Chromodynamika kwantowa w warunkach ekstremalnych

Krzysztof Golec-Biernat

Oddział Fizyki Teoretycznej NZ41

IFJ PAN, 23 maja 2013 r.

Plan

- Chromodynamika kwantowa (QCD)
- Struktura chromodynamiczna nukleonu
- QCD dla dużych gęstości partonowych w eksperymentach na LHC

Wstęp

- Elektrodynamika kwantowa 1949
- Model Weinberga-Salama 1967
- Chromodynamika kwantowa 1973

Kwantowe teorie pola z lokalną symetrią cechowania: $U_Y(1)\otimes SU_L(2)\otimes SU_c(3)$

- Supersymetria (model Wessa-Zumino) 1973 ???
- Teoria strun 1984 ???

• Kwanty to kolorowe kwarki o spinie 1/2 i gluony o spinie 1.

Asymptotyczna swoboda (Gross, Wilczek, Politzer, 73)

"Stała" sprzężenia silnego:

$$\alpha_s(\mu) = \frac{b}{\ln(\mu^2/\Lambda_{QCD}^2)}$$

Skala: $\Lambda_{QCD} \simeq 200 \text{ MeV}$

Uwięzienie na dużych odległościach ($\sim 1 \text{ fm}$)

Unifikacja oddziaływań

Unifikacja oddziaływań

Supersymetria ratuje unifikację.

Procesy z twardą skalą

Solution Widziane" poprzez procesy z twardą: $Q \gg \Lambda_{QCD}$

DIS:
$$Q = \sqrt{-q^2}$$
 $pp: Q = E_T$

Przekrój czynny:

$$\sigma_{AB} = \sum_{a,b} \int dx_a dx_b f_a(x_a, Q) \left\{ \hat{\sigma}_0 + \alpha_s(Q) \hat{\sigma}_1 + \ldots \right\} f_b(x_b, Q)$$

Gęstości partonowe - kwarkowe i gluonowe: $f_a = (q_f, G)$

Twarde procesy

H1, ZEUS	$F_2^{e^+p}(x,Q^2), F_2^{e^-p}(x,Q^2)$ NC + CC
BCDMS	$F_2^{\mu p}(x,Q^2), F_2^{\mu d}(x,Q^2)$
NMC	$F_2^{\mu p}(x,Q^2), F_2^{\mu d}(x,Q^2), F_2^{\mu n}(x,Q^2)/F_2^{\mu p}(x,Q^2)$
SLAC	$F_2^{e^-p}(x,Q^2), F_2^{e^-d}(x,Q^2)$
E665	$F_2^{\mu p}(x,Q^2), F_2^{\mu d}(x,Q^2)$
CCFR, NuTeV, CHORUS	$F_2^{\nu(\bar{\nu})N}(x,Q^2), F_3^{\nu(\bar{\nu})N}(x,Q^2)$
	$ ightarrow q$, $ar{q}$ at all x and g at medium, small x
H1, ZEUS	$F_{2,c}^{e^{\pm}p}(x,Q^2), F_{2,b}^{e^{\pm}p}(x,Q^2) \to c, b$
E605, E772, E866	Drell-Yan $pN \rightarrow \mu \bar{\mu} + X \rightarrow \bar{q}$ (g)
E866	Drell-Yan p, n asymmetry $\rightarrow \bar{u}, \bar{d}$
CDF, D0	W^{\pm} rapidity asymmetry $\rightarrow u/d$ ratio at high x
CDF, D0	Z^0 rapidity distribution $\rightarrow u, d$
CDF, D0	inclusive jet data $\rightarrow g$ at high x
H1, ZEUS	DIS + jet data o g at medium x
CCFR, NuTeV	dimuon data \rightarrow strange sea s, \bar{s}

Łamanie skalowania $F_2(x,Q^2)$

Rozkłady partonowe

- Gluony niosą połowę pędu nukleonu.
- Powolne gluony $x \approx 0$ dominują strukturę nukleonu.

Równania ewolucji Altarelliego-Parisiego (DGLAP)

QCD przewiduje zmianę gęstości partonowych z skalą Q

$$\frac{\partial q_f}{\partial \ln Q^2} = P_{qq} \otimes q_f + P_{qG} \otimes G$$
$$\frac{\partial G}{\partial \ln Q^2} = P_{GG} \otimes G + P_{Gq} \otimes \sum_f q_f$$

Fit rozkładów początkowych $q_f(x, Q_0), G(x, Q_0)$ do danych.

Rozkłady gluonów

Silny wzrost gęstości gluonów dla $x \to 0$.

Chromodynamika dla dużych gęstości partonowych

Gluony rekombinują hamując wzrost gęstości gluonów dla $x \rightarrow 0$

Nieliniowe równania ewolucji (Gribov, Levin, Ryskin, 83)

$$\frac{\partial G}{\partial \ln Q^2} = P_{GG} \otimes G - V_{GGG} \otimes G^2$$

Obraz dipolowy

Dipol kwarkowy sonduje gęsty układ gluonowy w nukleonie

To co widzi zależy od energii s: $x = Q^2/s$

Skala saturacji: $R_s(x) \sim x^{0.15}$

- Skalowanie geometryczne: $N = N(r/R_s(x))$
- Nieliniowe równanie Balitskiego-Kovchegova:

$$-\frac{\partial N}{\partial \ln x} = K \otimes N - N \otimes N$$

Saturacja rozkładu gluonów

Gęstość gluonów nasyca się dla $k_T < Q_s = 1/R_s$.

Saturacja rozkładu gluonów

Gęstość gluonów nasyca się dla $k_T < Q_s = 1/R_s$.

LHC parton kinematics

Dense QCD at LHC

Produkcja par Drella-Yana dla małych M (G-B, Lewandowska, Staśto, 2010)

DY cross section for $x_F = 0.15$ and M=10 GeV

Gęstości gluonowe wzmocnione przez liczbę nukleonów A

Zderzenie dwóch gęstych kondensatów gluonowych.

Glazma \rightarrow plazma kwarkowo – gluonowa \rightarrow hadrony

Efektywny opis QCD gęstych układów gluonowych - glazmy (Venugopalan, McLerran, Lappi)

Grzbiet (ridge) w zderzeniach pp i pA

Minimum bias versus high multiplicity events in pp from CMS:

 $N > 110, 1 \text{ GeV/c} < p_{T} < 3 \text{ GeV/c}$

W zderzeniach pA grzbiet znacznie większy.

Grzbiet (ridge) w zderzeniach pp i pA

(Dusling, Venugopalan)

Grzbiet dla pA tłumaczony też przez model hydrodynamiczny (P. Bożek)

- QCD dla dużych gestości partonowych istotna dla procesów DIS w zderzeniach ep:
 - funkcje struktury protonu w obszarze przejścia do małych Q^2
 - geometryczne skalowanie
 - procesy dyfrakcyjne

Na LHC wciąż do potwierdzenia.