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High density QCD

High density QCD is based on the idea of parton saturation:

gluons form high density system in which easily recombine

nonlinear evolution equations appear: (Color Glass Condensate)

unitarity restored (Froissart bound)

Two basic features of high density QCD:

saturation scale - intrinsic scale for gluon system: Q2
s(x)

geometric scaling - DIS γ∗p cross section scales

σγp(x, Q2) = σγp

(
Q2

Q2
s(x)

)
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Saturation scale and geometric scaling
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Nonlinear evolution equations

*γ

Balitsky-Kovchegov equation for the dipole scattering amplitude Nxy(Y )

∂Nxy

∂Y
= αs

∫

d2z
(x − y)2

(x − z)2(y − z)2

{

Nxz + Nyz − Nxy
︸ ︷︷ ︸

BFKL

−Nxz Nyz

}

Cross section:

σγp =
1

Q2

∫

d2x d2y |Ψγ(x − y, Q2)|2 Nxy(Y )
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Saturation scale from BK equation

Fourier transform: T (k⊥, Y ) =
∫

d2r eik⊥· r N(r, Y )/r2 , r = |x − y|
BK equation in spherical and uniform case (GB, Motyka, Staśto (2003))

∂Y T = χ (−∂ln k⊥) T
︸ ︷︷ ︸

BFKL

−T 2
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Infrared suppression Scaling: T = T (k⊥/Qs(Y ))
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Traveling wave

Expand BFKL kernel: (Munier, Peschanski (2003-04))

χ(γ) = χc + χ′

c(γ − γc) + 1
2χ′′

c (γ − γc)
2

and change variable: u(x, t) = T (k⊥, Y ).

BK equation belongs to the universality class of FKPP equation:

∂tu(x, t) = ∂xxu + u (1 − u)

x

u(
t,x

)
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Geometric scaling: T = T
(

k⊥
Qs(Y )

)

Saturation scale from the tail u ≪ 1

lnQ2
s(Y ) =

ᾱs χc

γc

Y − 3

2γc

lnY − A(γc)√
Y
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Saturation and fluctuation

Scattering amplitude T is averaged over partonic configurations:

〈
T 2

〉
≃ 〈T 〉 〈T 〉

BK equation is an approximation → Balitsky – JIMWALK hierarchy

〈T 〉 →
〈
T 2

〉
→

〈
T 3

〉
→

〈
T 4

〉
→ · · ·

evolution T 2 splitting T 2 → T 3 merging T 2 → T

Merging is not present in the Balitsky’s hierarchy.

Surfing on the traveling wave with Robi – p.7/12



Stochastic FKPP equation

HE scattering is a stochastic process with death/birth processes.

∂Y T (k, Y ) = χ (−∂ln k⊥) T − T 2 + αs

√
2T η

where η is white noise

〈η(k, Y )〉 = 0 〈η(k, Y ) η(k′, Y ′)〉 = δ(ln k − ln k′) δ(Y − Y ′)

The equation for the scattering amplitude T is in the universality
class of the stochastic FKPP equation (Iancu, Mueller, Munier (2004)):

∂tu = ∂xxu + u (1 − u) +

√

2

N
u(1 − u) η

The front of the traveling wave T ∼ u is very sensitive to fluctuations
when the number of partons n is low: T ≃ α2

s n ≪ 1
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Consequences of stochasticity

(Munier (2005))

saturation scale Qs(Y ) is a random variable

scattering amplitude is given by an average over noise

geometric scaling is violated due to fluctuations in the dilute domain
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Geometric scaling violation

(Brunet, Derida, Enberg, GB, Iancu, Marquet, Mueller, Munier, Peschanski, Soyez, Shoshi, Triantafyllopoulos, Xiao

(2004-06))

Average amplitude – diffusive scaling instead of geometric scaling:

〈T (k⊥, Y )〉 = T




ln k2

⊥
−

〈
lnQ2

s(Y )
〉

√

ᾱsY/ ln3(1/α2
s)





Average saturation scale with dispersion σ2 ∼ Y

〈
lnQ2

s(Y )
〉

=

(
ᾱsχc

γc

− ᾱsπ
2γcχ

′′
c

2 ln2(1/α2
s)

)

Y

Fluctuations important when ᾱsY ≫ ln2(1/α2
s) ≫ 1
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Conclusions

The origin of saturation scale and geometric scaling can be
understood through the relation to statistical physics.

High energy QCD scattering can be viewed as stochastic process in
which rare partonic configurations play important role.

Geometric scaling breaking can be given precise meaning (diffusive
scaling).
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A very happy birthday Robi!
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