron exchange. However, for

simplicity we use the same terminology for the non-pomermhanges, including the isospin chang-
ing process with neutron instead of the proton in the finaest@he reggeon contribution is shown in
Fig. 2, which illustrates the following extension of the éhgan-Schlein model [67]

FyY(@,Q%zp,t) = frlep,t) S 2B fyr3,Q%) + > frlrp ) F(B,Q%)  (2.11)
a=i R

where the non-pomeron terms describe reggeon exchangssaliar(f,,w) and isovector(as, p),
with the trajectory

ar(t) =0.5475 + 1 GeV 2 - t (2.12)
in the reggeon flux
B2(t 9
futem,t) = 2D (o2 aly2en® (213)

wherengr(t) is a signature factor:

4 cos®[map(t)/2] for even signature reggeols, as)
et = (2.14)
4 sin’[rap(t)/2] for odd signature reggeorts, w) .
The functionBgr(t) describes the coupling of the reggeon to the proton. We assioat
Br(t) = Br(0) exp(t/2A%) (2.15)

with Ar = 0.65GeV, as known from the reggeon phenomenology of hadroniticees. Moreover,
the following relations between the reggeon-proton cogliare found

B3,(0) > B2(0) > B2, (0) ~ B3(0). (2.16)
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This result shows that the isovector regge@ns p) can safely be neglected in the presented analysis.
The functionFif*(3, Q?) is a reggeon structure function and is given by [68]

Fr(B) = Ap 7% (1 - )2, (2.17)

whereApr, is determined by the triple Regge vertBR [P (see Fig. 2.2). With the diffractive structure
function (2.11), the Regge factorization is obviously moKor large values of the variahigp.

2.4 DGLAP based analysis of DPD

In the QCD approach based on collinear factorization, tfiiadiive structure functions ind DIS,
Egs. (1.12) and (1.13), are decomposed into the leading ighdttwist contributions

FP(x,Q%ap.t) = B\ + B + L (2.18)

2.4.1 Twist—2 contribution

The twist—2 part is given in terms of the diffractive partdstdbutions through the standard collinear
factorization formula [54, 62, 64, 69]. In the next-to-leagllogarithmic approximation

FQD(th)(-%', QQ,xﬂD,t) = Sp+ ;_; {CQS ® SD + CQG X GD} (219)
P @t e t) = 2 {CRo 8P+ Cf 0 67) 2.20)

wherea; is the strong coupling constant axﬂf’LG are coefficients functions known from inclusive
DIS [70, 71]. The integral convolution is performed for tlagditudinal momentum fractior.g.

1
(C @ F)(3) = /5 d=C (8/2) F(2). (2.21)
Notice that in the leading order, when terms proportional tare neglected, the longitudinal structure
function £ = o,

After introducing a new notation, which we will be using fraraw on,

D_ D —D_ D D _ D
af =Fyp A =T 95 =Fgp (2.22)

for the quark, antiquark and gluon diffractive parton dligitions, respectively, the functiorts, and
G p are given by

Ny

SPB,@Q% zpt) =) €5 B{af (3, Q% zp,t) + 77 (8,Q% xp,t)} (2.23)
=1

G (3,@Q% zp.t) = Bg" (8, Q% zp.t) (2.24)

Note thats = =/zp plays the role of the Bjorken variable in DDIS. In the infinitmentum frame,
the DPD have an interpretation of conditional probabiitte find a parton in the proton with the
momentum fractior: = Gxp under the condition that the incoming proton stays intaginip a small
fraction z p of its momentum. A formal definition of the diffractive pamtalistributions based on the
quark and gluon twist-2 operators is given in [54, 56].
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The DPD are evolved itog(Q?) by the DGLAP evolution equations [72] for which the variable
(zp,t) are external parameters. In this analysis we assRegge factorizatioffior these variables:

0f (8,Q%,zp,t) = fr(ep,t) qpp(B,Q°)
9" (B, Q% xzp,t) = fr(zp,t) g7 (8,Q%). (2.25)

whereq;, p andg” are already introduced pomeron parton distributions. Tinetfon fp(zp,t) is
the pomeron flux (2.8) with the pomeron trajectory

ap(t) = ap(0) +ap-t. (2.26)

in which o/ = 0.06 GeV ~2 and the pomeron interceptp(0) is fitted to the data. The pomeron
quark distributions are flavor independent and are givendigglet quark distributioo” (3, Q2):

0505 Q) = Tyyw(5,Q°) = 53 ST(0.Q2) 2.27)
whereN is a number of active flavors.

The problem of Regge factorization is an issue which sho@ddsted experimentally. The
pomeron in this context is a model of diffractive interangowhich provides energy dependence
through thezp dependence of the pomeron flux. Its normalization is only efulonvention be-
cause the normalization of the pomeron distributigpsp andg? in Egs. (2.25) (at some scaig?)
is fitted to data.

2.4.2 Twist-2 charm contribution

We describe the charm quark diffractive production usinggth® formula for thece pair generation
from a gluon. These are formula analogous to the inclusige §&3] in which the diffractive gluon
distributiong” is substituted:

e as(u?) [1dz
O @ eet) = 9 2 [ 0 (3mE @) o Citwt) @29

wherea = 1 + 4m?/Q?, the factorization scalg? = 4m? and the charm mass,. = 1.4 GeV. The
coefficient functions read

Ca(z,r) = §{z* + (1 —2)* +42(1 — 32)r — 82%r?} In {12

+ ta{-1+82(1—2)—4z(1 — 2)r} (2.29)
Cr(z,r) = —42*rIn i ta +20z(1 — 2) (2.30)
—

with a = /1 — 4rz/(1 — z). Thece pair can be produced if invariant mass of the diffractivetesys
fulfills the condition .
M? = @Q? <B — 1> > 4m?. (2.31)

2.4.3 Twist—4 contribution

In the presented description, the leading twist structunetion vanishes whefi — 1, i.e. for small
diffractive masses)/? < Q2. However, as it has already been mentioned in Section 1 stfawand
in the dipole approach that fgt — 1 the twist—4 contribution dominates over the vanishing thwis
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Diffractive structure function
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Figure 2.3: Three contributions tB)’ from: ¢g and qgg from transverse (T) and longitudinal (L)
photons [24] forxp = 0.003. The twist—4 contribution’qq is indicated by the yellow band. Old
ZEUS data points are shown.

one [24,27,74]. Thus it has to be considered in any analygisthe diffractive parton distributions.
The explicit form of the twist—4 contribution is given by

Q%2(1-8)

I 2 2
Fot— 3ol 3 2573/ T Y pgae (232)
0

~ 16nzp - “Ta-p)p TN
1-5Q?
where
ook, xp) = k2/0 drrK()( %kr) Jo(kr)o(zp,T) (2.33)

and K, and.J, are Bessel functions [60]. Strictly speaking, Eq. (2.3)tams all inverse powers of
Q? but the part proportional tb/Q? (called twist—4) dominates. The functioriz p, ) in Eq. (2.33)
is called the dipole-proton cross section and describettbeaction of the;g and ggg dipoles with
the proton. Following [25] we choose

d(xp,r) = 0p{l —exp (—rQQz(mlp)/él)} (2.34)

whereQ?(zp) = (zp/x9) "> GeV? is a saturation scale which provides the energy dependence o
the twist—4 contribution. The parameters = 29 mb, 2o = 4 - 107° and A = 0.28 are taken
from [25] (Fit 2 with charm). This form of the dipole cross sen provides successful description
of the first HERA data on both inclusive and diffractive sture functions [24, 25]. We checked that
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a very similar description ong was found in a recent analysis [75] based on the recent ctdes g
condensate parametrization of the dipole scattering &naigli[76].

From more theoretical point of view the saturated form ofdigmole cross section unitarizes the
BFKL pomeron, and gives a prediction for thg (energy) dependence of the DDIS. This aspect of the
presented description is subjected to the modelling, hewekie3 (diffractive mass) dependence is
a genuine prediction of perturbative QCD calculations pliears that the leading @2 components,
gq andqgg from transverse photons, vanishat= 1. This is not the case for thgy production from
longitudinal photons which is formally suppressedily)?. Thus, the particulas-dependence makes
theFqu contribution dominant fop — 1 see Fig. 2.3. More details on the dipole approach to DDIS
will be presented in Section 3. It is also important to realizat the expectedp-dependence for of
the twist—4 contribution is given by

B 4
ng ~ Qs(xﬂ:’) ~ x}172)\’ (235)

P
which clearly violates the universality of the effectivenperon intercept, assumed in the Ingelman-
Schlein model.

2.4.4 Reggeon contribution

The diffractive data from H1 Collaboration for higher vadusf x p hints towards a contribution which
decreases with energy. This effect can be described byoaggehanges in addition to the rising with
energy pomeron exchange. Following [67, 68], we considerdibminant isoscalatf,,w) reggeon
exchanges which lead to the following contribution/g’:

Y (2,Q% ap,t) = Y frlzp,t) Fr(5,Q%) . (2.36)
R

This contribution breaks Regge factorization of the ddfiae structure function, however, its presence
is necessary farp > 0.01[7,8,77,78]. The reggeon flukz is given formula (2.13) with the reggeon
trajectory (2.12. From the Regge phenomenology of hadnadctions the couplings of the reggeon
to the proton are given by [68]:

B3,(0) = 194GeV 2, B2(0) = 52GeV 2. (2.37)
The reggeon structure functidiz (3, Q?) is given by [68]

Fr(B) = Ap 87" (1 - 8)?, (2.38)

where the normalizatior ; is a fitted parameter. Thus, in the first approximation, wdawtdghe?
dependence of the reggeon contribution.

2.5 Fitdetalls

2.5.1 Data sets

In our analysis we use diffractive data from the H1[7,77] Z&dUS [8,78] Collaborations. In Table 2.1
we show their kinematic limits in which they have been meaduiThe minimal value value ¢f| is
given by

2

x
[tmin| ~ 7 _H;IP m., (2.39)
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| Collab. || No. points| Data | [t]-range | Q*range | pB-range |
HI [77] 72 LP 0.08, 0.5] 2,50] 0.02,0.7]
ZEUS[78] 80 LP 0.075,0.35] | [2,100] | [0.007,0.48]
HI [7] 461 | My <1.6 | [ltminl.1] | [3.5,1600] | [0.01,0.9]
ZEUS [8] 198 My <23 | [[tmin|,00] | [2.2,80] |[0.003,0.975]

Table 2.1: Kinematic regions of diffractive data from HERA means leading proton data amf,
is invariant mass of a dissociated proton. Dimensionfudlrgities are in units of GeV'.

wherem,, is the proton mass. The leading proton data from H1, measaréte range given in
Table 2.1, were corrected by the H1 Collaboration to theeahg,,| < [t| < 1 GeV2.
The ZEUS data are given for the diffractive structure fLm'm:'rFQD , thus we use

FP =R+ iPW 4 FP, (2.40)
FP = PP 4 Fp (2.41)

The longitudinal twist-4 contribution is present on thes.hof Eq. (2.40) sincé’” is the sum of the
contributions from the transverse and longitudinal pakedivirtual photon. The H1 data are presented

for the reduced cross section )

D D Yy D A
(9 — F - 7F . 2 2

Thus we substitute relations (2.40) and (2.41) in there @ed u
2

D D(tw?2) D(R) y D(tw?2) 20-y) .p
={F F -— 7 F — 7 _F&_. 2.4
o {2 T L+ (1-y?2F }+1+(1—y)2 b 249

The expression in the curly brackets is the twist—2 contidibuwhile the last term is the twist—4 one.
Notice that the difference betweé#f’ ando? is most important foy — 1.

2.5.2 Fit parameters

We fit the diffractive parton distributions at the initialade Q3 = 1.5 GeV? assuming the Regge
factorized form (2.25) with the following pomeron partomstributions [7]:

BEF(B) = Ay P (1 —p)% (2.44)
Bg"(B) = Ay B8P (1—B). (2.45)

where the six indicated parameters are fitted to data. Weiawlally multiplied both distributions
by a factorexp{—a/(1 — 3)} with a = 0.01 to secure that their vanishing fgt = 1. This factor
is only important in the case whefl, or C, becomes negative in the performed fits. We use the
next-to-leading order DGLAP evolution equations withcp = 407 MeV for Ny = 3 flavors [79].

The pomeron flux in Eq. (2.25) is integrated oven the limits given in Table 2.1, which leads to
the form

~ BBO) Bt o Bltmee| | 1200 (0)

The shrinkage parameter in the above is given by

B = Bp +2dpIn(1/xp) (2.47)
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‘ No H Data H Fit H ap(0) ‘ Ar H Aq ‘ B, ‘ Cq H Ay ‘ By ‘ Cy H X*/N ‘
1 H1 (LP) tw-2 1.098 | 0.29 | 1.75| 1.49] 0.5* 2.09 | 0.67 | 0.80 | 0.48
2 ZEUS (LP) tw-2 1.145 | 1.05 2.13| 1.51| 0.5* || 10.0* | 1.03 | 2.26 0.40
3 H1 tw-2 1.117 | 049 1.33| 1.63| 0.34| 0.17 | -0.16| -1.10| 1.04
4 tw-(2+4) || 1.119 | 0.48| 1.62| 1.98| 0.59| 0.04 | -0.56| -1.68| 1.17
5 ZEUS tw-2 1.093 | 0.0* || 1.68| 1.01| 0.5* 0.49 | -0.03| -0.40| 1.35
6 tw-(2+4) || 1.092 | 0.0* || 1.20| 0.85| 0.57| 0.07 | -0.52| -1.48| 1.82

Table 2.2: Fit parameters from fits to H1 and ZEUS data withwitlibut twist—4 contribution, marked
by tw-(2+4) and tw-2, respectively. Parameters with anristeare kept constant in a fit andl =
Nemp - Nparam-

with Bp = 5.5GeV ~2 anda/p = 0.06 GeV ~2 [77].

In summary, we have eight fit parameters altogether: the pmmiaterceptap(0) in the Regge
trajectory (2.26), the reggeon normalizatidr in Eq. (2.38) and the six parameters in Egs. (2.44) and
(2.45)

2.6 Fitresults

The data sets from Table 2.1 were obtained in different kiteral regions, using different methods
of their analysis. Thus we decided to perform fits to each settgeparately. The fit parameter values
are shown in Table 2.2. The difference between them can hbusttd to the scale of uncertainty
of our analysis. In each case we preformed two fits: with arttiowit the twist—4 formula added to
the twist-2 contribution. The common normalization of tleengron flux enables us to compare the
diffractive parton distributions obtained from fits to @ifént data sets.

2.6.1 Leading proton data (LP)

We started from fits to the leading proton data. The fit paraméh this case are shown in the first
two rows of Table 2.2. We only show the twist-2 fit results sititey do not change in fits with the
twist—4 term. This is because the leading proton data conoes the region of3 values,3 < 0.7
(H1) andg < 0.5 (ZEUS), where the twist—4 contribution is small, see Fi§. 2n Fig. 2.4 we show
good fit quality of the fits for ZEUS (LP) data from the secondismf Table 2.2. The main difference
between the parameters from the fits to the LP data and the fitst& with a dissociated proton (DP)
(presented in the next four rows of Table 2.2) lies in the eaifithe parametef’, which controls the
gluon distribution at largeg. For the LP dataC;, > 0 and the gluon distribution is suppressed near
B =~ 1, while for the DP data’;, < 0 and the gluon distribution is strongly enhanced there. This
shows that the region gf > 0.7 is crucial and without it we lose important part of infornuatiabout
diffractive interactions. Thus, from now on we concentmatethe DP data analysis.

2.6.2 H1data

The parameters from fits to the H1 data with dissociate pr{@d#) are given in the third and fourth
rows (fits No. 3 and 4 in Table 2.2). The fit quality is practigdhe same for these fits, independent of
the twist—4 contribution. The presence of the reggeon tempraves fit quality by 30 units of? for
461 experimental points. A good quality of the fits is illagéd in Fig. 2.5 and in Fig. 2.6, which also
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Figure 2.4: Diffractive structure functiofy’ for ZEUS data (leading proton) as a functionagf.
Solid lines: twist-2 fit.

shows that the reduced cross sections (2.43) from the @v{stlid lines) and twist—(2+4) fits (dashed
lines) are very close to each other.

In Fig. 2.7 we show our results for the largest measured valye = 0.9. The twist—4 contri-
bution, shown as the dotted lines, is already very imporitanhis region. We see that taking into
account experimental errors, both twist—2 (solid) andttwis+4) (dashed) fit curves describe data rea-
sonable well. The twist-(2+4) curves, however, have a stedppendence anp (energy) than in the
pure twist—2 analysis. This observation is by far more pumoed in the analysis of the ZEUS data
performed for the structure function.

The diffractive parton distributions from our fits are shoimnFig. 2.8 in terms of the pomeron
parton distributions3X (3, Q%) and Bgp(5,Q?). Being independent of the pomeron flux, such a
presentation allows for a direct comparison of the resutimffits to different data sets. We see that
the singlet quark distributions are quite similar while ¢ghgon distributions are different. In the twist—
(2+4) fit the gluon distribution is peaked stronger ngasc 1. This somewhat surprising result can
be understood by looking at the logarithmic slopefgt for fixed values of3. From the LO DGLAP
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Figure 2.5: Reduced cross secti@ﬁ(g) for H1 data as a function of p. Solid lines: twist—2 fit,
dashed lines: twist—(2+4) fit.
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Figure 2.6: Reduced cross sectiﬁﬁ(g) for H1 data as a function gf. Solid lines: twist-2 fit, dashed
lines: twist—(2+4) fit.
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H1 DATA (B=0.9)

ool Q=35GeV’ || - Q%= 5 GeV?

0.01 | solid: tw-2fit E
dashed: tw-(2+4) fit r dotted: tw-4 contribution
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Figure 2.7: Reduced cross sectiﬁﬁ(g) for H1 data a3 = 0.9 for four values ofQ? against fit curves.

equations we have:

OFP X p
01n Q? 01n Q?

= qq®21p + qu®G1p — Elp/qu (248)

where the negative term sums virtual corrections. For lakgde measured slope is negative which
means that the virtual emission term must dominate overaghkemission ones. The addition of the
twist—4 contribution ta)”, proportional tol /Q?, contributes a negative value to the slope which has
to be compensated by a larger gluon distribution in the redie: 1 in order to describe the same data.

In Fig. 2.9 we present our most important result from the gmesxd analysis. On the left panel the
FP structure functions are shown from the twist—2 and twist4jits without significant difference
between. The twist—4 contribution is marked by the dotteddi However, the longitudinal structure
functions F'P from the two fits (right panel) are very different due to geproduction from longitu-
dinal photons. Let us emphasize that both sets of curvesfaene in the fits which well describe the
existing data, including the large region. Thus, an independemteasuremensf 2 in this region
would be an important test of the QCD mechanism of diffractio



Chapter 2. Diffractive parton distributions from the analy sis with higher twist 45
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Figure 2.8: Pomeron parton distributions: singbst (3, Q%) (left) and gluonBgp (3, Q?) (right)
from H1 data.
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Figure 2.9: Diffractive structure function§2D ®) (left) and F,f) ®) (right) from fits to H1 data for
zp = 1073. The band shows the effect of twist—4 on the predictionsF@Fg).
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2.7 Comparison with H1 DPD

We finish this section by showing the comparison of our difikee parton distributions with those
obtained by the H1 Collaboration [7], see Fig. 2.10. Theetadinalysis used data points wif}t >

8.5 GeV?, and this is why they stop showing values of DPDFfor 0.8. We have not imposed such

a restriction in our analysis, analyzing the highiegion. In general, we see good overall agreement
between the shown sets of DPDF in the common regiofi with additional details provided by our
analysis. In the Figure below variablds equalg.

DPDF - comparison with H1

@)

dotted - H1 DPDF

z2(z2)

> r solid - tw-2 fit
08 dashed - tw-(2+4) fit

Q%=90

Q=800

Figure 2.10: Diffractive parton distributions aj> = 0.003 for singlet (left) and gluon (right) DPD
from twist-2 and twist-(2+4) fits together with the DPDF fra fits (FIT A). Q2 is in unitsGeV?2.
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2.7.1 ZEUS data

The same fits were performed for the ZEUS data (fits No. 5 andTalite 2.2). This time the Regge
term (2.17) is not necessary since the fits give the reggeonalization Az =~ 0. In general, the fit
quality is worse than for the H1 data for both types of fits.

ZEUS DATA
gw 2 2 2 2
w [ B=0.86 Q=55GeV° || B=0.91 Q=14 GeV
x
1
10 F -
2
10 F -
L solid:  tw-2 fit
| dotted: tw-4 contribution L dashed: tw-(2+4) fit
Ll Ll Lt L Ll L
g
W [ B=0.95 Q%=27GeV? | I B=0.975 Q%= 55 GeV?
x
1
10 e e

10

Figure 2.11: Diffractive structure functioﬁzD(?’) as a functionz p for ZEUS data at large values 6f
against fit curves.

As shown in Figs. 2.12, 2.13 and 2.14 the biggest differemterden the twist—2 and twist—(2+4)
results occurs at largé values. This is shown in detail in Fig. 2.11. We see that tlesgmce of the
twist—4 term in the fit (dashed lines) improves the agreem#htthe data in this region. In particular,
a steep dependence Bf’ on z p is better reproduced by the twist—(2+4) fit then by the tvlstae
(solid lines). This dependence is to large extend driverhbytwist—4 contribution (dotted lines).

The behavior of the diffractive parton distributions andisture functions, shown in Figs. 2.15
and 2.16 respectively, is very similar to that found for thi dthta. The gluon distribution from the
twist—(2+4) fit is strongly peaked nedr~ 1 and the longitudinal structure functions is dominated by
the twist—4 contribution in the largé region.
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Figure 2.12: Diffractive structure functioﬁZD(?’) as a functionz p for ZEUS data. Solid lines: twist—2
fit, dashed lines: twist—(2+4) fit.
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Figure 2.13: Diffractive structure functioﬁZD ) as a functior? for ZEUS data. Solid lines: twist—2
fit, dashed lines: twist—(2+4) fit.



T 1= T
)
v
\
\
j\
\
)

50 2.7. Comparison with H1 DPD
ZEUS DATA
. X,=0.00015 x.,=0.0003 =0.0006 =0.0012 =0.0025 =0.005 =0.01 =0.02
& P i ) X X% Xk X X X -
5. 0.050 NI 0 = r r r r >
tn. /\%\/ﬁmm%m S
07\\\\‘\\\’\ 7\\\\‘\\\\ 7\\\\‘\\\\ 7\\\\‘\\\\ 7\\\\‘\\\\ 7\\\\‘\\\\ 7\\\\‘\\\\ 7\\\\‘\\\\ N
ool 1\ * - F ; ; ;
OHH\ \\\\\\\\ [T | I | I [ IR B RIS BRI
0.05 - : -

j
\
A
'
\
\
\
\

\\\\‘\\\\ 7\\\\‘\\\\ 7\\\\‘\\\\ 7\\\\‘\\\\ 7\\\\‘\\\\

[ ‘_L,JN —t_: \.\W

I B I B I BRI | N

r NE ™S &;*‘\4\

oo [0 Lo oo [0 I R

[ solid: tw-2 — I [

[ dashed: tw-2+ L ™~ [ N [ = [ =< N

L . L L N ([ |l * g | ¢ N

Jashdpt.tw4 | | [ | L | L | [ | L | N | O
0.5 1 0.5 1 0.5 1 0.5 0.5 1 0.5 1 0.5 1 0.5 1

B

Figure 2.14: Diffractive structure functioﬁzD(?’) as a functions for ZEUS data. Solid lines: twist-2
fit, dashed lines: twist—(2+4) fit.

=55



Chapter 2. Diffractive parton distributions from the analy sis with higher twist 51

DPD (ZEUS)
c
o
2
o 4r
||
o
3 | O
| v
| o
2F 1 NII
(o4
solid:  tw-2 fit
dashed: tw-(2+4) fit
0 | . .
4L
0.4 =
3 8
o
—
2 NII
0.2 o
1F S
0 0
a4l
0.4r s
O
[=1
N
NII
0.2 [ed

[N

I I I I
0.2 0.4 0.6 0.8

Figure 2.15: Pomeron parton distributiops (3, Q%) (left) and Bgp (3, @?) (right) from fits to
ZEUS data.
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Figure 2.16: Diffractive structure functiong ®) (left) ande @) (right) from fits to ZEUS data for
zp = 1073. The band shows the effect of twist—4 on the predictionsF@Fg).
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Figure 2.17: Predictions foFf(?’) for zp = 1073 andQ? = 10 GeV? from the twist—(2+4) fits to
the H1 (upper dashed line) and ZEUS (lower dashed line) dda solid lines show predictions from
pure twist-2 fits to the H1 (upper) and ZEUS (lower) data.

2.8 Prediction for the diffractive longitudinal structure function F

We summarize the effect of the twist—4 contribution in Fig.Z2showing the predictions for the diffrac-

tive longitudinal structure function which is supposed éadetermined from HERA data. Ignoring this

contribution, we find the two solid curves coming from theetwist—2 analysis of the H1 (upper) and
ZEUS (lower) data. With twist—4, the dashed curves are fothreupper curve from the H1 data and
the lower one from the ZEUS data analysis. There is a signifidifference between these predictions
in the region of larges. Our effect is confirmed by the Preliminary H1 data analy8@.[ It is shown

in Fig. 2.18.

2.9 Concluding remarks

In this chapter, diffractive parton distributions, ob&dnfrom fits to new diffractive data from the H1
and ZEUS Collaborations at HERA, are studied. In additiothéostandard twist-2 formula, the twist-
4 contribution, suppressed by an additional powet @)?, but dominating in the region of largs is
considered. This contribution stems from #igdiffractive production from longitudinally polarized
virtual photons. The effect of the twist-4 contribution dwe tdistributions of diffractive parton and the
diffractive structure functions was carefully examinetheTwist-4 contribution leads to the diffractive
gluon distribution, which is stronger peakedsat- 1 than the gluon distribution from the pure twist-2
fits. Regge contribution is also important in the analysespnted above. This contributions improves
fit quality through better:p shape. That's why the fit quality is better for H1 data, wheegdge
contributions is present, than for ZEUS data, where fits Bgggeon normalizatiodr ~ 0

The main result of the analysis discussed here is a new picdielevant to the diffractive longi-
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Figure 2.18: Comparison predictions fEf(?’) with the Preliminary H1 data from [80].

tudinal structure functiod’?. The twist-4 term inF'? makes this prediction significantly different in
the region of larges from that one which is found in the pure DGLAP analysis. Trst faeasurement
of F'P at HERA in this region of3 confirms the presented expectations, which are based oethe-p
bative QCD calculations. The obtained diffractive partgsirtbutions can also be used in the analysis
of diffractive processes at the LHC, particularly in theirastion of the background of the diffractive
Higgs production. See [81] for a recent discussion.



Chapter 3

Dipole model description of DDIS

The most promising QCD-based approach to DIS diffractidiorisiulated in terms of dipole models.
In these models, the diffractive (color singlet) state istegnatically built from parton components of
the light cone wave function of the virtual photon, see tHifang [18, 82] references. The lowest
order state is formed by a quark-antiqudtlg) pair while higher orders start fromgjg system in
which a gluon is radiated by a quark or antiquark in tigepair. We will focus on the first two
components since they can be viewed in the configuratiorespgquark or gluon color dipoles. Their
interaction with the proton is described by the quark or gldgpole scattering amplitud®(x, r, b).
Herer andb are two-dimensional vectors of transverse separationrapedt parameter, respectively,
andz is the Bjorken variable, which brings the energy dependefibe dipole scattering amplitude is
extracted from the DIS data on fully inclusive structuredtions, assuming some physically motivated
form with a few parameters [25,83-85]. Then, it can be us¢kdrdescription of diffractive processes
[24, 75, 86—89]. The most interesting form &f is motivated by main features of parton saturation
in dense partonic systems, such as the existence of a satusaale((z) [25]. From a formal
point of view, such an amplitude fulfills local unitarity adition in the impact parameter space. The
QCD-based evolution equation fdf is derived in [90-93].

The main goal in this chapter is to confront the dipole modéhwvo most popular parametriza-
tions of the dipole scattering amplitude GBW (Golec-Big¢aisthoffand) [25] and CGC (Color
Glass Condensate) [76] with the newest data from HERA on fffiractive structure functions, ob-
tained by the H1 [7] and ZEUS [66, 94] Collaborations.

The comparison we performed prompts us to discuss someegoithts of the dipole models,
mostly related to thegg component, and to connect them to the approach based onffitzetdie
parton distributions evolved with the Dokshitzer-Griblopatov-Altarelli-Parisi (DGLAP) equations.

In Section 3.1 we discuss various facts concerning the eippproach to DIS diffraction. Next,
in Section 3.2 we introduce the framework of the diffractiordipole model and derive formula for
diffractive structure function and itg7 andggg components. In Section 3.5 we perform a comparison
of the dipole model results on the total diffractive struetfunctions with the HERA data [7, 94].

The results presented in this chapter are based on thealrfmiblication [95].

3.1 Dipole approach to DIS diffraction

The leading twist diffractive parton distributions furarts (DPDF) allows for a good description of
data. Nevertheless, the basic experimental facttfdt /o'** ~ const as a function of energy’ is

not understood in this approach. The understanding is gedvin a different theoretical framework of
DIS diffraction, in which the virtual photon splits into aapk-antiquark pair that subsequently scatters
off the target proton through a further quantum fluctuatibhis picture is valid in the frame in which

54
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P P

Figure 3.1: The photon-proton interaction in the dipolarfatism at small.

the ¢q pair (dipole) carries most of the available rapidity~ In(1/z) of the system, and the light-
cone photon momentum amounts to the conditior> 0. The gluon radiation from the parent dipole
in the largeN,. limit, can be interpreted as a collection of dipoles of diffet transverse sizes which
interact with the proton. If the proton remains intact, tlifractive events with a large rapidity gap
are formed. If this is the case, the diffractive system i@ by the color dipoles and it is possible to
model the pomeron by color singlet gluon exchange takingepteetween the dipoles and the proton.

In the simplest case, where only the pareftdipoles form a diffractive system, the diffractive
cross section &t= 0 reads [96]:

dotff 1
= — [ &Prdz |0 2\(2 52 31
dt =0 167 rdz[W(r,2,Q%)|" 6%(z, ), (3.1)

where U7 is the well known light-cone wave function of the virtual pbie, while » is the dipole
transverse size andis a fraction of the photon momentugii carried by the quark. In this formula,
the dipole cross sectio (z,r) describes the pomeron interaction, which in the QCD-apgraa
modelled by the exchange of gluons. The simplest two-glu@ha@nge does not depend on energy
and has to be rejected. Since the DIS diffraction is a tygiigth energy (smalk) phenomenon, it is
tempting to apply the BFKL pomeron [39] with two reggeizemteracting gluons. Nevertheless, the
resulting energy dependence is too strong in this case., Thoie complicated gluon exchanges are
necessary.

Particularly important are those [97] which do not lead te tplation of the Froissart's unitary
bound for the totah*p cross sections?** < ¢In? W2. Applying theqq dipole picture too', the
following relation holds in the smali-limit [96]

olot = /dQsz]\Iﬂ(r,z,QQ)]Q g(x,r), (3.2

with the same dipole cross(z, ) as in (3.1). In order to fulfill the Froissart’s bound, theldaling
phenomenological form of the dipole cross section was megadn [97, 98].

d(xz,r) = o9 {1l — exp(—rQQg(x))} ) (3.3)

whereQ,(z) = Qo is a saturation scale which parameters (together widhwere found from
a fit to all smallz data ono?** ~ F,/Q?. After fitting the dipole cross section parameters to the
inclusive data orfy, it can be used then to predict diffractive cross sectiori3lf This strategy was
successfully applied in [24]. It is shown in Fig. 3.2.

Formula (3.3) captures essential features of parton setmr25]. Forr > 1/Q,(x) the dipole
cross section saturates to a constant valyavhich may be regarded as a unitarity bound leading to
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Figure 3.2: Dipole cross section in the GBW model (3.3) with= 23.03[mb], A\ = 0.288 and
zo = 3.04.10~%. These parameters are from the original fit of Golec-Bicamat Wisthoff [24].

the behavior respecting the Froissart bound. With deargasithe dipole cross section saturates for
smaller dipoles, thus with increasing energy the protookaa for the dipole probe of fixed transverse
size. Animportant aspect of form (3.3), in whiclandz are combined into one dimensionless variable
rQs(x), iIs geometric scaling. This a new scaling in inclusive DISmtllz [99]. Qualitatively, the
behavior (3.3) can be found from an effective theory of dgpesson systems with saturation — the
Color Glass Condensate, see [98] and reference therein.

The DIS diffraction is an ideal process to study parton sditom since it is especially sensitive to
the large dipole contribution; > 1/Q(x). Unlike inclusive DIS, the region below is suppressed by
an additional power of /Q2. The dipole cross section with saturation (3.3) leads intarabway to
the constant ratio (up to logarithms) [25]

Udz‘ff 1
ot " In(Q2/Q2(x))

(3.4)

3.2 Diffraction in dipole models

3.2.1 Diffractive structure functions

In dipole models otp diffractive deep inelastic scattering, the diffractiveusture functionFy is a
sum of components corresponding to different diffractimalfstates produced from two polarizations
of the virtual photon: transversd’) and longitudinal(L). In the lowest order the diffractive state
consists of a quark-antiquafkq) pair. The higher order takes gluons and more quark-antqoairs
into account.

In our approach we consider three componegiggairs from transverse and longitudinal photons
and aggg component from transverse photons, see Fig. 3.3. Thusrtietigte function takes the form

FP = F{7+ F{9 + Fi9. (3.5)

Below we provide analytic formulas for the three components
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Figure 3.3: Theyg andggg components of the diffractive structure function.

3.3 The transverse and longitudinalgg components

Thegq component from transverse photons is given by

1/2
(q9) _ 3Q* 2 2 21772 2 2 .2
el = easE, Zf:ef/dzz(l—z){[z + (1 —2)7 Qo1 + mf%} (3.6)
2f
A 1/2
(q9) _ 3Q 2 2.3 3 .2
zf

where we sum over quark flavoys The variable
zp = %(1—1/1—47@/1\42) (3.8)

Qr=2(1-2)Q*+m3. (3.9)

By is the so called diffractive slope and the functiangake the following form for = 0, 1

and

¢i = di(wp, 2, kyp, Q%) = /drrKi(afr) Ji(kr) 6 (zp,7), (3.10)
0
wherek; is transverse momentum of quafk
kf = 2(1—2)M* —m} (3.11)

and K; andJ; are Bessel functions.

The lower integration limits in Egs. (3.6) and (3.7) cormasg to the minimal value of at which
the diffractive final state with masg can be produced. From (3.11) we see that such@respond to
the quark transverse momentum = 0. For massless quarks;; = 0, the lower limitz; = 0. When
the threshold for the diffractiveg state production is approachet?> — 4mfc, we havez; — 1/2

and the components\’? — 0.
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3.3.1 Dipole cross section

The quantitys(xp,r) in Eg. (3.10) is a dipole cross section describing the diffve interaction
of the ¢g pair (dipole) with a proton. It is related to the correspaorddipole scattering amplitude
N(zp,rb) through the formula

G(zp,r) = 2/d2bN(ac1p,r, b). (3.12)

We are going to compare the presented dipole descriptidredfiffractive structure functions with
the newest HERA data. For this purpose, we consider two petrazations of the dipole cross section
which are based on the idea of parton saturation in dense glystems. The first one is the GBW
parametrization with heavy quarks, [25], which has playednspirational role in studies of parton
saturation in the recent ten years. In this parametrizatieradded quark and f = u,d, s,c. The
second one is the CGC parametrization [76, 85] which somehaownmarizes the studies within the
Color Glass Condensate [50] approach to parton saturafiaite surprisingly, these two parametriza-
tions give very similar results for the diffractive structufunctions. The main reason is the same
normalization of the dipole cross sectian, see Fig. 3.4. The origin of the same numerical value,
however, is different. For the GBW parametrizatignis fitted to the data foF, while for the CGC
parametrization it is computed from a diffractive slaBg, see Eq. (3.18).

The two considered parametrizations, specified belowyiteseery well the inclusive DIS data on
the structure functiort;,. Their use for the DDIS description is a very important téshe universality
of the dipole approach to DIS diffraction.

e The GBW parametrization with heavy quarks has the followioign of the ¢g dipole cross
section [25]

&(zp,r) = 0o (1 —exp(—r?Q?/4)), (3.13)
whereosy = 29 mb, and the saturation scale is given by
Q% = (wp/xo) " GeV?, (3.14)
with 2o = 4 - 107° and\ = 0.288. The dipole scattering amplitude in such a case reads
N(zp,r,b) = 0(by — b) (1 — exp(—r2Q?/4) (3.15)
where2rb3 = 0. This form corresponds to a model of the proton with a shageed

e The CGC parametrization with heavy quarks of the quark dipohttering amplitude is given
by [75, 76, 85]

N(zp,r,b) = S(b) N(zp,r), (3.16)

where the form factoS(b) = exp(—b%/(2By)) with the diffractive slope from HERAB,; =
6 GeV ~2. Thus, the dipole cross section (3.12) is given by the foamul

&(ac]p,r) :47TBdN($1p,I'). (3.17)

We see that the asymptotic valuedofor r — oo is the same as for the GBW parametrization,
if the diffractive slope measured at HERA is substituted,

o9 = 4w By =29 mb (3.18)
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Figure 3.4: The dipole cross section as a functiom tdr z = 10=2...107% (from right to left) and
for the GBW (continuous lines) and CGC (dashed lines) pandraéon.

In addition,

27vs  2In%(rQs/2)
No (TQ ) TeTend . for Q<2
N(r,z) = (3.19)

1_ e—4o¢ln2(57”QS) for T'Qs > 2,

where the saturation scalg, has now the following parameters:= 0.22 andzy = 1.63-107°.
The parametera, = 0.615 and = 1.006 are chosen such th&f and its first derivative are
continues at the point where N(r) = Ny = 0.7. The remaining parameters are given by
k= 9.9 and~,. = 0.7376.

Both parametrizations provide the energy dependence dfitinactive structure function through

the variabler p. This dependence is determined from fits of the dipole mautehdila for F5 into the
data from HERA for the Bjorken variable < 0.01. In the case of DDISy is substituted by p.

3.4 The transverse;gg component

The ggg diffractive component from transverse photons, compubtedrfassless quarksy; = 0, is
given by the formula

[y

_ 8180 ANNIAS
epiy™ = 5127T5aBd ‘ [(1 - Z) * (Z) ]
B
(1-2)Q? 1 ,
x / dk? log (%) W2(zp, 2, k) (3.20)

0

where the functionp, takes to form

(e}

po(zp, 2, k) = k2 /drrKg <1 / 1 i Zkr> Jo(kr)o(zp,r) . (3.21)

0
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with K, and.J; being the Bessel functions. Notice that the energy deperdehF in the dipole
models comes through thgr dependence of the dipole cross sectign p, ).

Formula (3.20) was computed with two gluons exchanged katwiee diffractive system and the
proton. This brings into the normalization of the scattgr@mplitude the relative color factérs /Cr
with respect to theg—proton scattering amplitude. Then the two gluon exchangilistituted by
the dipole cross section for thg dipole interaction with the proton. For example, for the GBW
parametrization

G =04 =00 <1 - efTQQEM) . (3.22)

There exists another approach in which the two gluon exahdmignula is eikonalized with the
color factor absorbed into the exponent. For the GBW pandradibn this leads to the following gluon
dipole cross section in Eq. (3.21)

G =6,y =00 (1 - e—(CA/CF>’"2Q§/4) . (3.23)

In such a case, the color factéyy /Cr = 9/4 (for N, = 3) disappears from the normalization of the
scattering amplitude and we have to rescale the structarifun in the following way

L plaag) (3.24)

F(fﬁg)
T T (CajCp T

By the comparison with HERA data, we will show in the next smtthat the latter possibility is more
appropriate for the data description.

We summarize our considerations referring to Fig. 1.16nf&ection 1.6 which shows the three
diffractive components of'”: ¢qT, qqL i qggT, as a function of3. We emphasize once again that
each component has its own dominance region:

o F\" component dominates fgt ~ 1/2 whenM?2 ~ Q>
° Fé‘@ component dominates for — 1 whenM? < Q?

o F\7) component dominates fgt — 0 whenM?2 > Q2

3.5 Comparison with HERA data

In Figs. 3.5, 3.6 and 3.7 we show a comparison of the dipoleemprkdictions with the ZEUS
Collaboration data [94] and the H1 Collaboration data [7}fmreduced cross section

D D y? D

UT = FQ — WFL . (325)
We included the charm contribution in the above structunetions. The solid lines correspond to the
GBW parametrization of the dipole cross section with thecéctor modifications (3.23) and (3.24)
of the qgg component, while the dotted (red) lines are obtained fromnQkBEC parametrization. We
see that the two sets of curves are barely distinguishaliies Sbmewhat surprising results could be
attributed to the same normalization of the dipole crosti@ge both modelsgg = 29 mb. Let us
emphasize again that this numerical value was obtainedardifferent ways (see Sec. 3.3.1 for more
details). The dashed (red) lines on these Figs. show theilmatbn without charm.

The color factor modification of thg;g component in the GBW parametrization is necessary since

the curves without such a modification significantly overtttbe data (by a factor of two or so) in the
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Figure 3.5: A comparison ef? from the two considered dipole models with the newest ZEU&G0
oration data [94]. The solid lines correspond to the GBW ipetaization of the dipole cross section
with the color factor modifications (3.23) and (3.24), white dotted lines correspond to the CGC
parametrization. The dashed lines show the results wittheutharm contribution.
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H1 DATA 2006
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Figure 3.7: The same as in Figs. 3.5 and 3.6 but for the H1 Gmidion data on the reduced cross
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Figure 3.8: The comparison ef” from dipole models with HERA data from the H1 collabora-
tion. The solid lines correspond to the GBW parametrizatioiin the color factor modification of
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region of smallg where theggg component dominates. It is shown in Fig. 3.8 for H1 Collabora
data [7]. We checked that this is also true for ZEUS Collationadata analyzed here.

The comparison of the predictions with the data also reveaisry important aspect of the three
component dipole model Eq. (3.5). In the sméalfegion, the curves are systematically below the
data points, which effect may be attributed to the lack ohbigorder components in the diffractive
state, i.e. with more than one gluon g pair. They may be added in the DGLAP based approach to
inclusive diffraction which sums additional partonic esiiss in the diffractive state in the transverse
momentum ordering approximation. A comprehensive disonssf the DGLAP based fits to the
diffractive HERA data is presented in Chapter 2. We recal tlthis approach the diffractive structure
functions are twis2 quantities with the logarithmic dependence@hfor fixed 2 » and. They are
related to the diffractive parton distributions by the skam collinear factorization formula,g.in the
leadinglog Q? approximation we have faFy’:

FPO =372 6 {qPep. 5.Q7) + TP ap. B.QD)} = 1 YA  (0p,5,Q7),  (3.26)

! Ni 73

where we assume flavor democracy for all quark distributtoreccount for vacuum quantum number
exchange responsible for diffraction, thi¥’ is the singlet quark distribution anlly is the number
of active flavors. See also Egs. 2.23 and 2.27 from previowpteh This distribution is evolved in
Q? by the DGLAP evolution equations together with the diffregtgluon distributiongp (= p, 3, Q?).
In contrast to the dipole model case, thg dependence of the parton distributions is fitted to data
together with their form in3 at some initial scal€)?3.

In [61] we raised the question of higher twist correctionsh® leading twist structure functions.
In the inclusive case such corrections to the structuretiomd® seem to be small, at least for not too
small values of)? andz (replaced by3 in DDIS). However, from Fig. 1.16 we see that for large
(3 the higher twistha contribution dominates the leading twist components. &ihés contribution
describes well the existing data f6r — 1, we include it into the DGLAP fits of diffractive parton
distributions. TheygL contribution has the main impact on the longitudinal stietfunction 72,
what we proved in Section 2.8.

Regarding our predictions using dipole models, it is alspartant that the charm contribution,
described in Chapter 4, is added into the analysis, predémtBigs. 3.5, 3.6 and 3.7. Without this
contribution the comparison would be much worse than thawsthere.

3.6 Dipole approach vs DGLAP approach

The relation between the dipole approach with three diffracomponents and the DGLAP approach
with diffractive parton distributions was analyzed at [dngn [60]. Summarizing this relation, the
twist—2 part of the dipole approach leads to diffractiverjuend gluon distributions which we present
in Sections 4.1 and 4.2. The quark distributiB® (zp, 8, Q?) is independent of)?, thus it may
only serve as an initial conditions for the DGLAP evolutiaguations. The value of the initial scale,
however, cannot be determined in the dipole approach. Th-Bapart ofggg component forms a
first step of the DGLAP evolution in logarithms 62 and leads to the diffractive gluon distribution
gP (zp, 3,Q%) with a mild Q2 dependence.

From this perspective, the DGLAP approach offers a desorifif more complicated diffractive
states with any number of partons with ordered transversaenta. However, the perturbative QCD
calculations tell us that the twist—2 DGLAP analysis of difftive data should be combined with the
twist—4 contribution which cannot be neglected at lapgélhis is the strategy which we have follow
in our analysis in the previous Chapter. We also borrow fromdipole approach a general form in



66 3.6. Dipole approach vs DGLAP approach

ZEUS DATA 2008

B=0.005  B=0.025 P=0.125  (=0.40 B=0.70 B=0.90 =0.97

o
F n
o :
2 0.057 8
X i ﬁl
L x
0
: 2
0.05 S
i T
L X
O m
? g
0.05} S
: m
L x
O m
? S
0.05 I 8
i T
L x
0
[ &
0.05 8
i m
L x
0
0.05} g
i T
L x
O m m
0.05} 3
: m
L x
O m
0.05 I 8
i T
L x
O m

Q*(GeV?)
Figure 3.9: The comparison of the GBW dipole model predictiagth the color factor modification
(solid lines) and the results from the DGLAP fit to the ZEUSad@tashed lines).
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£ of the initial singlet quark distribution which vanishestla¢ endpointss = 0, 1, see Eq. (2.44) in
which the coefficientsl, andC, appears to be positive from fits.

A very important aspect of Regge factorization of the dfi#e parton distributions (DPD) from
Eq. (2.25) can also be motivated by the dipole approach. Asshin [60], Regge factorization is a
consequence of geometric scaling of the dipole cross sefttm Eqg. (2.34) [99]. The assumption that
¢ is a function of the dimensionless rati@(x) has a remarkable consequence forithedependent
of the diffractive parton distributions found in the dip@pproach, namely

epEP(B,zp) = QXap)ET(B) (3.27)
zpg”(Bzp) = Qi zp)g" (B). (3.28)

This type of factorization is similar to Regge factorizatibut in fact has no connection with Regge
theory. Since the evolution does not affect the-dependence of the DPD, the factorized form will be
valid for any scale)?.

Now, we can write for the leading twist part of the diffraetistructure function:

DE)(LT) _ 2 1 2 P
vk, —@(w)m%jefﬁ (8) (3.29)

in which the dependence arnp is factored out. The dependence QA of the distributionSqJIZD is
introduced by the evolution equations. In the saturatiomeh@?5] the parametek = 0.29 in the
relationQ?(x) ~ z~* was determined from a fit to inclusive DIS data only.

The same value holds for diffractive interactions, thus we fa definite prediction for the p
dependence of the leading twist diffractive structure fiamc

R (3.30)

At present, the bulk of diffractive data in DIS support thetfaized form (3.30). They are usually
interpreted in terms of the-averaged pomeron intercepip, i.e. FQD @ ~ x}P_Za’P. Thus, for the
value A = 0.29, we find

ap=\2+1=1.15, (3.31)

which is in remarkable agreement with the values found at NERp = 1.17 by H1 [7] andap =
1.13 by ZEUS [66)].

Summarizing, the leading twist description extracted ftbmsaturation model of DIS diffraction
leads to the factorization of thep dependent part of the cross section similar to Regge faetiowi.

It correctly predicts the value of the effective pomerorinept. The)? dependence of the diffractive
structure function does not affect thg> factorization.

This means that the saturation model gives effectively ésalt which coincides with the Regge
approach, although the physics behind is completely differ The relative hardness of the intrinsic
scaleQs(zp) ~ 1 GeV in the saturation models suggests that the DDIS at HER#& demihard
process rather than a soft process as Regge theory woulderequ

In Fig. 3.9 we show the comparison of the results from the tisoutsed above approaches with
the recent ZEUS data [66]. In the most interesting sifiadigion, the DGLAP fit curves (dashed lines)
are closer to the data then the ones withdte component (solid lines) from GBW dipole model. In
particular, the logarithmic slope i9? of F° is steeper in the DGLAP approach. This illustrates the
importance of more complicated diffractive states thenjtjiestate.
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3.7 Conclusions

To sum up, we presented a comparison of the dipole modeltsesulthe diffractive structure func-
tions with the newest HERA data. We considered two most pomdrametrization of the interaction
between the diffractive system and the proton (the GBW an@ @& ametrizations) which are based
on the idea of parton saturation. The three component moitelthe ¢g and¢gg diffractive states
describe reasonable well the recent data. However, therre@fismall values off needs some refine-
ment by considering components with more gluons @pg@airs in the diffractive state. This can be
achieved in the DGLAP based approach which sums partonisséons in the diffractive state in the
transverse momentum ordering approximation.



Chapter 4

Diffractive heavy quark production

In this chapter we calculated diffractive charm productismg dipole model approach and collinear
factorization approach with DGLAP fits. We compared our ltsswith the recent data from HERA,
relevant to charm diffractive structure function [100]. odeding to the collinear factorization ap-
proach, it is expected that diffractive open charm productit HERA proceeds mainly via boson
gluon fusion (BGF) as it is presented in Fig. 4.1. In the BGécpss a charm quark anti-quark pair
(ce) is produced of which one quark couples to the photon withuality Q2 and the other to a gluon
emerging from the diffractive exchange. This process igetqdl to be dominant for diffractive open
charm production in DIS. It is important, that BGF processeassitive in a direct manner to the gluon
content of the diffractive exchange, which is only detemdimndirectly and for low momentum frac-
tions zp of the gluon in inclusive diffractive scattering via scaiuiolations [7].

We start from introducing the diffractive quark and gluostdbutions, respectively, in Sections
4.1 and 4.2. These distributions can be defined in the dipoldets by extracting the leading twist
component ofF. It is interesting to compare them with those found in the B@®Lfits. In par-
ticular, knowing the gluon distribution in these two distirapproaches, we will find predictions for
the diffractive charm production, measured recently at AERredictions for the diffractive charm
production are presented in Section 4.3.

The results presented in Section 4.3 are based on the dngibkcation [95].

4.1 Diffractive quark distributions

In the leading logarithmic collinear approximation thefdi€tive structure functio” is related to
the diffractive quark distributiong” andg’ by the formula

F(zp, 3,Q Zefﬁ af +37) Z e7Bx”, (4.1)
where
SP(ap, 8,Q%) = > (af (xp, B, Q%) + 77 (zp, 5,Q%)) (4.2)
f

is the singlet quark distribution andl; is the number of active quark flavors.

In order to find the quark distribution resulting from dipat@dels, we only consider the transverse
photon contributiom}qa), given by Eq. (3.6), since the longitudinal componeﬁi‘?a), is proportional
to 1/Q? for large@?. Thus, formally it is higher twist which does not contribtieparton distributions
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Figure 4.1: Direct process of diffractive charm productiarnere the photon enters the hard scatter

itself.

in the collinear approach. For massless quarks,= 0, we have

1/2
(@@ _ 3Q° 2 2 27,2 21 42
zplbp = M Zef/dzz (I1=2)"[z4+ (1 —2)*]| ¢{(xp, 2, k), (4.3)
wherek? = z(1 — z)M? and
(4.4)

¢1(zp, 2, k) = /OO drr Ky (\/ z(1 — Z)Q?“) Ji(kr)o(xp,r).

0

Let us change the integration variable~ k2, in Eq. (4.3). We find

1/2 M?/4 4 ) )
/ o k% 1-2k"/M 4.5)

dz22(1—2)?[22+ (1 —2)% = k _.
0/ M6\ /1 —4k2 /M2

We want to obtain the formula with andQ? as independent variables, thus we have to use the formula

0

w =1l (4.6)
6
Finally, Eq. (4.3) takes the following form
Q2(41ﬁ—5) .
1 28 K
() 3 2 B / 2 1-3Q% 2
E dk K 4.7
TPET 6474 B, f (1—7)3 1_ﬂk_22 ¢1(zp, B, k), 4.7
0 -3

where
( B kr) Ji(kr)o(xp,r). (4.8)

0
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Figure 4.2: Diffractive singlet quark distributiar® (2 p, 3) as a function of3 for zp = 0.0042 and
two parametrizations of the dipole scattering amplitud8\V5(solid line) i CGC (dashed line). Here
x = xpfS. The (dotted lines) show the parton distributions from oGLAP fit to the H1 data.

The leading behavior i§)? of F}‘@ for fixed values of3 and zpp is found after changing the
integration limit overk? to infinity and neglecting in the integrand the expressiapertional to

B K

1-8Q?
Such a limit means that we consider the so caliégned jet configuratiorwhen the fraction: or
(1 — 2) is very small. Then

=z(1-2)< 1. (4.9)

9 oo
(tw2) _ 3 s B 5
Pk = S, Zf:‘ff 1-3)7 /dk‘ p1(zp, B, k). (4.10)
0

Comparing the resulting formula with Eq. (4.1) we find thiffractive singlet quark distribution

oo
3Ny I5}

D _ 2 2
SP(ap.0) = grip gy | W e b, (@11)
0

This distribution is independent 6§? and can be interpreted as the initial distribution for thelD®
evolution, see Fig. 4.2. The value of the initial scale, hasveis not determined in the presented
approach.

4.2 Diffractive gluon distribution

As a starting point for the extraction of the diffractive gtudistribution will now serve Eq. (3.20),
after reducing it to the collinear factorization form.
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Figure 4.3: The contributiorF%ag as a function of5 for two formulas (3.20) (solid line) and (4.13)
(dashed line). The effect of the chande— 2)Q? — Q? in Eq. (3.20) is not significant.

For this purpose, let us compute first the logarithmic dériesof the structure function Eq. (4.1).
Using the DGLAP equation for the singlet quark distributiare have

1

D 2 2 d ? ?
izt - [ () () e
B

1

. @) /d_g (%) P (a2, Q2)
B

For small values off, when theggg component dominates, the second term in the above Eq., is muc
smaller than the first one and we find

D 2 2 2
- gﬁj@gQ - Bas Z /dz {(1— —> + <§> }gD(wzp,z,QQ). (4.12)

This is the relation between the diffractive gluon disttibn and the structure function in the collinear
limit for 3 — 0.
Coming back to Eq. (3.20), let us substitile— z)Q? — Q? there to find

(qq9) 818as / 2
plaas) _ dk21
T T 5120 Buap Zef o8 k2

2 2
/% (1_§> * <§> ] ﬁ%(w,z,k% (4.13)
B
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Figure 4.4: Diffractive gluon distributionzgp(zp,2,Q?) as a function ofz, for Q? =
1.0, 4m2, 102, 103> GeV? (from bottom to top) and:» = 0.0042 for two parametrizations of the
dipole scattering amplitude: GBW (solid lines) and CGC [aaklines). Here: = zpz. The (dotted
lines) show the parton distributions from our DGLAP fit to tH#& data.

In Figure 4.3 we see that such a change leaves the diffrettiveture function practically unchanged.
After taking the logarithmic derivative, we find

1

(9a9) 2 2
Obp — _ _ 81pa, ZG;/% AN
0ln Q2 51275 Byx p 7 z z z

B

QZ
X (1_22)3/dk:2¢§(m1p,z,k). (4.14)
0

For small3 we haveF}qag) ~ FP, thus comparing with (4.12) we find the following diffractigluon
distribution

Q2
81 z

D 2 2 42
Q°) = dk k 4.15
g (xlp,Z, ) 2567T4Bd56 (1 2)3 / ¢2(:UP>Z> )7 ( )

0

do(zp, 2, k) = k2/drrK2<, / 1 i Zk:r) Ja(kr)o(zp,T). (4.16)
0

The dependence of the gluon distribution Eq. (4.15)8rhas nothing in common with the DGLAP
evolution, it can be treated, however, as an initial scatelfe evolution. In Fig. 4.4 we show gluon
distributions computed for the GBW and CGC parametrizatibithe dipole scattering amplitude,

together with the gluon from DGLAP fit. We see thgt tends to a bounded asymptotic shapes for
dipole approach.

where
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X5=0.0042

0.8F

Figure 4.5: The same as in Figure 4.4 but with the color factdnsorbed into the GBW dipole cross
section as in the CGC approach.

The two gluon distributions from dipole approach in Fig. 44 considerable different. This
difference disappears when we consider the approach gedgey the comparison with the HERA
data in which the two gluon exchange color factor is absolih&ml the dipole cross section in the
GBW form, see Eq. (3.23). In the CGC parametrization thidrisaaly taken into account. Thus, for
the GBW parametrization we rescale Eq. (4.15):

D 1 D
J° = VL q°, (4.17)
and use formula Eq. (3.23) for the dipole cross section. ¥;oe 3 colors we have”' 4 /Cr = 9/4.
The result shown in Fig. 4.5. Now both the GBW and CGC paranaions give the same diffractive
gluon distribution, the lines: solid for GBW and dashed f@Cincrust in Fig. 4.5. Notice that the
described above ambiguity in the treatment of the coloofaatioes not concern the interaction of the
qq diffractive state.

4.3 Heavy flavor production in dipole models

In the dipole models of the diffractive scattering heavyrgsare produced ag andbb pairs. From
now on we consider only charm production since bottom priiduds negligible. Such pairs can be
produced provided that the mass of the diffractive systeath@ve the quark pair production threshold

M? =Q*(1/8—1) > 4m2, (4.18)

In the lowest order the diffractive state consist only ¢ther bb pair. The corresponding contributions
to F.P are given by Egs. (3.6) and (3.7) with only one flavor componEor example, for the charm
pair production from transverse photons, we have

rpr) = 9 [ (12 -2k i) (@19
PLr 647T4ﬁBd . c Y1 c Y0 "
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Figure 4.6: On the left: thecT andceL components of ) atQ? = 8 GeV? from the dipole model
with the GBW parametrization together with theX contribution from the collinear approximation
Eqg. (4.22) with the diffractive gluon distribution Eg. (%)1 On the right: we show theeX component
in a different scale against the masslgg¥, gL, ggg components.

wherem, ande. are the charm quark mass and electric charge, respectaaly,

ze = (1—+/1—4m2/M?)/2, Q% =2(1—2)Q* + m?. (4.20)
The minimal value of the diffractive magg? = 4m?, thus the maximal value ¢f is given by
Q2
=_—Y 4.21

In such a case;. = 1/2in Eq. (4.19) andF}cz) =0 for B > Bae. Thisis shown in Fig. 4.6 (left)
for the ce diffractive states from transver$eET) and longitudinal(ccL) photons. By the comparison
with the corresponding curves for three massless quaiks, ¢gL), shown in Fig. 4.6 (right), we see
that the exclusivew diffractive production contributes only/30 to the total structure functio,’
and can practically be neglected.

The next component of the heavy quark production isdfiediffractive state. Unfortunately,
formula (3.20) for theygg production is only known for massless quarks and cannot &éé fas heavy
quarks. Thus, we have to resort to the collinear factomatormula Eq. (4.22), in which the heavy
quark pair is produced via the photon-gluon fusigtiy — cc [101]. If such an approach is applied to
diffractive scattering, gluon iseonstituent of a pomeroiThus in addition to the heavy quark pair, the
diffractive state (or system) also consists of additioratiples X called pomeron remnajtwhich are
well separated in rapidity from the scattered initial prot@he diffractive case with pomeron remnant
was discussed in detail in Section 1.3 and is shown in Fig. 1.6

In the collinear factorization approach, the leading ofdenula for the diffractive structure func-
tion FQD (<) with the czX diffractive state is the same as in the inclusive case but thi¢ diffractive
gluon distributiong” instead of the inclusive one [73]:

cc Qs z ! dz mg
By (ap. 5,Q) = 2ﬁe§% e cz,L<§,@) 9 (ep,zp2)  (422)
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Figure 4.7: The comparison of the collinear factorizatioadictions with the GBW and CGC gluon
distributions (solid lines) with the HERA data on the opeffrdctive charm production. The dashed
lines are computed with the gluon distribution obtainedhia DGLAP fit [61] to the H1 data on the
diffractive structure functions.

wherea = 1+4m?2/Q?, and the factorization scal€ = 4m? with charm quark mass,. = 1.4 GeV'.
The leading order coefficient function$ ;, are given by

Cs(z,1) = ${2%+ (1 —2)? +42(1 — 32)r — 82%r?} In 12 (4.23)
+ Sa{-1+82(1—2)—4z(1—2)r}

Cr(z,r) = —42°rInl1+al — a + 2az(1 — 2) (4.24)

wherer = m?2/Q? anda = /1 — 4rz/(1 — z). The lower integration limit in Eq. (4.22) results from
the condition for the heavy quark production in the fusighy — cc,

(zapp+q)* > 4m] (4.25)

where we assume that gluon carries a fractiaf the pomeron momentumpp.

TheceX contribution given by Eq. 4.22 and showed in Fig. 4.6 as dolies becomes significant
for § < 0.1. By a comparison with the massless quark contributionsr{gte Figure) in Fig. 4.6, we
see that diffractive charm production contributes uBaé to the diffractive structure functiodry’
for small values of3. The presented results were obtained assuming the diffeagiion distribution
which results from the dipole model, given by the Eq. 4.1%hwie GBW parametrization of the dipole
cross section with the color factor modification. The CGCapaetrization gives a similar results.

In Fig. 4.7 we show the collinear factorization predictidos the diffractive charm production
confronted with the HERA data [100] on the charm componetthefreduced cross section:

D(ce) _ FD(CE) y2 D(ce) ' (4.26)

7 2 1+(1-y2t

The solid curves, which are barely distinguishable cowadpto the result with the GBW and CGC
parametrizations of the diffractive gluon distributioriBhe dashed lines are computed for the gluon



Chapter 4. Diffractive heavy quark production 77

H1: 35 GeV?
80 0.5¢ 0.5¢
T o045E x=0.004 0.45E X5=0.018
04 045
035} 0351
03F 0.3 fFA
0.25¢ 025 || ]
0.2 i 0.2 ;
015} 015
0.1 i 0.1 ;
0.05} 0.051
° 1c; * | | 0 1(;
B B

Figure 4.8: The contribution of charm quarks to the totalrdiftive cross sectionfsy, shown as a
function of 5. The solid lines are the collinear factorization predietidor thecé production with
the GBW and CGC diffrcative gluon distributions while thesdad lines are computed with the gluon
distribution obtained in the DGLAP fit ( [61]) to the H1 data.

distribution from the DGLAP fit to the H1 data [61]. The presancuracy of the charm data does not
allow one to discriminate between these two approachesugththe data seem to prefere the gluon
distribution from the DGLAP fit which is much more concentiéin the largez-region as compared
to the dipole model gluon distributions, see Fig. 4.4.

In Fig. 4.8 the measurements [100] are presented in the féfmactional contribution of charm
to the total diffractiveep cross sectionf& = o, (€©) /oD For small values of = Sz the charm
contribution equals on average approximat#§ — 30%, which is comparable to the charm fraction
in the inclusive cross section for similar values@f [102]. The collinear factorization predictions
with the GBW and CGC parametrizations of the diffractiveagludistributions (solid lines) are found
to describe the data reasonable. The predictions with trenglistribution from the DGLAP fit to the
H1 data (dashed lines) show also reasonable descriptidreaftarm ratiofs.

In summary, the gluon distributions from the two approachese used to make predictions for
the diffractive charm production. We found that this cdmition is significant in both approaches,
especially for small values ¢f. Finally, we found good agreement with the HERA data on tlffeadt-
tive open charm production both for the gluon distributifnagn the considered dipole models and the
DGLAP fits from [61].



Chapter 5

Diffractive dijet production at the
Tevatron

Hard diffractive processes in hadron-hadron collisionghsas the diffractive production of dijets or
massive electroweak bosons, are especially interestirog shey allow to study the interplay of small
and large distance QCD dynamics. The existence of a hard §€al of jets of electroweak boson
mass) justifies the use of perturbative QCD. On the other hdnedmechanism of the rapidity gap
formation is nonperturbative since no hard scale is inwbiwe the intact hadron side. As it was shown
in the previous chapters, the description of this aspectaad Wiffractive processes in deep inelastic
scattering (DDIS) with the help of the diffractive partorstlibutions turned out very successful. It is,
therefore, tempting to apply them to the hard diffractivegasses in hadronic collisions invoking the
QCD factorization theorem which allows to separate soft lagudl aspects in a process independent
way.

However, in diffractive hadron-hadron scattering, QCOdazation is violated due to soft interac-
tions between colliding hadrons and therefore, the diffragarton distributions extracted from DDIS
cannot be used to predict cross sections of hard diffragtieeesses ipp or pp collisions. A large
discrepancy is observed in a shape and normalization betiéeand ZEUS predictions and CDF
data on dijet production, by which factorization breakisglearly shown. A quantity which describes
the scale of the QCD factorization breaking in hard diffi@ctat hadron colliders is called the gap
survival probability which is a probability that there is additional soft interactions which destroy
the gap, i.e. that hard scattering events remain diffractiv

The main goal in this chapter is to reanalyze the QCD facution breaking in diffractive dijet
production at the Tevatron with our parton distributionsirfd in Chapter 2. We will also pay an
attention to the role of the secondary reggeon contributienscale of the factorization breaking. We
will show that this aspect, usually omitted in the discussiap till now, is an important factor for the
Tevatron data analysis.

5.1 Diffraction at the Tevatron

After the gluon and quark densities in the pomeron have beenifiis easy to formulate predictions
for the Tevatron (or the LHC) on the condition that the samehmaaism is assumed for the origin
of diffraction in each case. It is thought that the same siines of the pomeron exist at HERA and
the Tevatron. An example is the jet production in singlerdiffion or double pomeron exchange
using the parton densities in the pomeron measured at HERA We present jet production in single
diffraction at the Tevatron [103]. The interesting pointassee if the factorization property between
HERA and Tevatron, using the same parton distributionstfons, holds or not [104—106].
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Figure 5.1: Test of QCD factorization within CDF diffractivlata alone. The percentage of diffractive
events with dijets is presented as a functionzofor different £ bins. The same:-dependence is
observed within systematic and statistical uncertairitieg| £ bins, supporting the fact that CDF data
are consistent with factorization [104].

The diffractive processes at the Tevatron are presentebiréafty discussed in Chapter 1. Accord-
ing to the theory, QCD factorization is not expected to hatheen the Tevatron and HERA [107] due
to additional soft interactions between colliding hadrofsr instance, soft gluon exchanges between
protons are possible at a time scale longer than for hardhictiens. The rapidity gap is destroyed by
such exchanges and the proton does not remain intact adténtdraction. The factorization break-up
is confirmed first by comparing the percentage of diffracévents at HERA and the Tevatrot{%
at HERA and about % of single diffractive events at the Tevatron) showing alsethat factorization
does not take place [6]. So it is necessary to introduced aheapt of gap survival probability, the
probability that there is no soft additional interactiontioat the event remains diffractive, which we
briefly discuss in Section 1.9.

The first experimental test of QCD factorization is applie€DF data on dijet production only. In
Fig. 5.1, the percentage of diffractive events as a funatfonfor different{(= =) bins is shown, as
well as the same-dependence within systematic and statistical unceiggim all¢ bins, supporting
the fact that CDF data are consistent with factorizatiod[10'he z-dependence for different mean
(Er) bins, which leads to the same conclusions, was also stuglidftetCDF Collaboration.

As a second step, it is checked, whether factorization axvwievatron and HERA data takes
place. It is possible to measure the diffractive structumection directly at the Tevatron. What is
measured, is the ratio of dijet events in single diffractwvel non-diffractive events, which is directly
proportional to the ratio of the diffractive to the protonusture functionsk,

_ Ratefjp(:v) N FﬁD(w)
Rate%D(:U) FJ];[D(m)

R(x) (5.1)

F; is known from the DIS experiments on fixed targets and from WERus single diffractive dijet
structure functiorFf;-D(z) is directly determined by measuring the raigz).



80 5.1. Diffraction at the Tevatron

)
O"g i - H1 fit-2 —+- CDF data
W H1 fit-3 Ex'?>7 Gev
1001
(Q%= 75 GeV?) 0.035 < £ <0.095
|t] <1.0 GeV?
10 E ’
1k
0.1 3 IR only
C L PRI | L L L L PRI
0.1 1
B

Figure 5.2: Comparison between the CDF measurement chdiife structure function (black points)
with the expectation of the H1 QCD fits (red full line) from RAJ0

As it is seen in Figure 5.2, the predictions which use dititecparton distributions from the H1
Collaboration fits to DDIS data from HERA significantly (afac8 to 10) overshoot the experimental
points from the CDF measurement. Therefore, the QCD faatian is clearly violated which can be
attributed to soft interactions between the colliding loadr At least two interesting questions are in
order at this point. First, it is the role of the secondarygeszn exchanges. As we see in Figure 5.2,
they contribute up t60% to the violation of the QCD factorization. Secondly, lodkiat the shape
in G, it is interesting to ask about th&dependence of the gap survival probability which brings th
predictions into the agreement with the CDF data.

5.1.1 Basic formula for diffractive dijet structure functi on at Tevatron

Before discussing the QCD factorization breaking in the Clij&t data we will present basic formula
for the measured quantity. If we ignore rescattering coiwas, then the cross section for diffractive
dijet production, shown in Figure 5.3 (a), may be written as

do B
dErd3

S [ (6.0 6. B ff(on, BR) b o d (5.2)
ik

whered; ;, is the hard cross section to produce dijets from pariohswvhich carry longitudinal mo-
mentum fractions of the proton and pomeren,and 3, respectively. Information on the diffractive
structure functionsf!’ (3, E2.) are obtained from the measurements of the diffractive s at
HERA, shown in Fig. 5.3 (b). The pomeron flux factts (¢, ¢) is given by Eq. (2.8) and? (zy, EZ.)
are the standard parton distribution functions in the proto
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Figure 5.3: Schematic diagrams for diffractive dijet proiilon at the Tevatron (a) and the diffractive
deep inelastic scattering at HERA (b).

The CDF Collaboration present measurements of the ratibeoflijet production with a rapidity
gap to that without a gap as a function of= (¢ (the fractional longitudinal momentum of the
antiproton carried by the parton) fé(jet1, jet2) > 7 GeV in the range).035 < ¢ < 0.095 and
t| < 1 GeVZ. In the ratio, the termg? (z1, E2) &, cancel. Hence the data determine the diffractive
structure function of the antiproton (integrated ot)eintroduced already in Chapter 1 by Eq. (1.52),

TPmax
1 4
ER () = [ towwtew) 5 {588 + P58 |
TPmaz — LIPmin 9
LTIPmin
+ secondary Reggeon contributions (5.3)

wherexp = £. The secondary reggeon contribution is described by arogoas formula with the
reggeon flux given e.g. by Eq. (2.13). The reggeon structuretion can be given by Eq. (2.17) or, as
in the H1 Collaboration analysis, by the pion parton distiiitn functions. The reggeon contribution
was added to the formula tB‘jf:]-’ because the CDF measurement was performed in the regién of
where this contribution might be important.

5.2 Discussion of the QCD factorization breaking at Tevatra

From a fundamental point of view, it is natural that diffigethard scattering factorization does not
apply to hadron-hadron collisions. Attempts to establstiesponding factorization theorems fail be-
cause of additional interactions between spectator padbthe colliding hadrons. The contribution of
these interactions to the cross section does not decretisthevihard scale and they are generally soft.
Thus, we need to rely on phenomenological models to quatttéiy effects. The yield of diffractive
events in hadron-hadron collisions is then lowered becaiese soft interactions between spectator
partons (often referred to as reinteractions or multipkgtecings). What can be produced are addi-
tional final state particles with which the would be rapidijgp is filled. When such additional particles
are produced, a very fast proton can no longer appear in thlestiate because of energy conservation.
Diffractive factorization breaking is thus intimately agtd to multiple scattering in hadron-hadron
collisions. It is not a surprise that such scatterings ostwe both the colliding hadronic particles are
composite objects with large transverse size.
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Figure 5.4: Left: a comparison of the measured CDF dijetalifive distribution as a function ¢f at
Q? = (E2) = 75 GeV? with different predictions for the pomeron part of Eq. (5.B)ght: different
models of the reggeon contribution, described in the téxiws against the same data.

In Fig. 5.4 (left) we compare the results from our fits with @tea 2 to the recent CDF single
diffractive dijet cross section measurement. In additiva,also show the result from the H1 Collabo-
ration fits (Fit A) [7]. In general, the predictions are abigan a reasonable agreement (including the
H1 fit without the higher twist contribution) at the evolutiscaleQ? = 75 GeV?2. As expected, the
high beta region shows the biggest differences betweenutwes Surprisingly, the H1 fit curve is
close to our results with the higher twist contribution. Hllall, we note a large discrepancy both in
shape and in the normalization between HERA predictionth(aumnd without higher twist) and CDF
data, clearly showing factorization breaking.

Precise determination of the scale of the factorizatiorakirey needs to consider the role of the
secondary reggeon exchanges which might be important iretlien in which CDF measures dijets,
& > 0.035. The answer to this question, however, is far from beingrcl€he original CDF analysis
[103] quotes the parameters from the H1 analysis of the HER#active data from 2000 which lead
to the curve denoted by H1-2000 in Figure 5.4 (right). Thbs, reggeon contribution seems to be
as important as the pomeron one and the sum of the two comrisugives the red solid curve in
Figure 5.2. The new H1 analysis of the HERA data from 2006 ¢&dk to new parameters of the
reggeon contribution, shown by the curve in the middle dethats H1-2006, which is three times
smaller than the previous one. To make matters worse, olyssm&om Chapter 2 gives even smaller
contribution (denoted by GBL) which is significantly smallkan the two previous ones. Thus, in our
case it can be practically neglected for the dijet produciiiothe kinematic region measured by CDF.
Taking into account these results we produce the final plowveig the spread of predictions for the
pomeron plus reggeon contribution, see Fig. 5.5. For theibHA €urve, the reggeon contribution was
taken from the year 2000 analysis.
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Figure 5.5: The same as in Fig. 5.4 but for the pomeron+raggeaotribution.

5.2.1 Restoring factorization at the Tevatron

The other interesting measurement which was also perfoatidsg Tevatron is the test of factorization
between single diffraction and double pomeron exchangeeré#s factorization was not true for the
ratio of single diffraction to non diffractive events, fadization takes place for the ratio of double
pomeron exchange to single diffraction. In other words, fhiee to pay for one gap is the same
as the price to pay for two gaps [108]. The survival probghilie. the probability not to emit an
additional soft gluon after the hard interaction needs tayygied only once to require the existence
of a diffractive event, but should not be applied again fanlwle pomeron exchange.

To summarize, factorization does not occur between HERATawdtron because of the long term
additional soft exchanges between spectators in the gatladrons. Nevertheless, experimentally,
factorization happens in case of CDF data themselves aadatsveen single diffraction and double
pomeron exchange which means that the soft exchanges depentd on hard scattering.

5.2.2 Gap survival probability

Let us come back to the tergap survival probability(GSP) introduced in Subsection 1.9 and men-
tioned at the beginning of this Chapter. It is perhaps moceirate to use the tersuppression factor
of a hard process accompanied by a rapidity gap, rather tiraival probability. It depends not only
on the probability of the initial state to survive, but is sitime to the spatial distribution of partons

inside the incoming hadrons, and thus on the dynamics of ti@endiffractive part of the scattering
matrix.

In Fig. 5.6 we show the gap survival probability in the diffii@e dijet production, calculated in
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Figure 5.6: The gap survival probability as a functionsdbr the predictions from Fig. 5.4 (left) with
reggeon contribution included.

the following way

2 _ Ji
5% = F(Theory) (54)
27

We computeS? as a function of3 for all curves in Fig. 5.5 with the reggeon contribution unbéd.
The results are shown in Fig. 5.6 (together with experimiguatiats for F;; for better orientation). The
GSP is in the rangf.03, 0.4] with strong uncertainty coming from both theoretical angezimental
analyzes. As expected, the region of large values isfmost poorly constrained.

5.3 Factorization breaking in dijet photoproduction at HERA

The virtual photon iny*p collisions has small transverse size, which disfavorsipialinteractions and
enables diffractive factorization to hold. It may be expibett for decreasing virtuality)?, the photon
behaves more and more like a hadron, and diffractive farsttan may again be broken [108]. That is
why, it is appropriate to address the factorization bregkiroblem in diffractive dijet photoproduction
at HERA. The relevant diagrams for this process are showngrbFH.

H1 Collaboration [109] has measured diffractive photopiithn of dijets in the kinematic region
Q? < 0.01 GeV? with transverse energy cuts of the two jef8"! > 5 GeV and B3 > 4 GeV. A
fit to the photoproduction data yields suppression factbsi3 + 0.14, independent of the observed
x~, Which is a fraction of the photon momentum transferred thdijet system. So, the predicted
dijet cross section has to be multiplied by a factor of apjpnately 0.5 for both direct and resolved
photon interactions to describe the measurements. Theahtheasured dijet cross section to NLO
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Figure 5.7: Diffractive dijet production at HERA: a) the @lit process where the photon enters the
hard scatter itself, b) the resolved photon process whelse aneduced fractionc., of the photon
momentum takes part in the hard scatter.

prediction in photoproduction is a fact®’ + 0.1 smaller than the same ratio in DIS. This suppression
is the first clear observation of QCD hard scattering fazadion breaking at HERA.

For ZEUS Collaboration [110], the measurements of diffrecphotoproduction of dijets were
performed in the kinematic regia@? < 1 GeV? with higher cuts on jets transverse energj"" >
7.5 GeV and E%etz > 6.5 GeV. The comparisons with NLO QCD predictions based on availabl
parametrizations of diffractive PDFs, were made for thedata sample as well as for the subsamples
enriched with resolved photormffs < 0.75) and direct photonz(gbs > 0.75) processes. The NLO
calculations tend to overestimate the measured cros®seaif both the resolved-enriched and the
direct-enriched data sample. However, within large uadeties of the NLO calculations the data are
compatible with QCD factorization.

The theoretical understanding of this discrepancy has ee lknow yet. Lately, it was addressed
in [111] where the gap survival probability was estimateti¢o

e for the direct photon contributio§? = 1,
e for the hadron-like component (resolved photéi)~ 0.34,

e for the point-like component of the resolved photon gemetdty the inhomogeneous term in
the DGALP equation$? has a power-correction form

l1—a

+ ..
12

52 ~ (5.5)

which will only be non-negligible at the beginning of the &xt@n at low scaleg:?.

Considering these three contributions and other effgkesgl, migration in the hadronization process,
the authors of [111] conclude that for smal| the hadron-like component of the resolved photon
(with S? ~ 0.34) only starts to be important. The perturbatively calcutapbint-like component of
the resolved photon is the dominant onedfor> 0.1, and its suppression is small. For this component,
the spectator partons have relatively large transverseentaiand can be seen as a third jet. According
to [111], after including the direct component as well, thedictions are consistent with the observed
data. It remains to be seen if these conclusions will holer atcareful, independent examination.



Chapter 6

Production of electroweak bosons

The electroweallV and Z boson production in hadronic collision is a particularijuable process
to constrain parton distribution functions (PDFs) in a eod. By measuring leptonic products of
the weak boson decays, the electroweak parametersihl%eﬁw, wheredy is the effective weak
mixing angle, or thé¥/Z boson masses and decay widths can also be determined. AbthddBel,
the W/Z bosons are produced from the annihilation of two quarks éndtiliding nucleons. In the
collinear approximation, the elementary cross sectionghiese processes have to be convoluted with
the nucleons’ PDFs. A direct access to these distributisrravided by the measurement 16f*
production asymmetry in rapidity. This quantity reflects fact that at given rapidity the two charged
vector bosons are produced by quarks which are associatiedifferent parton distribution functions.
The measured+ asymmetry can be used in the global fit analysis to constrRiRsPin particular
the ratio of theu andd PDFs. Such measurements were done at the Fermilab Tevatnerelectron
charge asymmetry ifi’ boson decays is presented in [112,113], a direct measuteshéme 1V *
boson asymmetry is reported in [114], the forward-backveagmmetry of the electron frotd boson
decays is discussed in [115,116], while a short summary®WiZ boson production at the Tevatron
can be found in [117].

In this chapter we analyze inclusive and diffractive weagdyoproduction imp andpp collisions.
We begin by discussing the production cross sectioifér and Z bosons. In the following sections,
we present basic formulas f&V* boson production asymmetry in rapidity for inclusiyg andpp
collisions. Then, we describe diffractive hadroproduttad 1W/Z bosons and give predictions for the
single diffractive boson production cross sections at tHELWe discuss in detail tHd"+ asymmetry
in pIP collisions showing that this quantity is a good observabldest the concept of the flavor
symmetric pomeron parton distributions.

The results presented in Section 6.2 are based on the dnmyibkcation [118].

6.1 Production cross sections

The discovery in 1983 the W and Z gauge bosons at CikRbbllider [119, 120] provided dramatic
confirmation of Standard Electroweak Model. In the naivegramodel, the cross sectian g for
producting such a pair in the collision of bea#inand targetB is obtained by simply weighting the
subprocess cross sectiénfor ¢ — W/Z with the parton distribution functiong,(z) and fz ()
extracted from deep inelastic scattering, and summing aVequark-antiquark combinations in the
beam and target:

OAB = Z / dzldacg fq(:cl) fql(l'Q) 6q6’—>W/Z . (61)
.7

86
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Figure 6.1: Comparison of W and Z cross section measurenentg collisions with theoretical
predictions [121].

The leading order cross sections for the subproggss— W, Z, with collinear quarks are given
by [121]:

i —s 27TG

oW = 2 f Mgy V|05 — Miy) (6.2)
_ 275G

Sli—7 _ ;T fF MZ(VE + A3)8(5 — M3), (6.3)

whereG' is the Fermi constant anid; ;- is the appropriate CKM matrix element. In additidry, =

T;} —2Qy sin? Oy andAy = T]? are the vector and axial couplings of the fermibto the Z boson,

respectively, WheréF3 il with (+) for the up type quarks ang@-) for the down type quarks and
Qy is given in units of the posﬁron electric charge- g,, sin fyy .

The W and Z decay widths are smallyf = 2.08 GeV andI'; = 2.50 GeV in the Standard
Model) compared to their masses, and so it is sufficient tsiden the production of effectively sta-
ble particles, multiplying cross section by the approgrifatal-state branching ratios. Fig. 6.1 shows
the O(«) theoretical predictions for the W and Z cross sections (pligtl by the Standard Model
leptonic branching ratioB R(W — Iv) = 0.1084 and BR(Z — [T1~) = 0.0336) compared with
measurements from thg collider experiments [122—-125]The parton distributions are the MRS(A)
set [126], with the factorization and renormalization esalr = ur = Mw,z. A £5% theoret-
ical error band on the predictions is included to allow foe timcertainties arising from the parton
distributions, electroweak parameters, scale variattmhumknown higher-order corrections.

In the calculation of the branching ratio foF — /v used in the theoretical predictions shown in
Fig.6.1, the Standard Model prediction for the total W deadgth is used. However the comparison
between theory and data in Fig. 6.1 can also be used to obta#aaurement df'yy,. Indeed before
the top quark was discovered, this method was used to sés limia possibl& (W — tb) contribution
to I'yy, and hence omn, [127, 128]. It is advantageous to consider the ratio R of tiessections
times branching ratios shown in 6.1. Several uncertaintisexample the uncertainty in the collider

2The dominantV, Z — ¢g decay channels are suppressed by the large QCD two-jet toamidy[121].
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luminaosity, cancel in the ratio. Thus,

NW —=ly) ow NW —lv)
N(Z=1) oz N(Z—=1t) BR 6-4)

R  NW —ly) T(W—lv) 'z (6.5)
BR-T Nz =1t T Tw  L(Z—1t) '

The cross section rati®,, is calculable theoretically. The dependence on partomilligions
and on the renormalization and factorization scales is sgraesmaller than for the individual cross
sections. The Z leptonic and total widths are measures aiedyrat LEP and SLC. The partial width,
I'(W — ly;), can be calculated precisely in the Standard Model. HersbegUEq. 6.5, a measurement
of R gives information o’y .

The measured valuse of R from the Tevatp@rcollider are [125, 129]:

R = 10.90 4+ 0.49(stat. ® sys.)(DO), (6.6)
R = 10.9 £ 0.32(stat.) = 0.29(sys.)(CDF), (6.7)
which correspond to
'y = 2.044 £ 0.092GeV (DO), (6.8)
'y = 2.064 +0.085GeV (CDF) (6.9)

The theoretical prediction assuming no 'anomalous’ deteynels and ndl’ — tb contribution is a
function of the W mass. Fallyy = 80.33 +0.15 GeV, the prediction is

Ty = 2.085 £ 0.012GeV, (6.10)

in good agreement with the measured values.

6.2 W bosons production asymmetry in rapidity

The differential cross section for ti&* boson production distribution in rapidity is given by the
convolution of the elementary cross section (6.2) with tggn distributions in the colliding nucleons.
Thus, in the leading order in; we have

doy+
dy

0" > Vo * {a(@r, )T (w2, 1) + Glar, 1) ¢ (w2, ) } (6.11)
qq’

where the factorization scale= Myy, ¢, g denote quark/antiquark distributions and

w _ 27Gp M,

o, =
0 3\/5 S

(6.12)

In addition
_ Mw , _ Mw

e’ , 562—\/5

are parton longitudinal momentum fractions arid the Whaoson rapidity Obviously,y = % In(zy/22),
and from the conditio® < z; » < 1, the following constraint results

e Y (6.13)

—Ymaz <Y < Ymaz (6-14)
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Figure 6.2: The leading order diagrams for #fie" boson production.

With y,a. = In(y/s/My ). The cross section for thé boson is obtained from Eq. (6.11), by replacing
Ve — 5qq/(vq2 + Ag) = 04¢Cq- (6.15)

In the forthcoming analysis we neglect the Cabbibo suppresquark part of thdd production cross
sections and consider only two flavoisandd. Thus for the partonic processes shown in Fig. 6.2, we
find

dO-W+

dy 0 |Vaal* {u(z1) d(zs) + d(w1) u(w)} (6.16)
dZVyV_ = o' Vaal® {d(21) Wlw2) + Wla1) d(2)} (617)
620—5 = O'OZ {Cu u(zy)w(ze) + Cy d(azl)a(wg) + (11 < 562)}, (6.18)

where the parton distributions are taken at the seate My, z. TheW = boson production asymmetry
in rapidity is defined as follows

_ dow+(y) — dow-(y)
AW = o) o) (619)

6.2.1 pp collisions

The predicted distributions fdi’+, Z production inpp collisions at Tevatron are shown in Fig. 6.3.
Here we have defineg > 0 to be the direction of the incoming proton. In fact, héboson rapidity
asymmetry provides a very sensitive measure of the relgkdge ofu andd quark distributions [130].
This fact was our motivation to study electroweak vectoramgsasymmetry in diffractive processes,
using our diffractive parton distributions from ChapterAssuming that the fractiom; refers to the
proton and the fractiom, refers to the antiproton in the scattering, thé)” production cross sections
are related to the nucleon parton distributions as follaes, Fig. 6.2

T o) Byl + Tyla) o)
doyy-
Gy~ @) + Tp(en) dp(aa). (6.20)

Since from charge conjugation symmetry we have
dp(z) = dp(x), up(z) =TUp(z) and dy(z) =dy(x), Tp(z)=uy(z), (6.21)
hence, we find

do -
o~ @) dp(w) + ) Tp(w2)

dgw—
dy

~ dp(x1) up(w2) + Tp(a1) dy(a2) . (6.22)
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W and Z production cross sections at Tevatron W asymmetry at Tevatron
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Figure 6.3: Left: thd? andZ boson production cross sections at Tevatron as functiotfsedboson

rapidity y for the MSTWO08 parton distributions. Right: th& boson asymmetry (solid line) together
with the approximate relation (6.28) (dashed line).

Notice that interchanging;, < x2 (y — —y) we have:doy,+ /dy < doy - /dy, and

dow+(y)  dow-(-y)
TR (6.23)

This is clearly seen in Fig. 6.3 (left) where the weak bosaupction cross sections are shown for the
proton-antiproton collisions at the Tevatron enexgy = 1.8 TeV (in which casey,,.. ~ 3.1). We
use the LO MSTWO08 parametrization [131] of the parton distion functions. Form relation (6.23),
the W boson production asymmetry(y) is odd function of thd¥ rapidity, see Fig. 6.3.

In the pp collisions, thell/-charge asymmetry in rapidity is also defined

_ dow+(y) — dow+(—y)
AW = o) F o (o) 629

Form the above mentioned symmetry, we have the followingnobequalities
Aw+(y) = Aw-(—y) = A(y) . (6.25)

These asymmetries are useful for the determination of thterpdistributions since assuming the local
isospin symmetry for the sea quarks in the proton

dp(z) = up(), (6.26)
we obtain from relations (6.22)

_ up(xl)dp@?) - dp(xl)up(@)
AWY) = ) dyla2) + dy (1) wp(a2) + 20 (1) iy (72) (6.27)

For most of the parton distribution parametrizations, #ve2,(z1) u,(x2) in the denominator can
be neglected and we find

Aly) up(1) dp(w2) — dp(@1) up(ws) (6.28)
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W and Z production cross sections at LHC W asymmetry at LHC
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Figure 6.4: Left: thd¥ and Z boson production cross sections at the LHC as functionseobtison
rapidity y for the LO MSTWO08 parton distributions. Right: th& boson asymmetry (solid curve)
together with relation (6.32) computed:at= x, andx = x» (two dashed lines) and for the valence
quark distributions at = x; (dash-dotted line).

The quality of this relation is shown in Fig. 6.3 (right) whehe solid curve shows Eq. (6.27) while
the dashed curve corresponds to relation (6.28), compaotdtid LO MSTWO08 parametrization.

Relation (6.28) is the basis of the current analysis of thaiffen data on th&” production asym-
metry for the determination of the rati(z)/u,(x), since from Eq. (6.28) we find

dp(21) /up(z1) 1= A(y)
dp(w2) Jup(w2) — 1+ A(y)’ (6.29)

where the quark distributions are taken at the spale My .

6.2.2 pp collisions

For pp collisions, thelW” production cross sections look as follows

T ) o) + Dylo) gl
W dyfan) ) + o) (o). (630

Due to symmetric proton beams, the transformatign— =z leavesdoy,+ unchanged, which is
reflected in the symmetry of these cross sections under phditsareflectiony — —y. This is clearly
seen in Fig. 6.4 (left) where the cross sections for the LH&@n,/s = 14 TeV (in which case
Ymae =~ D.1) are shown for the LO MSTWO08 parton distributions.

Assuming for simplicity the local isospin symmetry for treasjuark distributionss, (z) = d,(z),
we find
(up(w1) — dp(21)) p(w2) + Up(x1) (Up(72) — dp(22)) (6.31)
(up(w1) + dp(21)) Up(22) + Tp(21) (Up(22) + dp(2)) '

which is evidently even function of rapidity, see Fig. 6.@(fft). In the limitz; ~ 1 andxy < 1 or
x1 ~ x9 < 1, the sea quark distributiona(x;) is small and the second terms in the numerator and

Aly) =
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denominator of Eq. (6.31) can be neglected. Thus, we obtain

up(@1) — dp(21)

AW > ) T )

(6.32)

From thex; < x5 symmetry, the same relation holds true when the argumeriteopérton distri-
butions in Eq. (6.32) is changed 6. These approximate relations are shown by the two dashed
curves in Fig. 6.4 (right). Thus, from the measurement ofith@asymmetry in thesp collisions, the
dy(x)/u,(z) ratio at the scalg = My can be extracted,

dp() 1= Aly)
up(z) 1+ Ay)’

(6.33)

down toxy ~ My /+/s = 0.006 for the LHC energy. Relation (6.32) can also be written im®of
the valencdval) and sedsea) quark distributions

Up(2) = Upal (T) + Usea(T) ; Up(T) = Usea()

dp(x) = 1(7) + dsea (), Ep(m) = dsea(T) (6.34)

taking the following form (assuming isospin symmetry)

~ uval(fﬂl) - dval(xl)
Aly) = Upal (1) + dyar (1) + (Usea(T1) + dsea(x1)) . (6.35)

Forxy — 1 the sea quark distributions in the denominator can be niegleand relation (6.33) gives

dval(x) ~ 1 - A(y)
et () 14+ A(y)

The quality of this relation for the LO MRTWOQ09 parametrizatiis shown in Fig. 6.4 by the dash-
dotted line computed from eq. (6.32) with the valence quaskritiutions atx = x; (a symmetric
curve can be found far = x3). We see that foyy > 4 (x > 0.3) relation (6.36) can be used for the
determination of the,,; /u..; ratio at the scale = My .

(6.36)

6.3 Diffractive production of W/Z bosons

Diffractive hadroproduction of electroweak bosons waseolrd experimentally at the Tevatron [132]
and analyzed theoretically in a series of papers [133—13&le we concentrate on a single diffractive
dissociation case, in which one of the colliding hadronsaies intact while the other which disso-
ciates into the diffractive state is separated in rapidioynT the intact hadron, see also Section 1.7 in
which we described different types of diffractive processe
In the diffractive case, the electroweak bosons are pratlirca restricted region of rapidity, with

a rapidity gap without particles between the proton, whigtyed intact and the diffractive system.
In this process, the boson mass is a hard scale allowing fturpative QCD interpretation as in the
nondiffractive case. However, the nature of the vacuum mumamumber exchange, which leads to the
rapidity gap, is honperturbative. It is usually modellethgghe Regge theory notion - a pomeron. In
the model of Ingelman and Schlein [21], introduced in Sec2®, the pomeron is endowed with a
partonic structure described by the pomeron parton digtabs g, which replace the standard inclu-
sive parton distributions on the dissociated proton sidaceSthe pomeron carries vacuum gquantum
numbers, these distributions have to be flavor symmetric

up(z) = up(r) =dp(r) =dp(z) = sp(x) =sp(r) =... = qp(z), (6.37)



Chapter 6. Production of electroweak bosons 93

W and Z production cross sections at LHC Diffractive W asymmetry at LHC

x §%= 0.03-0.06

dao/dy (nb)

- -2 0 2 4

y y

Figure 6.5: Left: the single diffractivél’/Z boson production cross sections at the LHC as functions
of boson rapidity. The results have to be multiplied by thp sarvival factorS? = 0.09. Right: the

W asymmetry inpIP collisions (solid line), given by Eq. (6.42), together witte asymmetry (6.31)
in pp collisions (dashed line). The shaded areas indicate theitvagap A = 2.3 for zp = 0.1.

wherex = z9/zp andzp = Mg/s is a fraction of the proton’s momentum transferred into the
diffractive system of masa/p. With such a definitiony is a fraction of the pomeron momentum
carried by the parton taking part in th& boson production. From the condition< =,z < 1, one
finds that thd?” boson rapidity is in the range

—Ymaz T ln(l/wlp) <Y < Ymaxz ;s (638)
and the rapidity gap has the length= In(1/zpp).

Thus, in the single diffractive case, thé production cross sections are related to quark distribu-
tions in the following way

dUw+

ey~ (@) dp@) ap(rz/Tr) (6.39)
j;;;l; ~ (dp(x1) + Tp(21)) qp(2/7P) - (6.40)

In more general approach, the pomeron parton distributimulg be replaced by diffractive parton
distributions [54, 55, 62, 64, 69]. As it was described in fitea 2, in Section 2.2 diffractive parton
distributions in the pomeron model interpretation haveRkgge factorized form

qp(z2,2p) = f(zp) gp(z2/2P) , (6.41)

where f(zp) is pomeron flux. Independent of this interpretation, howetree diffractive quark dis-
tributions should also be flavor symmetric.

In Fig. 6.5 (left) we show thé/ and Z production cross sections with the LO MSTWO08 proton
parton distributions and the pomeron parton distributimesn our last analysis [61], presented in
Chapter 2. The effect of the pomeron in the left hemispherdeiarly visible - the rapididty gap is
formed and théV+ asymmetry strongly decreases. These cross sections sheutiltiplied by a
gap survival factorS? = 0.09 [37], which takes into account soft interactions destrgytime rapidity

gap.
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Ratio of W boson asymmetries
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Figure 6.6: The ratio of th&l” boson production asymmetries in the diffractive and ndratifive pp
scattering.

The W boson production asymmetry (6.19) is a particularly gooskobable since it is insensitive
to the gap survival probability [34] which multiplies bothet cross sectiongoyy+ /dydxp. The
flavor symmetric pomeron parton distributions also carared, we obtain for thél” asymmetry in the
diffractive case, _

AD(y) _ up(z1) — dp(z1) + C_lp(xl) — Up(21) ’
up(r1) + dp(z1) + dp(21) +Up(71)
where the parton distributions are taken at the spate My;,. Notice thatA”(y) is independent of

xp, 1.e. the length of the rapidity gap. Substituting deconitjmos (6.34), we find

(6.42)

D — uval(xl) - dval(xl)
A" (y) = Upal (71) + dyat (71) + 2 (Usea(T1) + dsea(T1)) (6.43)

This is an exact result obtained only under the assumpti@7)6In Fig. 6.5 (right) we show the asym-
metry (6.43) (solid line) together with thé” boson asymmetry (6.31) in the inclusive case (dashed
line).

In order to understand our result, it is interesting to corapag. (6.43) with the approximate
asymmetry (6.35), valid in the right hemisphere for- 0. For large rapidities, when the sea quark
distributions can be neglected, these two asymmetriescural vhile fory ~ 0, when the valence
quark distributions in the denominator are negligibl&,(yy) ~ A(y)/2. This is clearly seen in Fig. 6.6
where the ratioA” (y)/A(y), with A(y) given by Eq. (6.31), is shown. Approaching the rapidity gap,
the asymmetryd” () decreases whild(y) rises. Thus, the ratio shown in Fig. 6.6 is close to zero at
the edge of the rapidity gap.

The pattern shown in Fig. 6.6 is quite general and dependsaonihe assumption on flavor sym-
metry of the pomeron parton distributions, Eq. (6.37). Efane, it would be interesting to test exper-
imentally the concept of the flavor symmetric pomeron padistributions by measuring the ratio of
the twolW asymmetries in the diffractive and nondiffractive scattering. Systematic errors will can-
cel in such a ratio which should allow for quite precise deiaeation of this quantity. We are looking
forward to the experimental verification of the presentexliits at the LHC.

In summary, the measurement of tHé* boson production asymmetry in the diffractiyge col-
lisions is a valuable method to test the concept of the flaymmsetric pomeron parton distributions.

If it is true, theWW asymmetry in the single diffractive case provides an aolditi constraint for the
parton distribution functions in the proton.
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Let us finish by noting that th&” rapidity is difficult to measure because of undetected ireutr
in the final state from the decay¥’* — [*v. Itis easier to measure the closely related charge lepton
asymmetry, which in general is smaller then that of Wieitself. The work in this direction in the
diffractive case is underway.



Chapter 7

Summary

In this Thesis we presented theoretical studies of diffragirocesses, which have been experimentally
investigated in thep collisions at HERA pp collisions at the Tevatron and will be explored soon in the
pp collisions at the LHC. We concentrated on hard diffractidmew a large scale is present, allowing
for the use of perturbative QCD.

The determination of diffractive parton distributions, cdmented in Chapter 2, was performed in
the framework of the QCD fits to the diffractive data from HER#this analysis, we included a higher
twist-4 contribution, taken form the dipole models, whicbndnates for small diffractive masses,
M? < Q% We proved that this contribution is important for the detigvation of the diffractive
gluon distribution. It also has a big impact on the diffraetlongitudinal structure function??, for
large values of the variable (small diffractive masses) [137]. The latter result can tsmpared with
measurements when the results from the low energy runs aH#IRbe available [80].

In Chapter 3, we analyzed the newest diffractive data frorREsing the dipole model approach
with three components of the diffractive stat@: andggg from transverse and longitudinal polarized
photons. This goes beyond the collinear factorizationyaiglfrom Chapter 2 since the energyr
dependence of the diffractive structure functions can ledipted in the dipole models. On the other
hand, the final state diffractive system is better describdlle collinear factorization approach since
it involves DGLAP resummed parton configurations in theordering approximation. In the dipole
model approach, we used two most characteristic phenowginal parametrizations of the dipole
cross sections (the GBW and CGC parametrizations) whiclhased on the parton saturation ideas.
We discussed the following important elements which havebeen analyzed in such detail so far.
Firstly, we show that the charm contribution, both in theofliscattering amplitude and in the diffrac-
tive state, is essential for a better description of the datdhe diffractive structure functioty’
measured at HERA (in contrast e.g. to the results of Margtis).[ Secondly, we proved that a simple
model with only quark-antiquark-gluon diffractive stageimnadequate to precisely describe the large
diffractive mass region and we need DGLAP resummation.dihiwve show that the treatment of the
color factors in the original GBW approach for quark-antéidigluon diffractive component (based
on the two gluon exchange approach) fails and should beaeghlay that based on eikonal scattering
of multiple gluons. To summarize this chapter, we preseatedpdated and comprehensive analysis
which clearly summarizes the significance of the dipole nwdéth parton saturation for the precise
description of the recent HERA data. This might be a refezaaralysis of DDIS for a hopefully new
collider LHeC at CERN.

In Chapter 4, we compared two sets of diffractive partorrithistions, from the DGLAP fits and
from the dipole model approach analyzes. We found signifiddference between them, especially
for the diffractive gluon distributions. Based on thesailss we made predictions for the diffractive
charm production using the boson-gluon fusion procegsg,— c¢, with the diffractive gluon distribu-
tion taken from the two discussed analyzes. We found reétmagreement with the first HERA data.
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We also confirmed the known result that the pegaliffractive production is strongly suppressed due
to kinematic limits.

The diffractive parton distributions are not universal aadnot be applied to both lepton-hadron
and hadron-hadron diffractive processes. According td, [@@ditional soft interactions between col-
liding hadrons prevent the collinear factorization unsadity of the DPDF. This is seen in diffractive
production of dijets at the Tevatron, which we discussedhager 5. We used the DPDF from Chap-
ter 2 to show the scale of the factorization breaking andudsche role of the secondary reggeon
contribution in the description of this effect. We also dissed the gap survival probability for the
dijet production. We finished with a brief description of ttheoretical status of the factorization
breaking in diffractive dijet photoproduction at HERA.

In Chapter 6 we analyzed diffractive hadroproduction otet®veak vector bosons at the LHC.
We compared asymmetry in rapidity of th&* boson production in inclusive proton-(anti)proton
collisions with the same asymmetry expected in the evertts single proton diffractive dissociation.
Since diffractive dissociation is described by the vacuwaigqum number exchange, the pomeron, the
expected asymmetry vanishes in the pomeron fragmentaggiorn near the edge of the rapidity gap.
This method may be used to test the flavor symmetry of partstnilalitions in the pomeron and to
obtain an additional constraint for the quark distributfonctions in the proton.
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