Opportunities with diffraction

Krzysztof Golec-Biernat

Institute of Nuclear Physics in Krakow

IWHSS17, Cortona, 2-5 April 2017

4 E b

- Diffraction and the pomeron
- Hera perspective
- Exclusive diffractive processes from Hera to LHC
- Shock wave approach to diffraction

< ∃⇒

- $\blacktriangleright s \gg |t|, m_X^2, m_Y^2$
 - single diffraction SD
 - double dissociation DD
 - vacuum quantum number exchange

- DIS: $s \gg Q^2, |t|, m_p^2$
- semihard process

 $\Lambda_{QCD} \ll Q^2 \ll s \quad => \quad x = rac{Q^2}{s} \ll 1$

perturbative QCD applicable

Diffraction and pomeron

- Diffraction is about the structure of pomeron vacuum quantum number exchange.
- Regge theory soft pomeron trajectory with intercept above one

 $\alpha(t) = \alpha_{IP}(0) + \alpha'_{IP} \cdot t = 1.08 + (0.25 \,\mathrm{GeV}^{-2}) \cdot t$

Gives asymptotic behaviour when $s \to \infty$ $A(s,t) \sim i\beta(t) s^{\alpha(t)} => \sigma_{tot} \sim s^{\alpha_P(0)-1}$

QCD - two gluon color singlet exchange, BFKL hard pomeron

Large rapidity gaps in DIS

pomeron momentum fraction

$$x_{IP} = rac{Q^2 + M^2}{Q^2 + W^2} \ll 1$$

Diffractive structure functions

 $F_{2,L}^D(x, Q^2; x_{IP}, t)$

 \blacktriangleright More exclusive measurements, e.g. dijets, vector mesons, heavy quarks, γ

Soft pomeron exchange

Collinear factorization approach

Soft pomeron with partonic structure - Ingelman-Schlein model ('80)

$$F_2^D = f_{I\!P}(\mathsf{x}_{I\!P}, t) \sum_q \beta \left\{ q_{I\!P}(\beta, Q^2) + \overline{q}_{I\!P}(\beta, Q^2) \right\}$$

► Pomeron flux $f_{IP} \sim x_{IP}^{1-2\alpha_{IP}(t)}$ and pomeron PDFs $\{q_{IP}, \overline{q}_{IP}, g\}$

• $\beta = x/x_{IP}$ is a pomeron momentum fraction carried by a parton.

Pomeron PDFs evolved with DGLAP equations fitted to diffractive data.

Pomeron is gluon dominated (in comparison to normal PDFs).

Soft color interaction (SCI) model

Soft gluon exchanges neutralize color but do not change momenta.
 (A. Edin, G. Ingelman, J. Rathsman, Phys.Lett. B366 (1996) 371)

 \blacktriangleright To check this mechanism studying W^{\pm} production asymmetry in rapidity

$$A(y) = \frac{d\sigma_{W^+} - d\sigma_{W^-}}{d\sigma_{W^+} + d\sigma_{W^-}}$$

(KGB, C. Royon, L. Schoeffel, R. Staszewski, Phys.Rev. D84 (2011) 114006)

Diffractive W^{\pm} production asymmetry

- In LO W^{\pm} from fusion of two quarks $(u\overline{d} \text{ or } d\overline{u})$
- ▶ In SCI model quarks from the proton asymmetry $A(y) \neq 0$
- Quark distributions in the pomeron are flavour blind A(y) = 0

BFKL pomeron and its unitarization

▶ DIS at small x (high energy) can be viewed as a quark dipole interaction.

- Two gluons $\sigma_{\gamma^* p} \sim const$
- BFKL pomeron $-\sigma_{\gamma^*p} \sim x^{-0.3}$
- Unitarized pomeron $\sigma_{\gamma^* p} \sim \ln(1/x)$

Approaches to unitarization

- Color dipoles of Mueller and Kovchegov
- Shock wave approach of Balitstky
- Color Glass Condensate and McLerran and Venugopalan
- QCD reggeon field theory of Bartels and Lipatov

▶ A quark dipole of transverse size *r* interacting with the proton

▶ Dipole cross section with saturation scale $Q_s \sim 1 \; {
m GeV}$ in perturb. domain

 $\hat{\sigma}_{dip}(r,x) = \sigma_0 \left\{ 1 - \exp(-r^2 Q_s^2(x)) \right\} \qquad \qquad Q_s(x) = Q_0 x^{-\lambda}$

• Red parameters fitted DIS data on F_2 for $x \le 10^{-2}$

$$F_2(x,Q^2) \sim \int d^2 r \left| \Psi_{\gamma^*
ightarrow q \overline{q}}(r,Q^2)
ight) \left|^2 \, \hat{\sigma}_{dip}(r,x)
ight.$$

(KGB, M. Wüsthoff, PRD 59 (1998) 014023)

• For a given dipole size cross section saturates when $x \rightarrow 0$

> Parton saturation confirmed by the Balitsky-Kovchegov equation.

(I. Balitsky, Nucl.Phys. B463 (1996) 99; Y. Kovchegov, PRD 60 (1999) 034008)

Saturation in diffraction

▶ Two diffractive states: $q\bar{q}$ and $q\bar{q}g$ interacting with $\hat{\sigma}_{dip} = \int d^2 b N(b)$

 $F_2^D = F_T^{q\overline{q}} + F_L^{q\overline{q}} + F_T^{q\overline{qg}}$

Can also be applied to diffractive vector meson production

Comparison with HERA diffractive data

- ▶ The three contributions to diffractive structure function.
- ▶ $F_L^{q\overline{q}}$ is higher twist which dominates for $\beta = \frac{Q^2}{Q^2 + M^2} \rightarrow 1$.

Constant ratio $\sigma_{diff}/\sigma_{\gamma^*p}$

► Explained by the saturation model (KGB, M. Wüsthoff, PRD 60 (1999) 114023)

Vector meson production

(H. Kowalski, L. Motyka, G. Watt, PRD 74 (2006) 074016)

Scattering amplitude

$$A(\gamma + p \rightarrow V + p) = (\Psi_V)^* \otimes N_{dip}(x, r, b) \otimes \Psi_{\gamma}$$

 New element - impact parameter b dependence in dipole scattering amplitude

$$N(x, r, b) = 1 - \exp\{-r^2 Q_s(x, b)\}$$

b-dependent saturation scale Q_s (b-CGC model)

< ∃ →

VM production - energy dependence

Change of energy dependence with VM and Q² and a slight dependence on the choice of the VM wave function.

VM production - *t* dependence

 Eikonal form of dipole scattering amplitude with saturation scale Q₅(x, b) crucial for these results.

Exclusive diffractive dijet production

- Two gluon exchange in k_T-factorization versus collinear approach (Bartels, Ewertz, Lotter, Wüsthoff, Jung,...)
- Look at azimuthal dependence:

 $rac{d\sigma}{d\phi} \sim (1 + A\cos\phi)$

Two gluon exchange model works better then resolved pomeron model.

Such processes can also be measured at the LHC in pp, pA or ultraperipheral AA collisions.

> Details of the description in *ep* collisions transferred to hadronic collisions.

Central diffractive production production at the LHC

(LHC forward physics, J.Phys. G43 (2016) 110201, arXiv:1611.05079 [hep-ph])

Program to build very forward detectors to tag protons at small angles

Double pomeron exchange

Central exclusive production

 Absorptive factors which reduce cross sections are important - gap survival factors.

Systematic studies within shock wave approach

(I. Balistky, Nucl.Phys. B463 (1996) 99)

> At high energy particles move along straight lines - Wilson lines

$$\hat{U}(x_{\perp}) = \exp\left\{ ig \int_{-\infty}^{\infty} dx^{+} \hat{A}^{-}(x^{+}, x_{\perp})
ight\}$$

 \blacktriangleright High energy scattering amplitude with factorization parameter η

$$\mathcal{A}(s) = \int d^{2}x_{\perp}d^{2}y_{\perp} \underbrace{I_{A}(x_{\perp}, y_{\perp}; \eta)}_{lmpact \ factor} \left\langle B | \underbrace{\mathrm{Tr}[\hat{U}_{\eta}(x_{\perp})\hat{U}_{\eta}^{\dagger}(y_{\perp})]}_{dipole \ operator} - \mathcal{N}_{c}|B \right\rangle$$

Balitsky-JIMWLK equations evolve dipole operators into multipoles

$$\frac{\partial \hat{U}_{12}^{\eta}}{\partial \eta} = \frac{\alpha_s N_c}{2\pi^2} \int d^2 \vec{z}_3 \, \frac{\vec{z}_{12}^2}{\vec{z}_{13}^2 \, \vec{z}_{32}^2} \left\{ \hat{U}_{13}^{\eta} + \hat{U}_{32}^{\eta} - \hat{U}_{12}^{\eta} - \hat{U}_{13}^{\eta} \hat{U}_{32}^{\eta} \right\}$$
$$\frac{\partial \hat{U}_{13}^{\eta} \hat{U}_{32}^{\eta}}{\partial \eta} = \dots$$

• Kovchegov equation for dipole operator only in large N_c limit

$$\frac{\partial \langle \hat{U}_{12}^{\eta} \rangle}{\partial \eta} = \frac{\alpha_s N_c}{2\pi^2} \int d^2 \vec{z}_3 \, \frac{\vec{z}_{12}^2}{\vec{z}_{13}^2 \, \vec{z}_{32}^2} \left\{ \langle \hat{U}_{13}^{\eta} \rangle + \langle \hat{U}_{32}^{\eta} \rangle - \langle \hat{U}_{12}^{\eta} \rangle - \langle \hat{U}_{13}^{\eta} \rangle \langle \hat{U}_{32}^{\eta} \rangle \right\}$$

$$\frac{\mathsf{BFKL}/\mathsf{BKP eq.} \qquad \mathsf{saturation}}{\mathsf{BFKL}/\mathsf{BKP eq.}}$$

э

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

$q\overline{q}g$ impact factors in NLO approximation

(R. Boussarie, A. V. Grabovsky, S. Wallon, L. Szymanowski, D. Yu. Ivanov, JHEP 409 (2014) 026, JHEP 1611 (2016) 149, arXiv:1612.08026 [hep-ph])

NLO qq production graphs

plus LO real gluon emission

Application to diffractive production

- exclusive diffractive dijet electroproduction with merged gluon
- exclusive diffractive dijet photoproduction ($Q^2 = 0$)
- non-exclusive diffractive dijet production trijet production
- photoproduction of open charm or charmonium production

Applications to VM production

• Exclusive diffractive production of light vector mesons: $\gamma^* p \rightarrow \rho p$

• Additional collinear factorization with distribution amplitude $\phi_{||}(x)$

$$\mathcal{A} = \int_0^1 dx \, H(x,\ldots) \, \times \phi_{||}(x,\mu) \,, \qquad \mu = Q^2, |t|$$

Amplitude infrared finite for both longitudinal and transverse photons, and also in photoproduction limit (no end point sigularity).

- Diffractive processes with a hard scale probe the QCD nature of the pomeron:
 - resolved pomeron
 - BFKL pomeron
 - parton saturation as unitarization mechanism.
- VM production supports saturation mechanism.
- ▶ Natural applications to *pp*, *pA* and ultraperipheral *AA* collisions
- Shock wave approximation program is theoretically sound and promissing.