Introduction to physics of EIC QCD parton distributions

Krzysztof Golec-Biernat

Institute of Nuclear Physics PAN

EIC seminar, 21st March 2022

▶ Inclusive cross section for $ep \rightarrow e'X$ in which $(E'_e, \theta'_e) \leftrightarrow (x, Q^2)$

$$\frac{d\sigma}{dxdQ^2} = \frac{2\pi\alpha_{\rm em}^2}{xQ^4} Y_+ \left(F_2 - \frac{y^2}{Y_+} F_L \right) ~\sim~ L^{\mu\nu} W_{\mu\nu}$$

Strong interactions in two structure function if γ exchange only

$$F_2(x, Q^2),$$
 $F_L(x, Q^2) = F_2 - 2xF_1$

э

ヨトィヨト

Hadronic tensor in DIS cross section

$$W_{\mu
u} = \sum_X \int d\Gamma_X (2\pi)^4 \delta^4 (q+P-P_X) \left\langle P | J^\dagger_\mu(0) | X
ight
angle \left\langle X | J_
u(0) | P
ight
angle$$

Dirac Delta representation

$$\delta^4(q+P-P_X) = \int rac{d^4x}{(2\pi)^4} \,\mathrm{e}^{i(q+P-P_X)\cdot x}$$

After substitution

$$W_{\mu\nu} = \int d^4x \, e^{iq\cdot x} \sum_X \int d\Gamma_X \langle P | e^{i\hat{P}\cdot x} J^{\dagger}_{\mu}(0) \, e^{-i\hat{P}\cdot x} | X \rangle \, \langle X | J_{\nu}(0) | P \rangle$$

From the current translational invariance

$$W_{\mu\nu} = \int d^4x \, e^{iq \cdot x} \sum_{X} \int d\Gamma_X \left\langle P | J^{\dagger}_{\mu}(x) | X \right\rangle \left\langle X | J_{\nu}(0) | P \right\rangle$$

From completness relation of hadronic states X

$$W_{\mu\nu}(q,P) = \int d^4x \, e^{iq\cdot x} \left\langle P | J^{\dagger}_{\mu}(x) J_{\nu}(0) | P \right\rangle \quad o \quad ext{OPE}$$

• Elastic scattering: $e + p \rightarrow e + p$:

$$\frac{\sigma}{\sigma_{\textit{Mott}}} = \frac{1}{\left(1 + \frac{Q^2}{0.71 \textit{GeV}^2}\right)^4}$$

Mean electric charge radius:

 $\sqrt{\langle r^2 \rangle} \approx 0.8 \cdot 10^{-15} m$

No such a scale in DIS:

 $e + p \rightarrow e + X$

Scattering on a point-like object?

Structure function $F_2 = \nu W_2$ does not depend on Q^2 for $x = 1/\omega = 0.25$

• Bjorken scaling (no dependence on Q^2) is a smoking gun.

Explained by parton model

Parton model

Feynman, 1969 - elastic scattering on a point-like parton

Proton momentum fraction carried by parton $\xi = x$

$$(\xi P+q)^2 = 0 \quad \rightarrow \quad \xi = \frac{-q^2}{2P \cdot q} = x$$

In the infinite proton momentum frame - proton is a collection of free partons with probability density q_f(ξ). Incoherent scattering:

$$F_{2}(x) = \sum_{f} \int_{0}^{1} d\xi \left[e_{f}^{2} \xi \, \delta(\xi - x) \right] q_{f}(\xi) = \sum_{f} e_{f}^{2} x \left[q_{f}(x) + \bar{q}_{f}(x) \right]$$

Bjorken scaling is explained. Callan-Gross relation is fulfilled for spin 1/2 partons

$$F_L(x, Q^2) = F_2 - 2xF_1 = 0$$

QCD improved parton model I

- Asymptotic freedom of QCD explains weakness of interactions between quarks.
- Partons are valence u, d quarks and pairs of $q\bar{q}$ quarks sea quarks

$$\begin{aligned} u(x) &= u_v(x) + u_s(x) & d(x) &= d_v(x) + d_s(x) & s(x) &= s_s(x) \\ \bar{u}(x) &= u_s(x) & \bar{d}(x) &= d_s(x) & \bar{s}(x) &= s_s(x) \end{aligned}$$

Quark number sum rule for the proton

$$\int_0^1 dx \, u_v(x) = 2, \qquad \qquad \int_0^1 dx \, d_v(x) = 1$$

▶ Proton and neutron structure function - isospin symmetry: $u \leftrightarrow d$, $\bar{u} \leftrightarrow \bar{d}$

$$F_2^p = \frac{4}{9} \times (u + \bar{u}) + \frac{1}{9} \times (d + \bar{d}) + \frac{1}{9} \times (s + \bar{s})$$

$$F_2^n = \frac{4}{9} \times (d + \bar{d}) + \frac{1}{9} \times (u + \bar{u}) + \frac{1}{9} \times (s + \bar{s})$$

• Their ratio for $u_s = d_s = s_s \equiv S$:

$$\frac{F_2^n}{F_2^p} = \frac{\frac{1}{9}u_v + \frac{4}{9}d_v + \frac{4}{3}S}{\frac{4}{9}u_v + \frac{1}{9}d_v + \frac{4}{3}S}$$

• Dominance of S(x) for $x \to 0$ and $u_v(x)$ for $x \to 1$ and implies

$$\frac{1}{4} < \frac{F_2^n}{F_2^p} < 1$$

QCD improved parton model II

Momentum sum rule:

$$\sum_{f} \int_0^1 dx \, x \, (q_f(x) + \bar{q}_f(x)) \approx 0.5$$

▶ Logaritmic Bjorken scaling violation in the Bjorken limit: $Q^2 \rightarrow \infty$ and x = const

$$F_2 = F_2(x, \log(Q^2))$$

Gluons have to be taken into account:

Scale dependent parton distribution functions (PDFs)

 $q_f(x, Q^2), \qquad \overline{q}_f(x, Q^2), \qquad G(x, Q^2)$

Bjorken scaling violations explained by PDFs log Q² dependence.

Bjorken scaling violation - the tale of gluons

DGLAP evolution equations - non-singlet case

From optical theorem

$$F_2(x,Q^2) = \frac{Q^2}{4\pi^2 \alpha_{em}} \, \sigma_{\gamma^* p}(x,Q^2) = \operatorname{Im} A(\gamma^* p \to \gamma^* p)$$

For valence quark only - summation over gluon emissions must be done

Leading logarithmic approximation for ordered exchanged transverse momenta

$$m^2 < \mathbf{k}_1^2 < \mathbf{k}_2^2 < \ldots < \mathbf{k}_n^2 < Q^2$$

 \triangleright Q² is the upper limit for transverse part of the phase space. As a result

$$\alpha_s^n \int_{m^2}^{Q^2} \frac{d\mathbf{k}_n^2}{\mathbf{k}_n^2} \dots \int_{m^2}^{\mathbf{k}_3^2} \frac{d\mathbf{k}_2^2}{\mathbf{k}_2^2} \int_{m^2}^{\mathbf{k}_2^2} \frac{d\mathbf{k}_1^2}{\mathbf{k}_1^2} = \frac{\alpha_s^n}{n!} \left[\ln \frac{Q^2}{m^2} \right]^n$$

Evolution equations - non-singlet case

 \blacktriangleright F_2 in the LLA:

$$F_2(x, Q^2) = \sum_{n=0}^{\infty} a_n(x) \frac{1}{n!} \left[\alpha_s \ln \frac{Q^2}{m^2} \right]^n$$

Longitudinal part in the Mellin moment space

$$\tilde{a}_n(N) = \int_0^1 dx \, x^{N-1} a_n(x) = \left[\frac{\gamma_N}{2\pi}\right]^n$$

Final result with infrared regulator $m^2 \rightarrow 0$:

$$\tilde{F}_2(N,Q^2) = \exp\left\{\frac{\alpha_s \gamma_N}{2\pi} \ln \frac{Q^2}{m^2}\right\} = \left(\frac{Q^2}{m^2}\right)^{\alpha_s \gamma_N/(2\pi)}$$

Final result has to be multiplied by bare quark distribution $\bar{q}_0(N, m^2)$

$$ilde{F}_2(N,Q^2) = \left(rac{Q^2}{m^2}
ight)^{lpha_s \gamma_N/(2\pi)} imes ar{q}_0(N,m^2)$$

Two scales mixed up - short distance given by Q^2 and long distance given by m^2

Collinear factorization

• Separation of short and long distance physics with factorization scale $\mu^2 \gg \Lambda^2$

$$\tilde{F}_{2}(N,Q^{2}) = \underbrace{\left(\frac{Q^{2}}{\mu^{2}}\right)^{\alpha_{s}\gamma_{N}/(2\pi)}}_{\text{coefficient function}} \times \underbrace{\left(\frac{\mu^{2}}{m^{2}}\right)^{\alpha_{s}\gamma_{N}/(2\pi)}}_{\bar{q}(N+1,\mu^{2})} \times \bar{q}_{0}(N,m^{2})$$

▶ Renormalized quark distribution $\bar{q}(N, \mu^2)$ obeys evolution equation

$$\mu^2 \frac{\partial \bar{q}(N,\mu^2)}{\partial \mu^2} = \frac{\alpha_s}{2\pi} \gamma_N \bar{q}(N,\mu^2)$$

Evolution equation in the x-space

$$\mu^2 \frac{\partial q(x,\mu^2)}{\partial \mu^2} = \int_x^1 \frac{dz}{z} \frac{\alpha_s}{2\pi} P_{qq}\left(\frac{x}{z}\right) q(z,\mu^2)$$

• F_2 does not depend on the factorization scale. Choosing $\mu^2 = Q^2$

$$ilde{F}_2(N,Q^2) = ar{q}(N+1,Q^2) \quad \leftrightarrow \quad F_2(x,Q^2) = xq(x,Q^2)$$

イロト 不得 トイヨト イヨト

= nac

Evolution as Markov process

QCD improved formula after transformation to x-space

$$F_2(x,Q^2) = \sum_f e_f^2 x \left[q_f(x,Q^2) + \bar{q}_f(x,Q^2) \right] + \mathcal{O}\left(\frac{\Lambda^2}{Q^2}\right)$$

• Knowing PDF at Q^2 and want to know it at $Q^2 + \delta Q^2$

$$q(x, Q^{2} + \delta Q^{2}) = q(x, Q^{2}) + \frac{\delta Q^{2}}{Q^{2}} \int_{x}^{1} \frac{dz}{z} \frac{\alpha_{s}}{2\pi} P_{qq}\left(\frac{x}{z}\right) q(z, Q^{2})$$

- Splitting function $P_{qq}(x/z)$ gives quark-to-quark transition probab. $z \to x$
- Basis of MC parton showers after including virtual corrections.

・ 同 ト ・ ヨ ト ・ ヨ ト …

э.

DGLAP evolution equations

In general, more splittings

▶ DGLAP evolution equations with evolution "time" $t = \log(Q^2/Q_0^2)$ (Dokshitzer, Gribov, Lipatov, Altarelli, Parisi, 1972-77)

$$\frac{\partial q_f(x,t)}{\partial t} = P_{qq} \otimes q_f + P_{qG} \otimes G$$
$$\frac{\partial \bar{q}_f(x,t)}{\partial t} = P_{qq} \otimes \bar{q}_f + P_{qG} \otimes G$$
$$\frac{\partial G(x,t)}{\partial t} = P_{Gq} \otimes \sum_f (q_f + \bar{q}_f) + P_{GG} \otimes G$$

▶ Non-sinlet evolution equation for valence quark distributions: $q_{vf} = q_f - \bar{q}_f$

$$\frac{\partial q_{vf}(x,t)}{\partial t} = P_{qq} \otimes q_{vf}, \qquad P_{qq}(z) = \frac{4}{3} \frac{1+z^2}{1-z}$$

э

- A 🖻 🕨

Solving DGLAP equations

▶ Initial conditions at $Q_0^2 \simeq 1 \text{ GeV}^2$ (t = 0) with several parameters

$$q_f(x,0), \quad \bar{q}_f(x,0), \quad G(x,0)$$

Momentum and quark number sum rules conserved by evolution:

$$\int_{0}^{1} dx \, x \left[\sum_{f} \left(q_{f}(x, Q^{2}) + \bar{q}_{f}(x, Q^{2}) \right) + G(x, Q^{2}) \right] = 1$$
$$\int_{0}^{1} dx \left[q_{f}(x, Q^{2}) - \bar{q}_{f}(x, Q^{2}) \right] = N_{f}$$

If imposed for initial conditions - reduce the number of parameters.

Global fits of the input parameters to hard scattering data.

医下颌 医下颌

э.

> PDFs can be used in hadronic reactions, e.g. in the Drell-Yan production

$$\sigma_{DY} = \int_0^1 dx \int_0^1 dy \left[q(x, Q^2) \,\bar{q}(y, Q^2) + (x \leftrightarrow y) \right] \hat{\sigma}(q\bar{q} \rightarrow l^+ l^-)$$

э

H1, ZEUS	$F_2^{e^+p}(x, Q^2), F_2^{e^-p}(x, Q^2)$ NC + CC
BCDMS	$F_2^{\mu p}(x, Q^2), F_2^{\mu d}(x, Q^2)$
NMC	$F_2^{\mu p}(x, Q^2), F_2^{\mu d}(x, Q^2), F_2^{\mu n}(x, Q^2)/F_2^{\mu p}(x, Q^2)$
SLAC	$F_2^{e^-p}(x,Q^2), F_2^{e^-d}(x,Q^2)$
E665	$F_2^{\mu p}(x, Q^2), F_2^{\mu d}(x, Q^2)$
CCFR, NuTeV, CHORUS	$F_2^{\overline{\nu}(\overline{\nu})N}(x,Q^2), F_3^{\nu(\overline{\nu})N}(x,Q^2)$
	$\rightarrow q, ar{q}$ at all x and g at medium, small x
H1, ZEUS	$F_{2,c}^{e^{\pm}p}(x,Q^2), F_{2,b}^{e^{\pm}p}(x,Q^2) \to c, b$
E605, E772, E866	Drell-Yan $pN ightarrow \mu ar{\mu} + X ightarrow ~ar{q}~(g)$
E866	Drell-Yan p, n asymmetry $ ightarrow ar{u}, ar{d}$
CDF, D0	W^\pm rapidity asymmetry $ o ~u/d$ ratio at high x
CDF, D0	Z^0 rapidity distribution $ ightarrow u, d$
CDF, D0	inclusive jet data $ ightarrow g$ at high x
H1, ZEUS	DIS + jet data o g at medium x
CCFR, NuTeV	dimuon data $ ightarrow$ strange sea s , \overline{s}

æ

医下 不臣下

Parton distributions from global fits

- Gluons and sea quarks dominate at small x.
- Gluons carry the missing half of proton's momentum.

 $\blacktriangleright\,$ For $Q^2 \rightarrow \infty$ the quark and gluon momentum fractions equal

$$f_q = \frac{3n_f}{16 + 3n_f}$$
, $f_G = \frac{16}{16 + 3n_f} \approx 0.5$

No total parton number sum rule - could be infinite.

For $x \ll 1$

$$\frac{\partial F_2(x)}{\partial \log Q^2} \sim P_{qG} \otimes G \sim \bar{x} G(\bar{x}, Q^2) \bigg|_{\bar{x} \sim x}$$

Longitudinal structure function F_L

NLO QCD collinear factorization formula

$$F_L(x,Q^2) = \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{dz}{z} \left[C_L^q \left(\frac{x}{z} \right) F_2^{LO}(z,Q^2) + C_L^g \left(\frac{x}{z} \right) z G(z,Q^2) \right] + \mathcal{O}\left(\frac{\Lambda^2}{Q^2} \right)$$

- Strong sensitivity to gluon distribution at small x.
- ▶ Higher twists at small Q²?

Charm contribution to F_2

c, b quarks generated radiatively

 $\gamma^*g \to c\bar{c}, b\bar{b}$

- Intrinsic charm?
- Charm contribution up to 25% for x
 x 1 and large Q².

э

A 3

Summary and broader perspective

- ▶ PDFs provide 1-dim. parton structure in longitudinal momenta $q(x), \bar{q}(x), G(x)$
- Multidimensional structure Wigner function $W(x, k_T, b_T)$

- ▶ Information on transverse momentum k_T and transverse spatial b_T distributions
- More exclusive PDFs probed through exclusive processes like DVCS, SIDIS, VMP
- Information about spin structure
- EIC program: nucleon/nucleus tomography